The vertexing challenge at FCC-ee

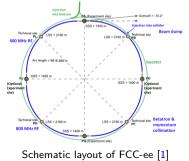
11th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging, Strasbourg

Armin IIg¹ Anna Macchiolo¹ Fabrizio Palla² on behalf of FCC

> ¹University of Zürich ²INFN Pisa

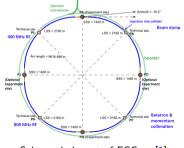
> > 21.11.2024

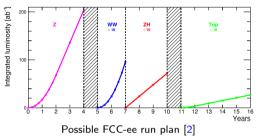
Circular collider with 90.7 km circumference machine to serve HEP for the rest of the century



Circular collider with 90.7 km circumference machine to serve HEP for the rest of the century

FCC-ee: e^+e^- collisions at highest luminosities \rightarrow *intensity frontier*

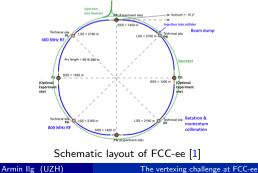


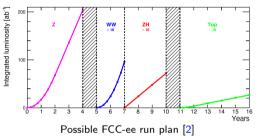


Circular collider with 90.7 km circumference machine to serve HEP for the rest of the century

FCC-ee: e^+e^- collisions at highest luminosities \rightarrow *intensity frontier*

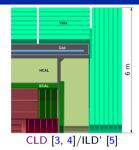
EW: 2.4 · 10⁸ WW, 6 · 10¹² Z **Flavour**: $O(10^{12}) b\bar{b}, c\bar{c}, \text{ etc.}, O(10^{11}) \tau\bar{\tau}$ **H**: 1.78 · 10⁶ HZ, 125k WW \rightarrow H **Top**: 1.9 · 10⁶ $t\bar{t}$


Schematic layout of FCC-ee [1]

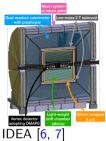


Circular collider with 90.7 km circumference machine to serve HEP for the rest of the century

FCC-ee: e^+e^- collisions at highest luminosities \rightarrow *intensity frontier*


EW: 2.4 · 10⁸ WW, 6 · 10¹² Z ← **challenging! Flavour**: $O(10^{12}) b\bar{b}, c\bar{c}, \text{ etc.}, O(10^{11}) \tau\bar{\tau}$ **H**: 1.78 · 10⁶ HZ, 125k WW → H **Top**: 1.9 · 10⁶ $t\bar{t}$

Need to match tiny statistical uncertainties with theoretical and experimental systematic uncertainties of $\mathcal{O}(10^{-4}-10^{-5})!$

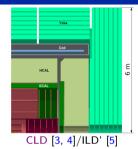

Pixel2024, Strasbourg

FCC-ee detector concepts + variations (RICH, different trackers, ...)

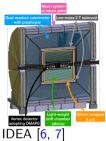
- ILC (\rightarrow CLIC) \rightarrow FCC-ee (\rightarrow μ Col)
- Si vertexing and Si tracking/TPC
- Highly-granular ECAL and HCAL, CALICE-like
- Solenoid coil outside calorimeter[®] system

- Si vertexing
- Drift chamber (down to 1.6% X₀, dN_{ion.}/dx)
- Silicon wrapper with T.O.F
- Crystal ECAL, light solenoid, dual-readout calorimeter
- μ-RWELL muon detector in return yoke

- Si vertexing
- Drift chamber, silicon wrapper
- Noble liquid ECAL, Pb/W+LAr or W+LKr
- ECAL and solenoid coil in same cryostat
- CALICE-like or TileCal-like HCAL


Armin Ilg (UZH)

The vertexing challenge at FCC-ee


Pixel2024, Strasbourg

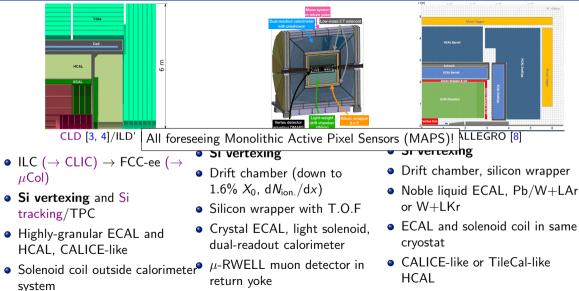
FCC-ee detector concepts + variations (RICH, different trackers, ...)

- ILC (\rightarrow CLIC) \rightarrow FCC-ee (\rightarrow μ Col)
- Si vertexing and Si tracking/TPC
- Highly-granular ECAL and HCAL, CALICE-like
- Solenoid coil outside calorimeter[®] system

- Si vertexing
- Drift chamber (down to 1.6% X₀, dN_{ion.}/dx)
- Silicon wrapper with T.O.F
- Crystal ECAL, light solenoid, dual-readout calorimeter
- μ-RWELL muon detector in return yoke

- Si vertexing
- Drift chamber, silicon wrapper
- Noble liquid ECAL, Pb/W+LAr or W+LKr
- ECAL and solenoid coil in same cryostat
- CALICE-like or TileCal-like HCAL

Armin Ilg (UZH)


The vertexing challenge at FCC-ee

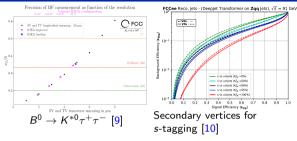
Pixel2024, Strasbourg

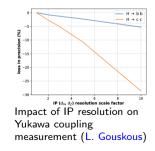
21.11.2024 3 / 16

FCC-ee detector concepts + variations (RICH, different trackers, ...)

Armin Ilg (UZH)

The vertexing challenge at FCC-ee


Pixel2024, Strasbourg

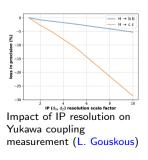

The need for precise vertex reconstruction

For anything that has secondary vertices!

- b and c hadrons, taus, V0s, ...
- Reconstruct complex decay chains
- Particle lifetime measurements
- Efficient flavour tagging (b/c/g/s)

The need for precise vertex reconstruction

For anything that has secondary vertices!


- b and c hadrons, taus, V0s, ...
- Reconstruct complex decay chains
- Particle lifetime measurements
- Efficient flavour tagging (b/c/g/s)

Stringent requirements on vertex detector to limit syst. uncertainties:

- Coverage down to $|\cos(\theta)| \leq 0.99$ and high reco. efficiency
- $\rightarrow \sigma_{d_0} = a \oplus \frac{b}{p \sin^{3/2} \theta}$ with $a \approx 3 \,\mu\text{m}$, $b \approx 15 \,\mu\text{mGeV}$

Precision of BF measurement as function of the resolution **FCCee** Reco. lets - (Deeplet Transformer on **Zoo** lets), $\sqrt{s} = 91$ GeV W/V0s: -∩ FCC SV and TV longitudinal supering : 20 an IDEA immediate IDEA baseline ≝ 10-10 s vs urbiets (K7. = 605 Signal Efficiency (s....) 4 SV and TV transverse smearing in μm Secondary vertices for $B^0 \to K^{*0} \tau^+ \tau^-$ [9] s-tagging [10]

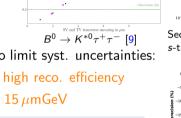
0.7 0.8 0.9 1.0

0.6

The need for precise vertex reconstruction

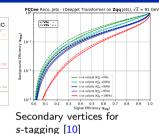
For anything that has secondary vertices!

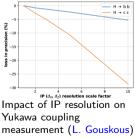
- b and c hadrons, taus, V0s, ...
- Reconstruct complex decay chains
- Particle lifetime measurements
- \bullet Efficient flavour tagging (b/c/g/s)


Stringent requirements on vertex detector to limit syst. uncertainties:

- ightarrow Coverage down to $|\cos(heta)| \lesssim 0.99$ and high reco. efficiency
- $\rightarrow \sigma_{d_0} = a \oplus \frac{b}{p \sin^{3/2} \theta}$ with $a \approx 3 \,\mu\text{m}, \ b \approx 15 \,\mu\text{mGeV}$

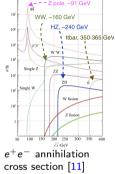
Challenges and resulting requirements to overcome them

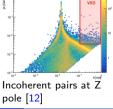

- a given by sensor resolution \rightarrow Small single-hit resolution, pixels
- b given by multiple scattering → Minimise material budget (number of radiation lengths X₀) in vertex and beam pipe
 - ightarrow Also relevant for momentum resolution in tracker



Precision of BF measurement as function of the resolution

IDEA improved
 IDEA baseline





©: e^+e^- collisions are *clean* - there's no QCD in the initial state ©: Very high inst. luminosity of $140 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ thanks to 50 MHz bunch collision rate ($t_{\text{BC}} = 20 \text{ ns}$)

University of Zurich⁰⁷⁸

WW ~160 GeV HZ. ~240 GeV tthar 350-365 Ge\ W'W' Single Z Single W W fusion Z fusion - Cz (GeV e^+e^- annihilation cross section [11]

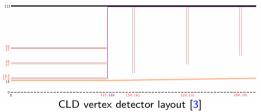
- ©: e^+e^- collisions are *clean* there's no QCD in the initial state ©: Very high inst. luminosity of $140 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ thanks to 50 MHz bunch collision rate ($t_{\text{BC}} = 20 \text{ ns}$)
 - Very high rate of interesting events (200 kHz of Z) that need to be read out and saved (and simulated!)
 - Considerable beam backgrounds, mainly from incoherent pairs
 - Hit rate of $\mathcal{O}(200\,\text{MHz}/\text{cm}^2)$ for innermost layer
 - \rightarrow Trigger-less readout will be challenging
 - \bullet "Pile-up" of 200 kHz/50 MHz = 0.004 at Z-pole
 - ightarrow Integrate over of a couple of bunch crossings?
 - $\rightarrow~$ But need to check impact on uncertainties
 - Timing of $\mathcal{O}(\text{few ns} 1 \, \mu \text{s})$
 - $\mathcal{O}(1\times 10^{14}~1\,{\rm MeV}~n_{\rm eq}{\rm cm}^{-2})$ and $\mathcal{O}(10\,{\rm MRad}/100\,{\rm kGy})$ per year

University of Zurich¹⁰¹⁴

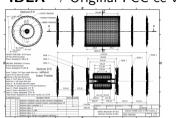
WW ~160 GeV HZ. ~240 GeV \bigcirc : e^+e^- collisions are *clean* - there's no QCD in the initial state tthar 350-365 Ge\ \odot : Very high inst. luminosity of $140 \times 10^{34} \, \text{cm}^{-2} \text{s}^{-1}$ thanks to 50 MHz W'W' bunch collision rate ($t_{BC} = 20 \text{ ns}$) Single 5 • Very high rate of interesting events (200 kHz of Z) that need to be Single W W fusion read out and saved (and simulated!) • Cd How do the detector concepts realise such a vertex detector? • Hit rate of O(200 IVIHz/cm²) for innermost layer e^+e^- annihilation \rightarrow Trigger-less readout will be challenging cross section [11] • "Pile-up" of 200 kHz/50 MHz = 0.004 at Z-pole \rightarrow Integrate over of a couple of bunch crossings? \rightarrow But need to check impact on uncertainties • Timing of $\mathcal{O}(\text{few ns} - 1 \, \mu \text{s})$

• $\mathcal{O}(1 \times 10^{14} \ 1 \, {\rm MeV} \ n_{\rm eq} {\rm cm}^{-2})$ and $\mathcal{O}(10 \, {\rm MRad}/100 \, {\rm kGy})$ per year

Incoherent pairs at Z


pole [12]

FCC-ee vertex concept developments

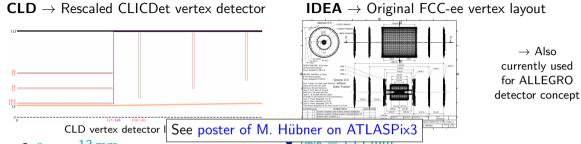

FCC-ee vertex detector layouts

$\textbf{CLD} \rightarrow \text{Rescaled CLICDet vertex detector}$

- $r_{\min} = 13 \text{ mm}$
- Three double-layer barrel layers and disks, 0.6–0.7% X₀ per double layer
- No engineering studies since CLICDet developments
- No specific sensor chosen, assume $3 \,\mu m$ single-point resolution

• $r_{\min} = 13.7 \text{ mm}$

$\textbf{IDEA} \rightarrow \text{Original FCC-ee}$ vertex layout


- Three inner barrel single-layers (0.25% X₀), two outer barrel layers and three disks
- Engineered design integrated into machinedetector interface region (INFN-LNF [13])
- Baseline: ARCADIA [14] (inner barrel, $25 \times 25 \,\mu\text{m}^2$) and ATLASPix3 [15] (outer barrel and disks, $150 \times 50 \,\mu\text{m}^2$) sensors

Armin Ilg (UZH)

21.11.2024

FCC-ee vertex detector layouts

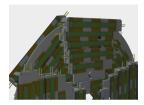
• $r_{\min} = 13 \text{ mm}$

- Three double-layer barrel layers and disks, 0.6–0.7% X₀ per double layer
- No engineering studies since CLICDet developments
- No specific sensor chosen, assume $3 \,\mu m$ single-point resolution

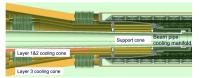
- Three inner barrel single-layers (0.25% X₀), two outer barrel layers and three disks
- Engineered design integrated into machinedetector interface region (INFN-LNF [13])
- Baseline: ARCADIA [14] (inner barrel, $25 \times 25 \,\mu\text{m}^2$) and ATLASPix3 [15] (outer barrel and disks, $150 \times 50 \,\mu\text{m}^2$) sensors

Armin Ilg (UZH)

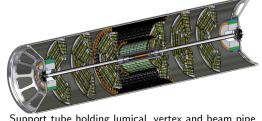
IDEA vertex detector design



Vertex detector by INFN Pisa



Inner vertex barrel with dual modules of ARCADIA, air-cooled \rightarrow $\leq 50 \,\mathrm{mW}\,\mathrm{cm}^{-2}$



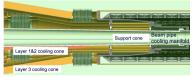
Outer vertex barrel and disks using quad ATLASPix3 DMAPS with $150 \times 50 \ \mu m^2$ pixels, water-cooled

Inner vertex support and cooling cones, first air cooling and transient mechanical analysis results promising

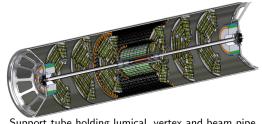
Support tube holding lumical, vertex and beam pipe

The vertexing challenge at FCC-ee

IDEA vertex detector design



Vertex detector by INFN Pisa



Inner vertex More details on vertex integration in MDI in F. Palla's poster of ARCADI $\leq 50 \,\mathrm{mW}\,\mathrm{cm}^{-2}$

pixels, water-cooled

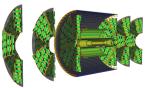
Inner vertex support and cooling cones, first air cooling and transient mechanical analysis results promising

Support tube holding lumical, vertex and beam pipe

Armin Ilg (UZH)

The vertexing challenge at FCC-ee

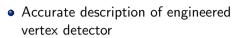
Pixel2024, Strasbourg


IDEA vertex detector full simulation model

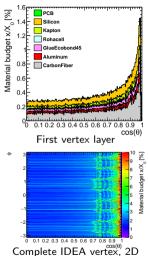
- Accurate description of engineered vertex detector
- Taking into account on-detector services and supports

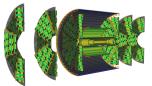
Inner vertex barrel in DD4hep

Complete vertex in DD4hep


Armin Ilg (UZH)

IDEA vertex detector full simulation model



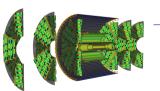


Inner vertex barrel in DD4hep

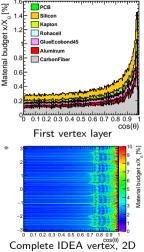
- Taking into account on-detector services and supports
- Realistic material budget evaluation
- Compatible with CDR assumption
- $_{
 m o}~pprox 0.25\%~X_{0}$ at $\cos(heta)=0$ for first layer, $\ _{\circ}$
 - $\approx 2\%$ for complete vertex

Complete vertex in DD4hep

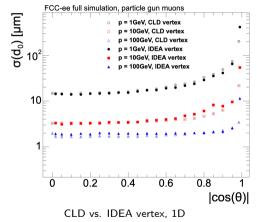
Armin Ilg (UZH)


The vertexing challenge at FCC-ee

IDEA vertex detector full simulation model

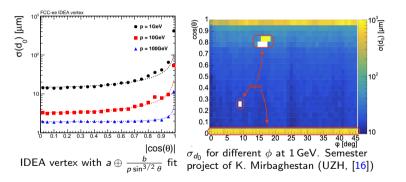


Inner vertex barrel in DD4hep


Complete vertex in DD4hep

- Accurate description of engineered vertex detector
- Taking into account on-detector services and supports
- Realistic material budget evaluation
- Compatible with CDR assumption
- $ightarrow ~pprox 0.25\%~X_0$ at $\cos(heta)=0$ for first layer, .
 - pprox 2% for complete vertex
 - Correct description of sensor peripheries
 - Allows for more realistic vertex performance estimation than CLD vertex or previous fast simulation studies (Delphes)

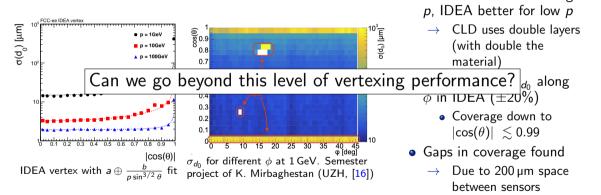
Use CLD with CLD reconstruction (from iLCSoft, inside Key4hep), and replace the vertex. Plotting with k4DetPerformance.


- CLD vertex better at high *p*, IDEA better for low *p*
 - → CLD uses double layers (with double the material)

N.B: Non-optimised reconstruction for IDEA vertex!

IDEA vertex detector performance

Use CLD with CLD reconstruction (from iLCSoft, inside Key4hep), and replace the vertex. Plotting with k4DetPerformance.


N.B: Non-optimised reconstruction for IDEA vertex!

- CLD vertex better at high *p*, IDEA better for low *p*
 - \rightarrow CLD uses double layers (with double the material)
- Quite uniform σ_{d_0} along ϕ in IDEA (±20%)
 - Coverage down to $|\cos(heta)| \lesssim 0.99$
- Gaps in coverage found

 - $\rightarrow~$ To be fixed soon!

Use CLD with CLD reconstruction (from iLCSoft, inside Key4hep), and replace the vertex. Plotting with k4DetPerformance. • CLD vertex better at high

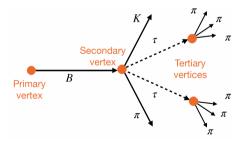
N.B: Non-optimised reconstruction for IDEA vertex!

Pixel2024, Strasbourg

 \rightarrow

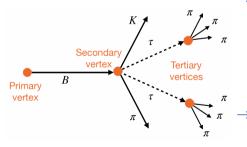
To be fixed soon!

Physics use-case for better vertex detector performance



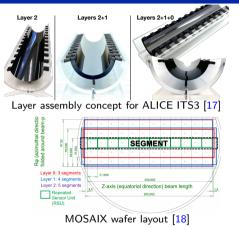
- Four trillion $e^+e^-
 ightarrow Z
 ightarrow q ar q$ collisions at FCC-ee ightarrow Flavour factory
- Are *B* hadrons decaying in the same way to all leptons? → *Lepton flavour universality/violation*

Physics use-case for better vertex detector performance


- Four trillion $e^+e^-
 ightarrow Z
 ightarrow q ar q$ collisions at FCC-ee ightarrow Flavour factory
- Are B hadrons decaying in the same way to all leptons? → Lepton flavour universality/violation
- $B^0 \rightarrow K^{*0} + \tau^+ + \tau^-$ not observed yet, limit of BR $< O(10^{-3}-10^{-4})$ \rightarrow but SM value at 10^{-7} , strongly enhanced in many beyond SM theories!

Physics use-case for better vertex detector performance

- Four trillion $e^+e^-
 ightarrow Z
 ightarrow q ar q$ collisions at FCC-ee ightarrow Flavour factory
- Are B hadrons decaying in the same way to all leptons? \rightarrow Lepton flavour universality/violation
- $B^0 \rightarrow K^{*0} + \tau^+ + \tau^-$ not observed yet, limit of BR $< \mathcal{O}(10^{-3} 10^{-4})$
 - \rightarrow but SM value at $10^{-7}\text{, strongly enhanced in many beyond SM theories!$



- \rightarrow More precise vertex reconstruction crucial to reconstruct B^0 mass and distinguish from backgrounds
 - Close to evidence (3σ) using current IDEA baseline in Delphes fast simulation study (T. Miralles et al. at FCC Physics Workshop 2024, [9])
- → Need to improve SV and TV resolution by \sim 2 to have chance at discovery → Improve single-hit resolution and material budget!

Ultra-light vertex detectors for FCC-ee

- More logic per cm² → More functionality/smaller pixels
- \bullet Low power consumption \rightarrow Helps air cooling
- Enables 12" wafers \rightarrow Large, bent sensors!

Lavers 2+1+0

Z-axis (equatorial direction) beam length

MOSAIX wafer layout [18]

DMAPS in 65 nm TPSCo process

 More logic per cm² → More functionality/smaller pixels

Armin Ilg (UZH)

- \bullet Low power consumption \rightarrow Helps air cooling
- Enables 12" wafers \rightarrow Large, bent sensors!

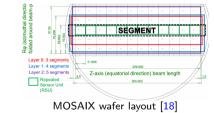
Layer assembly concept for ALICE ITS3 [17]


21.000

1: 4 segments 2: 5 segments

Lavers 2+1

F. Reidt's and L. Terlizzi's talks and the posters of A. Sturniolo, I. Sanna, and G. Borghello


Laver 2

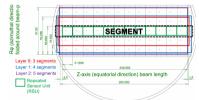
- More logic per cm² → More functionality/smaller pixels
- \bullet Low power consumption \rightarrow Helps air cooling
- Enables 12" wafers \rightarrow Large, bent sensors!

Layer 2	Layers 2+1	Layers 2+1+0
		A STATE
E		
	Y	
- se		

Layer assembly concept for ALICE ITS3 [17]

	ALICE ITS3	FCC-ee
r _{min} [mm]	19	~ 13
$ \cos(heta) $ coverage until	0.97–0.99	0.99
Single-hit resolution [μ m]	5	3
Part. hit density at r_{min} [MHz/cm ²]	8.5	250 ?

University of


Zurich

DMAPS in 65 nm TPSCo process

- More logic per $cm^2 \rightarrow More$ functionality/smaller pixels
- Low power consumption \rightarrow Helps air cooling
- Enables 12" wafers \rightarrow Large, bent sensors!

Layer assembly concept for ALICE ITS3 [17]

Part. hit density at r_{min} [MHz/cm²] 8.5 • First layer at smaller radius \rightarrow Use just two segments

MOSAIX wafer layout [18] • Forward-backward asymmetries measurements \rightarrow Read and power from both sides

ALICE ITS3

19

0.97 - 0.99

5

- Forward coverage \rightarrow Multiple sensors in a row at larger r
- Tight hermiticity requirement at FCC-ee, but have $\sim 5\%$ insensitive periphery in sensor and difficult to overlap sensors

FCC-ee

 ~ 13

0.99

3

250 ?

Four layers ensures \geq 3 hits in vertex, minimise periphery

Armin Ilg (UZH)

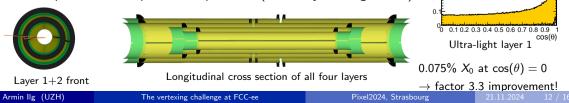
r_{min} [mm]

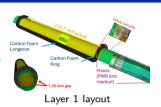
 $\cos(\theta)$ coverage until

Single-hit resolution $[\mu m]$

Pixel2024. Strasbourg

Ultra-light inner vertex concept for FCC-ee


Layer 1 and 2


- 10 and 13 repeated sensor units long $\rightarrow |\cos(\theta)| < 0.992/0.99$
- Peripheries, gap between half-barrels \rightarrow Rotation in ϕ to fill gaps
- Readout and power from both sides

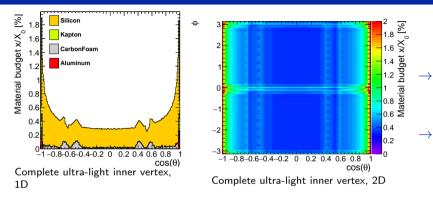
Laver 3 and 4

- Two sensors per side, readout only on sides, power on sides and centre (power wire)
- 8 (10) RSUs on +z (-z) side for layer 3, inverted for layer 4
 - $\rightarrow |\cos(\theta)| < 0.991/0.986$

Material budget x/X₀[⁹ Assume 50 μ m of Si + 16 μ m of Si-equivalent (metal layer along sensor)

CarbonFoam

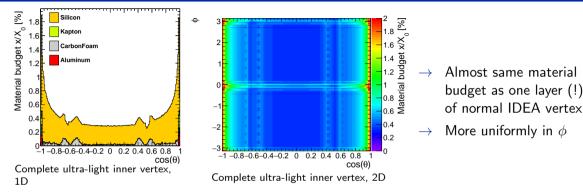
[%]


0.2

University of

Zurich

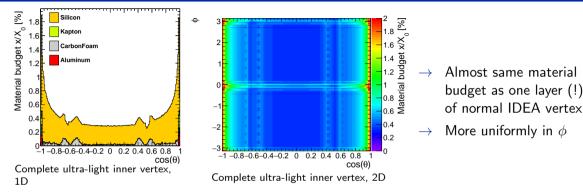
Ultra-light inner vertex concept: Discussion



 Almost same material budget as one layer (!) of normal IDEA vertex

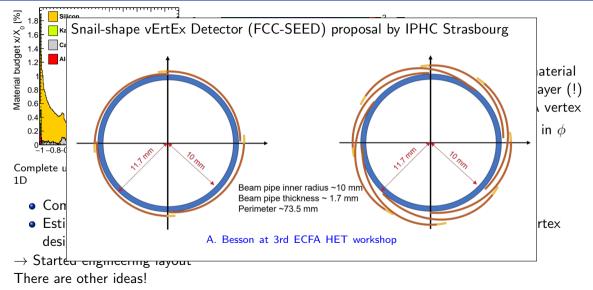
 \rightarrow More uniformly in ϕ

Ultra-light inner vertex concept: Discussion



- Compromise hermeticity (or radius of first hit) with reduced material budget
- Estimate vertexing performance using CLD reconstruction (as for classic IDEA vertex design)
- \rightarrow Started engineering layout

Ultra-light inner vertex concept: Discussion



- Compromise hermeticity (or radius of first hit) with reduced material budget
- Estimate vertexing performance using CLD reconstruction (as for classic IDEA vertex design)
- \rightarrow Started engineering layout
- There are other ideas!

Ultra-light inner vertex concept: Discussion

Summary of requirements and how to fulfill them

Physics challenges	Requirement
Coverage down to $ { m cos}(heta) \lesssim 0.99$	Long barrel, forward disks
High reconstruction efficiency	Hermetic layers, small peripheries, $> 99\%$ hit eff., more layers?
Asymptotic resolution of $a \approx 3 \mu m$	$3\mu\text{m}$ single-hit resolution, small r_{\min}
Multiple scattering: $bpprox 15\mu{ m m}$ GeV	• light beam pipe
Multiple scattering. $b \sim 15 \mu m$ GeV	$ullet$ \leq 0.3% $X_0/$ layer $ ightarrow$ thin sensors, air-cooling, light support

Summary of requirements and how to fulfill them

Physics challenges	Requirement
Coverage down to $ { m cos}(heta) \lesssim 0.99$	Long barrel, forward disks
High reconstruction efficiency	Hermetic layers, small peripheries, $>$ 99% hit eff., more layers?
Asymptotic resolution of $a \approx 3 \mu m$	$3\mu m$ single-hit resolution, small r_{min}
Multiple scattering: $bpprox 15\mu{ m m}{ m GeV}$	• light beam pipe • $\leq 0.3\%~X_0/{ m layer} ightarrow$ thin sensors, air-cooling, light support
Collision environment challenges	Requirement
Collision environment challenges High luminosity	 Requirement Save events at ≥ 200kHz With trigger or without
	• Save events at $\geq 200 kHz$
High luminosity	 Save events at ≥ 200kHz With trigger or without

Summary of requirements and how to fulfill them

Physics challenges	Re	Requirement			
Coverage down to $ { m cos}(heta) \lesssim 0$.99 Lo	Long barrel, forward disks			
High reconstruction efficiency	He	Hermetic layers, small peripheries, $> 99\%$ hit eff., more layers			
Asymptotic resolution of $a \approx 3$	μm 3.μ	$3\mu m$ single-hit resolution, small r_{min}			
Multiple scattering: $bpprox 15\mu{ m m}$	Gev	• light beam pipe • $\leq 0.3\%~X_0/$ layer $ ightarrow$ thin sensors, air-cooling, light support			
Collision environment chal	lenges Re	equirement			
High luminosity	۲	• Save events at $\geq 200 kHz$			
		• With trigger or without			
Avoid pile-up of Z's	Int	Integration time $\lesssim 1\mu{ m s}$			
Beam backgrounds	Hi	t rate capabil	ity up to $\mathcal{O}(200\mathrm{MHz/cm^2})$		
Radiation environment	0($(1 imes 10^{14}1{ m M}$	eV $n_{ m eq}$ cm $^{-2}$) and $\mathcal{O}(100$ kGy)	per year	
Advanced challenges	Re	Requirement			
$pprox$ 2 reduction of σ_{d_0}	Sm	naller spatial	resolution and <i>r</i> min, lighter vert	ex and beam pip	
Bunch tagging/inner T.O.F ref	erence O($\mathcal{O}(20\mathrm{ns})$ time resolution/ $\mathcal{O}(10$'s of ps)			
Armin Ilg (UZH) The	vertexing challenge at	: FCC-ee	Pixel2024, Strasbourg	21.11.2024 14 / 1	

MOSAIX/ALICE ITS3 [18]

- 65 nm TPSCo
- $\bullet~20.8\times22.8\,\mu m^2$ pitch
- 40 mW/cm² in pixel matrix (1000 mW/cm² in periphery)
- $\mathcal{O}(10 \, \text{MHz/cm}^2)$
- Wafer-scale
- \bullet Integration time down to $2\,\mu s$

ARCADIA [14]

- 110 nm LFoundry
- $25\times 25\,\mu m^2$ pitch
- $\bullet\,\sim 30\,mW/cm^2$
- $\bullet~$ Up to $100\,MHz/cm^2$ (post-layout simulations)
- $1.28\times 1.28\,\text{cm}^2\text{, side-abuttable}$
- Time resolutions from $\mathcal{O}(ns)$ to $\mathcal{O}(10$'s of ps)

No MAPS exists yet that can fulfil all FCC-ee vertex requirements simultaneously, but many starting and ongoing projects in this direction!

 $\rightarrow~$ Z. El Bitar's talk and A. Lorenzetti's poster on CE-65 and Y. Zhang's talk on TaichuPix

MOSAIX/ALICE ITS3 [18]

- 65 nm TPSCo
- $\bullet~20.8\times22.8\,\mu m^2$ pitch
- 40 mW/cm² in pixel matrix (1000 mW/cm² in periphery)
- $\mathcal{O}(10 \, \text{MHz/cm}^2)$
- Wafer-scale
- \bullet Integration time down to $2\,\mu s$

ARCADIA [14]

- 110 nm LFoundry
- $\bullet~25\times25\,\mu m^2$ pitch
- $\bullet\,\sim 30\,mW/cm^2$
- $\bullet~\mbox{Up}$ to $100\,\mbox{MHz}/\mbox{cm}^2$ (post-layout simulations)
- $1.28\times 1.28\,\text{cm}^2\text{, side-abuttable}$
- Time resolutions from $\mathcal{O}(ns)$ to $\mathcal{O}(10$'s of ps)

No MAPS exists yet that can fulfil all FCC-ee vertex requirements simultaneously, but many starting and ongoing projects in this direction!

 $\rightarrow~$ Z. El Bitar's talk and A. Lorenzetti's poster on CE-65 and Y. Zhang's talk on TaichuPix

DRD3 project on 65 nm MAPS for vertexing

- Fine-Pitch CMOS Sensors with Precision Timing for Lepton Collider Experiments [19]
- \rightarrow Name soon to be finalised Armin IIg (UZH) The vertee

Conclusions

- FCC-ee poses tight requirements to its vertex detector
 - The combination of all the requirements is the challenge
 - ightarrow Material budget as antagonist to all other requirements
 - Opportunities thanks to novel technologies like embedded FPGA, wireless readout, and many more start to be explored
- Detailed design and engineering studies starting
 - CAD design, integrated into MDI, and detailed full simulation description
 - Reasonable σ_{d_0} performance of IDEA vertex using CLD detector and reconstruction
 - ightarrow More work on digitisation and integration with gaseous trackers needed

Conclusions

- FCC-ee poses tight requirements to its vertex detector
 - The combination of all the requirements is the challenge
 - ightarrow Material budget as antagonist to all other requirements
 - Opportunities thanks to novel technologies like embedded FPGA, wireless readout, and many more start to be explored
- Detailed design and engineering studies starting
 - CAD design, integrated into MDI, and detailed full simulation description
 - Reasonable σ_{d_0} performance of IDEA vertex using CLD detector and reconstruction
 - ightarrow More work on digitisation and integration with gaseous trackers needed

Ultra-light inner vertex detector concept

- Conceptual design, adapted from ALICE ITS3 to FCC-ee
- Compromise hermeticity (or radius of first hit) with reduced material budget
- Evaluate performance similarly to IDEA vertex

Conclusions

- FCC-ee poses tight requirements to its vertex detector
 - The combination of all the requirements is the challenge
 - ightarrow Material budget as antagonist to all other requirements
 - Opportunities thanks to novel technologies like embedded FPGA, wireless readout, and many more start to be explored
- Detailed design and engineering studies starting
 - CAD design, integrated into MDI, and detailed full simulation description
 - Reasonable σ_{d_0} performance of IDEA vertex using CLD detector and reconstruction
 - ightarrow More work on digitisation and integration with gaseous trackers needed

Ultra-light inner vertex detector concept

- Conceptual design, adapted from ALICE ITS3 to FCC-ee
- Compromise hermeticity (or radius of first hit) with reduced material budget
- Evaluate performance similarly to IDEA vertex
- Final goal: Global detector optimisation
- \rightarrow Smallest possible experimental systematic uncertainty

Thanks!

References I

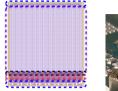
- I. Agapov, et al., Future Circular Lepton Collider FCC-ee: Overview and Status, 2022. https://arxiv.org/abs/2203.08310.
- [2] B. Auchmann, et al., FCC Midterm Report, June, 2024.
- [3] N. Bacchetta, et al., CLD A Detector Concept for the FCC-ee, arXiv:1911.12230 [physics.ins-det].
- [4] D. Dannheim, et al., CERN Yellow Reports: Monographs, Vol 1 (2019): Detector Technologies for CLIC, tech. rep., 2019.
- [5] T. I. Collaboration and contact Ties Behnke, The ILD detector at the ILC, 2019. https://arxiv.org/abs/1912.04601.
- [6] IDEA Collaboration, G. F. Tassielli, A proposal of a drift chamber for the IDEA experiment for a future e⁺e⁻ collider, in Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020). Sissa Medialab, Feb., 2021.
- [7] FCC Collaboration, FCC-ee: The Lepton Collider, The European Physical Journal Special Topics 228 (2019) 261-623.
- [8] M. Aleksa, et al., Calorimetry at FCC-ee, The European Physical Journal Plus 136 (2021) 1066.
- [9] T. Miralles, Sensitivity study of $B^0 \to K^{*0}\tau^+\tau^-$ at FCC-ee, in Proceedings of 20th International Conference on B-Physics at Frontier Machines PoS(BEAUTY2023), p., 060. 2024.
- [10] F. Blekman, et al., Jet Flavour Tagging at FCC-ee with a Transformer-based Neural Network: DeepJetTransformer, 2024. https://arxiv.org/abs/2406.08590.
- [11] X. Mo, G. Li, M.-Q. Ruan, and X.-C. Lou, Physics cross sections and event generation of e⁺e⁻ annihilations at the CEPC, Chinese Physics C 40 (2016) 033001, https://doi.org/10.1088/1674-1137/40/3/033001.

- [12] A. Ciarma, M. Boscolo, G. Ganis, and E. Perez, Machine Induced Backgrounds in the FCC-ee MDI Region and Beamstrahlung Radiation, Proceedings of the 65th ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders eeFACT2022 (2022) Italy, https://jacow.org/eefact2022/doi/JACoW-eeFACT2022-TUZAT0203.html.
- Boscolo, Manuela, et al., Progress in the design of the future circular collider FCC-ee interaction region, https://jacow.org/ipac2024/doi/jacow-ipac2024-tupc67.
- [14] C. Neubüser, T. Corradino, G.-F. Dalla Betta, and L. Pancheri, ARCADIA FD-MAPS: Simulation, characterization and perspectives for high resolution timing applications, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1048 (2023) 167946, http://dx.doi.org/10.1016/j.nima.2022.167946.
- [15] I. Peric, et al., High-Voltage CMOS Active Pixel Sensor, IEEE Journal of Solid-State Circuits 56 (2021) 2488–2502, http://dx.doi.org/10.1109/JSSC.2021.3061760.
- [16] K. Mirbaghestan and A. Ilg, Performance study of the IDEA Vertex Detector for FCC-ee, 2024. https://zenodo.org/doi/10.5281/zenodo.14181210.
- [17] M. Mager, On the "bendable" ALPIDE-inspired MAPS in 65 nm technology, 11, 2021. https://indico.ihep.ac.cn/event/14938/session/6/contribution/196. 2021 International Workshop on High Energy Circular Electron Positron Collider.
- [18] ALICE collaboration, Technical Design report for the ALICE Inner Tracking System 3 ITS3; A bent wafer-scale monolithic pixel detector, tech. rep., CERN, Geneva, 2024.
 https://cds.cern.ch/record/2890181.
 Co-project Manager: Magnus Mager, magnus mager@cern.chds.
- [19] D. Dannheim, et al., Fine-pitch CMOS pixel sensors with precision timing for vertex detectors at future Lepton-Collider experiments and beyond, https://cds.cern.ch/record/2914698.

Necessary changes

- Removing first Inner Tracker barrel layer (r = 127 mm)
- Removing first and second Inner Tracker disks (*r* = 79.5 and 123.5 mm)
- Increase conformal tracking max. distance (CT_MAX_DIST)
- *MinClustersOnTrack* from 4 to 3 in conformal **Nota**^{tracking} in vertex barrel and disks
 - No silicon wrapper
 - Assume spatial resolution of 3 μ m for inner vertex barrel (same as CLD), and 14 μ m × 43 μ m for outer barrel and disks (CLD: vertex endcap: 3 μ m, inner tracker endcap: 5 μ m or 7 × 90 μ m)

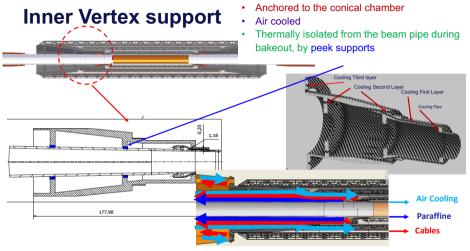
Definitely not perfect, but works, reasonable performance



IDEA vertex detector: ARCADIA and ATLASPix3

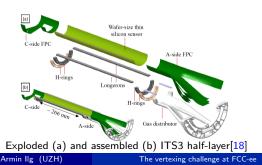
Depleted Monolithic Active Pixel Detectors

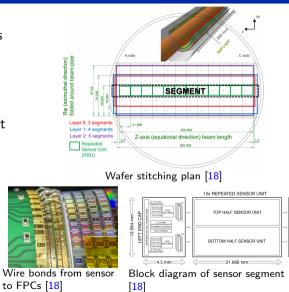
- Inner Vertex (inspired to ARCADIA):
 - Lfoundry 110 nm process
 - 50 μm thick, 25 μm x 25 μm
 - Module dimensions: $8.4 \times 32 \ mm^2$
 - Power density $50 \ mW/cm^2$ (core $30 \ mW/cm^2$)
 - Current at 100 MHz/cm²
- Outer Vertex and disks (inspired to ATLASPIX3)
 - TSI 180 nm process
 - 50 μm thick (50 μm x 150 μm)
 - Module dimensions: $42.2 \times 40.6 \ mm^2$
 - Power density: assume $100 \ mW/cm^2$
 - Up to 1.28 Gb/s downlink



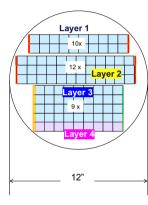
F. Palla, 2nd FCC US workshop at MIT

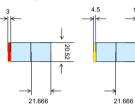
Only contribution in last two bins


F. Palla, 2nd FCC US Workshop


○ FCC

ALICE ITS3 layout


- Three layers of wafer-scale 65 nm MAPS
 Building blocks are Repeated Sensor Units
- Building blocks are Repeated Sensor Unit (RSUs) that are stitched together
 - 12 RSUs in z direction
 - $\bullet\,$ 3, 4 or 5 segments around ϕ
- Data transmission in sensor along z
- Metal layer for distribution of power
- Endcaps on sides for powering and readout
- Air-cooling from one side



Pixel2024, Strasbourg

Same reticle for all layers

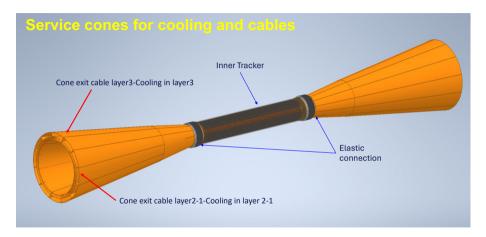
Layer	1&2
-------	-----

Layer 3&4

1.5

20.52

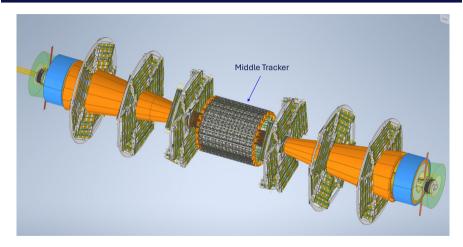
٨


	Power density [mW cm ⁻²]		
	Expected	Max	Max
	25 °C	25 °C	45°C
Left End Cap (LEC)		791	
Active area (RSU)	28	44	62
Pixel matrix	15	32	51
Biasing	168	168	168
Readout peripheries	432	457	496
Data backbone	719	719	719

Layer	Radius (mm)
1	13.7
2	20.23
3	26.76
4	33.3

Power dissipation in ITS3 (not necessarily the same for FCC-ee)

- RSU~ 50 mW/cm² (depends on Temp.)
- LEC ~ 700 mW/cm²

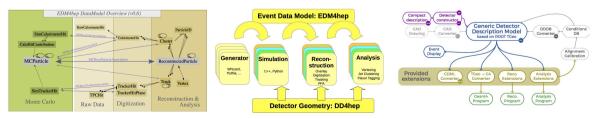

Armin Ilg (UZH)

The vertexing challenge at FCC-ee

Pixel2024, Strasbourg

21.11.2024 25 / 10

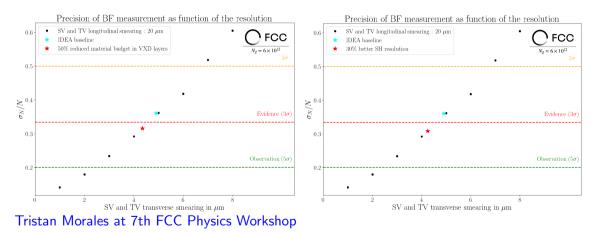
Fabrizio Palla – Pisa & CERN – 2nd Annual U.S. FCC Workshop – MIT – 25 - 27 March 2024


Armin Ilg (UZH)

Pixel2024, Strasbourg

Key4hep is a huge ecosystem of software packages adopted by all future collider projects, complete workflow from generator to analysis

- Event data model: EDM4hep for exchange among framework components
 - Podio as underlying tool, for different collision environments
 - Including truth information
- Data processing framework: Gaudi
- Geometry description: DD4hep, ability to include CAD files
- Package manager: Spack: source /cvmfs/sw.hsf.org/Key4hep/setup.sh


Armin Ilg (UZH)

The vertexing challenge at FCC-ee

Pixel2024, Strasbourg

$B^0 \rightarrow K^* + \tau^+ \tau^-$: Impact of material budget and resolution

