

Simulation of a neuroimaging acquisition with MAPSSIC, an implantable β⁺ microprobe for rat brain imaging

<u>S. El ketara</u>^{a,b}, F. Agnese^d, L. Ammour^c, J. Baudot^d, S. Bouvard^e, O. Clausse^d, M. Dupont^f, F. Gensolen^f, M. Goffe^d, M. Kachel^d, J. Laurence^f, T. Weicherding^f, C. Wabnitz^d, C. Morel^f, P. Pangaud^f, L. Zimmer^d, P. Lanièce^{a,b}, M.-A. Verdier^{a,b}

^aUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

^bUniversité Paris Cité, IJCLab, 91405 Orsay France

^cNantes Université, CHU Nantes, F-44000 Nantes, France

^dUniversité de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France

^eUniversité Claude Bernard Lyon 1, CERMEP-Imagerie du vivant, CNRS, INSERM, Hospices Civils de Lyon, Lyon, France

^fAix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

Gate Scientific Meeting - Orsay 2024

micro-Positron Emission Tomography (micro-PET):

- Use injected β^+ radioisotopes
- Detects gamma rays from β^+/e annihilation
- High sensitivity
- Allows for quantification

micro-Positron Emission Tomography (micro-PET):

- Use injected β^+ radioisotopes
- Detects gamma rays from β^+/e annihilation
- High sensitivity
- Allows for quantification
- Requires anesthesia
 - \rightarrow Need for awake imaging data

¹Y.R. Gao et al, NeuroImage, 2017 ²J. Silverman, Laboratory animal science

¹Y.R. Gao et al, NeuroImage, 2017 ²J. Silverman, Laboratory animal science

¹Y.R. Gao et al, NeuroImage, 2017 ²J. Silverman, Laboratory animal science

Samir El ketara

Neuroimaging on awake and freely moving rats: 3 approaches

1 mini microPET

Schulz et al., Nature methods, 2011.

2 Regular microPET with Motion tracking

Spangler-Bickell et al., Phys. Med. Biol., 2016.

3 Implantable Microprobe

Pain et al., PNAS, 2002. L. Balasse et al., Mol Imaging Biol, 2015

Samir El ketara

Neuroimaging on awake and freely moving rats: 3 approaches

1 mini microPET

Schulz et al., Nature methods, 2011.

Regular microPET with Motion tracking

2

Spangler-Bickell et al., Phys. Med. Biol., 2016.

3 Implantable Microprobe

Pain et al., PNAS, 2002. L. Balasse et al., Mol Imaging Biol, 2015

Samir El ketara

Gate Scientific Meeting - Orsay 2024

MAPSSIC project

MAPSSIC project

Bonding pads

New digital sensor prototype (IMIC, 2022) based on a first prototype^{1,2} (2018):

- Based on CMOS-MAPS technology
- Totale / Sensitive thickness: 200 μm / 25-50 μm
- Pixel digitation: 1 bit
- Rolling shutter readout

²J. Heymes et al., IEEE Nuclear Science Symposium, Medical Imaging Conference, 2016

Samir El ketara

Physical validation and sensor optimisation

 \rightarrow Energy threshold

Gate Scientific Meeting - Orsay 2024

Physical validation and sensor optimisation

Gate Scientific Meeting - Orsay 2024

Physical validation and sensor optimisation

Simulations of an in vivo experiment

- Confirm the probe relevance
- Predict its in vivo performances
- Explore segmentation methods

→ Monte Carlo simulations using GATE

Input - Geometry

ROBY phantom¹

Voxelized rat phantom:

- Generated with the **ROBY program**¹
 - Skull area: cubic voxels of 100 µm sides 0
 - Body area: cubic voxels of 1 mm sides Ο
- Used for both attenuation and activity ranges
- Addition of Harderian glands from MRI images

1 mm sides voxels

¹W. P. Segars, Molecular Imaging and Biology, 2004.

Input - Geometry

100 um sides

1 mm

sides

voxels

ROBY phantom¹

Voxelized rat phantom:

- Generated with the **ROBY** program¹
 - Skull area: cubic voxels of 100 µm sides 0
 - Body area: cubic voxels of 1 mm sides Ο
 - Used for both attenuation and activity ranges
 - Addition of Harderian glands from MRI images

Probes geometry:

- **2 Silicon boxes** of 9500 µm x 450 µm x 700 µm
- Physical volume inserted within the voxelized phantom using the Merge Volume Actor
- In the **cerebellum** and **striatum** region •
- Sensitive areas of 6400 µm x 25 (and 50) µm x 480 µm (2 per probe) filtered post simulations

Sensor 1 Sensor 2

¹W. P. Segars, Molecular Imaging and Biology, 2004.

Radiotracer: [¹¹C]Raclopride

- ¹¹Carbon radiolabeled dopamine D2 receptor antagonist^{1,2}
- Preclinical/clinical research schizophrenia, addictions
- Uptake in Harderian glands (potential source of noise)
- Mean range of ¹¹C positrons \approx **1.1 mm** (> ¹⁸F \approx 0.6 mm)

Striatum: Specific signal

Cerebellum: Reference tissue \rightarrow Free radioligand concentration: nonspecific binding in the brain

¹H. Hall et al, Prog Neuropsychopharmacol Biol Psychiatry. 1988
²N. Ginovart et al, Mol Imaging Biol, 2005

Radiotracer: [¹¹C]Raclopride

- ¹¹Carbon radiolabeled dopamine D2 receptor antagonist^{1,2}
- Preclinical/clinical research schizophrenia, addictions
- Uptake in Harderian glands (potential source of noise)
- Mean range of ¹¹C positrons \approx **1.1 mm** (> ¹⁸F \approx 0.6 mm)

Striatum: Specific signal

Cerebellum: Reference tissue \rightarrow Free radioligand concentration: nonspecific binding in the brain

- [¹¹C]Raclopride time activity curves of anesthetized rat
 - →9 MBq injection, dynamic micro-PET acquisitions (CERMEP, Biomaps-SHFJ)
- ¹H. Hall et al, Prog Neuropsychopharmacol Biol Psychiatry. 1988
- ²N. Ginovart et al, Mol Imaging Biol, 2005
- ³A. Lammertsma & S. P. HUME, NEUROIMAGE 1996

Simplified Reference Tissue Model (SRTM)³: $C_{Model}(t) = R_1 C_T'(t) + [k_2 - R_1 k_2 / (1 + BP_{ND})]C_T'(t) \otimes e^{-k_2 t / (1 + BP_{ND})}$

Time-activity curves

Results - Organ/particle contributions

P1 = Striatum area P2 = Cerebellum area

Source position of detected particles:

 \rightarrow Local information: more than 93% of detected particles emitted within the first 2 mm surrounding the probe 1

Integration over 1 minute, 27 minutes after injection (25 µm sensitive layer)

over 1 minute (striatum + cortex)

over 1 minute (striatum + cortex)

Samir El ketara

Gate Scientific Meeting - Orsay 2024

Simplified Reference Tissue Model (SRTM):

 $C_{Model}(t) = R_1 C_T'(t) + \left[k_2 - R_1 k_2 / (1 + BP_{ND})\right] C_T'(t) \otimes e^{-k_2 t / (1 + BP_{ND})}$

Samir El ketara

(striatum + cortex)

Conclusion

- New implantable β⁺ microprobe produced
- Performances in line with the intended application
 - High β^+ sensitivity

→ Local radiotracer uptake

- Low γ sensitivity
- Ability to quantify variations of kinetic parameters

Conclusion

- New implantable β⁺ microprobe produced
- Performances in line with the intended application
 - High β^+ sensitivity
 - Low γ sensitivity
 - Ability to quantify variations of kinetic parameters

Perspectives

- Probe physical validation
- Biological validation aimed for early 2024
 - Comparison MAPSSIC / micro-PET
- Behavioral applications aimed for early 2025

Sensor 2022 Characterization/ 2023 -MC studies Biological **2024** → validation Behavioural **2025** → applications

•

→ Local radiotracer uptake

Acknowledgments

PHENIICS Université Université

THANKS FOR YOUR ATTENTION

Franck Agnese 0 Luis Ammour Collaborati Jérôme Baudot Caroline Bouillot Sandrine Bouvard Olivier Clausse Mathieu Dupont Samir El ketara Fabrice Gensolen Maciek Kachel Philippe Lanièce APSSIC Jérôme Laurence Christian Morel Patrick Pangaud Marc-Antoine Verdier Christophe Wabnitz Téo Weicherding Luc Zimmer

With financial support from MITI (Mission pour les initiatives transverses et interdisciplinaires du CNRS)

5/23/2024

Gate Scientific Meeting - Orsay 2024

Affinity propagation algorithm

Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages Between Data Points", Science Feb. 2007

- Influence parameter :
 - **Preference** : Calculated number of clusters is **directly influenced** by the *preference* value

 \rightarrow Need for **calibration** of the algorithm : Search for the optimal *preference* value for AP clustering on frames containing from 1 to 100 clusters

Affinity propagation algorithm - Calibration

Data processing from AP calibration runs:

- Determination of the optimal *preference*:
 - AP runs on calibration frames scanning the previously determined *preference* range
 - Mean and Mode of the distribution preference values leading to the smallest error between calculated and actual cluster number for a given frame
 - Gaussian draw of a new *preference* value if the previous does not converge to an answer (400 times maximum)

Distribution of preference values giving the smallest error

Data treatment

Spatial study : Error on cluster barycenter

- Errors on x and y axis: mean σ of 16.5 μ m and 26.2 μ m
 - \rightarrow 95% error equal or smaller than pixels size (2 σ)
- Error (≈ µm) < explored structures (ie: rat striatum ≈ mm)

Gate Scientific Meeting - Orsay 2024

Probe 1 integrated image over 1 minute

Samir El ketara

Samir El ketara

P2

Time-activity curves

Input BP _{ND}	Measured BP _{ND}	Error on BP _{ND}	BP _{ND} variation	Measured BP _{ND} variation
3.0941	2.3919	22.7 %	0	-
2.9394	2.2769	22.5 %	- 5	- 4.81 %
2.7847	2.1611	22.4 %	- 10	- 9.65 %
2.6300	2.0442	22.3 %	- 15	- 14.54 %
2.4753	1.9283	22.1 %	- 20	- 19.38 %
2.3206	1.8109	22.0 %	- 25	- 24.29 %
2.1659	1.6936	21.8 %	- 30	- 29.19 %