

Status of the Positron Range Study in GATE

Paul Klever

May 22, 2024

©FH Aachen UNIVERSITY OF APPLIED SCIENCES | FACHBEREICH MEDIZIN & TECHNOMATHEMATIK | WWW.FH-AACHEN.DE

Isotope	Half-life	Branching (%)	E max (MeV)	E mean (MeV)	R max (mm)	R mean (mm)
¹¹ C	20.4 min	99.8	0.960	0.386	4.2	1.2
¹³ N	10.0 min	99.8	1.199	0.492	5.5	1.8
^{15}O	2 min	99.9	1.732	0.735	8.4	3.0
^{18}F	110 min	96.9	0.634	0.250	2.4	0.6
⁶⁴ Cu	12.7 h	17.5	0.653	0.278	2.5	0.7
⁸⁹ Zr	78.4 h	22.7	0.902	0.396	3.8	1.3

Table: Properties of pure radioisotopes used in positron emission tomography [1] [2] [3].

- Calculation with Continuous Slowing Down Approxmiation (CSDA) 1 [1]
- Semiempircal calculations 2 [4]

$$R(E) = \int_0^E \frac{dE'}{S(E')} \tag{1}$$

$$R_{mean}(cm) \approx \frac{0.108 [E_a^{max}]^{1.14}}{\tilde{n}(gcm^{-3})}$$
(2)

Phantom	lsotope	Physicslist and Processes	Energy and Produc- tion Cuts	Actor	Activity
Watersphere $r_{\rm radius} = 300 {\rm mm}$	¹⁸ F defined with A=18 Z=9	Multiple Physicslists and DNA Models, Radioactive Decay, Decay	50 eV, 0.05 μm	Annihilation	100 kBq

- Output contains [x, y, z]-coordinates of annihilation locations
- r_{mean} calculated as mean of euclidean distances from origin [0, 0, 0]

$$r_{mean} = \sqrt{x^2 + y^2 + z^2} \tag{3}$$

 $- r_{max}$ defined as the maximum value in the dataset of euclidean distances

F18 Positron Kinetic Energy Spectrum

Figure: Simulated kinetic energy spectrum for F18, compared to NIST data.

lsotope	E max (MeV)	E mean (MeV)	R max (mm)	R mean (mm)
¹⁸ F	0.627	0.235	2.41	0.42

Table: Simulated positron properties of F18.

OF APPLIED SCIENCES

H AACHEN

Physicalist / Model	Positron Range [mm]				
r nysicsiist/ Model	Mean	Max	FWHM	FWTM	
dnaopt4	0.43	2.41	0.32	1.12	
nodnaopt4	0.42	2.55	0.29	1.11	
dnaemliver	0.44	3.09	0.23	1.05	
nodnaemliver	0.44	3.05	0.24	1.08	
dnaempene	0.45	3.09	0.23	1.08	
nodnaempene	0.45	3.03	0.24	1.08	
dnaopt0	0.42	3.03	0.27	1.03	
dnaopt2	0.42	2.73	0.27	1.04	
dnaopt4a	0.42	2.88	0.23	1.07	
dnaopt6	0.42	2.66	0.28	1.05	
dnaopt6a	0.42	2.87	0.26	1.03	
dnaopt7	0.42	2.87	0.27	1.05	

Table: Positron range for different models.

– GATE/GEANT4 annihilation cross section computation using Heitler Formula [5]
→ does not consider positronium formation [6]

		R _{mean} (mm)		
lsotope	Theory ^{7,8}	Experimental ⁹	Champion ⁶	GATE
¹⁸ F	0.6 0.64	0.54	0.66	0.42

Table: Comparison of positron range values obtained theoretical, experimentally and in simulation considering positronium formation (Champion Model) [6] [7] [8] [9].

– Champion Model yields 3-10% and $\approx 20\%$ higher values compared to theoretical and experimental data, respectively

Comparison between annihilation point distribution for ¹⁵O, in GEANT3 (solid circles) GEANT4 (open circles) [6]

OF APPLIED SCIENCES

 Solid and dashed line correspond to taking and not taking positronium formation into account, respectively (Champion Model) [6]

Model	Lifetime (oPs) ¹⁰	Lifetime (pPs) ¹⁰	${\prod_{Ps}}^{6,11,10,12}$	\prod_{e+} 6,11,10,12	oPs – pPs ratio ¹⁰
Champion Literature	$1848 \pm 3 \; ps pprox 1800 \; ps$	131 ± 2 ps $pprox$ 125 ps	83% pprox 30% pprox 36.5% pprox 31.6%	17% pprox 70% pprox 63.5% pprox 68.4%	3 : 1

Table: Comparison of positronium formation lifetime and fraction values in water [10] [6] [11] [12]. \prod_{P_s} as *Ps*-formation and \prod_{e+} as annihilation fraction

- Strong overestimation of \prod_{Ps} in Champion Model, more than twice as large as in literature
 - \rightarrow overestimated range as result possible
- Lifetime
 - oPs in matter might be trapped in volumes of low electron density [13]
 - \rightarrow lifetime may change in range of 142 *ns* to below 1 *ns* [14]

Missing in GATE

- Positronium Formation, including cross section and fraction of Ps-formation, oPs - pPs ratio

Problems

- Reference values are theoretical values, not considering positronium formation
- Lack of current experimental data

Possible Solutions

- Proper experiments on positron range and positronium formation in different media \rightarrow detector blurring, acollinearity blurring has to be considered
 - \rightarrow measuring lifetime, formation ratio, range
- With good experimental data, evaluation of different *Ps*-formation models may be possible

References I

- [1] National Institute of Standards and Technology. http://www.nist.gov/.
- [2] Laboratoire National Henri Becquerel. http://laraweb.free.fr/.
- [3] Brookhaven National Laboratory. www.nndc.bnl.gov/nndc/nudat.
- [4] Robley Dunglison Evans and RD Evans. *The atomic nucleus*, volume 582. McGraw-Hill New York, 1955.
- [5] Heitler W. The quantum theory of radiation. www.nndc.bnl.gov/nndc/nudat.
- [6] C Champion and C Le Loirec. Positron follow-up in liquid water: li. spatial and energetic study for the most important radioisotopes used in pet. *Physics in Medicine & Biology*, 52(22):6605, 2007.
- [7] Dale L Bailey, Michael N Maisey, David W Townsend, and Peter E Valk. *Positron emission tomography*, volume 2. Springer, 2005.
- [8] Simon R Cherry, James A Sorenson, and Michael E Phelps. *Physics in nuclear medicine*. Soc Nuclear Med, 2013.

- [9] Huesman R H Derenzo S E, Moses W W and Budinger F B. 1993.
- [10] Petra Castellaz, Andreas Siegle, and Hermann Stoll. Positron age-momentum-correlation (amoc) measurements on organic liquids. *Journal of Nuclear and Radiochemical Sciences*, 3(2):R1–R7, 2002.
- [11] Elfatih Abuelhia, K Kacperski, and NM Spyrou. Three-photon annihilation in pet: 2d imaging experiments. *Journal of radioanalytical and nuclear chemistry*, 271:489–495, 2007.
- [12] P Colombino, B Fiscella, and L Trossi. Study of positronium in water and ice from 22 to-144 c by annihilation quanta measurements. *Il Nuovo Cimento (1955-1965)*, 38: 707–723, 1965.
- [13] RL Garwin. Thermalization of positrons in metals. *Physical Review*, 91(6):1571, 1953.

[14] Paweł Moskal, Daria Kisielewska, Catalina Curceanu, Eryk Czerwiński, Kamil Dulski, Aleksander Gajos, Marek Gorgol, B Hiesmayr, B Jasińska, Krzysztof Kacprzak, et al. Feasibility study of the positronium imaging with the j-pet tomograph. *Physics in Medicine & Biology*, 64(5):055017, 2019.