Gate Scientific Meeting 2024 Orsay, France

DE LA RECHERCHE À L'INDUSTRIE

Gate Activates @ BioMaps

Olga Kochebina

Adrien Paillet Marc Granado Radia Oudiat Sébastien Jan

DRF/JOLIOT/SHFJ/BioMaps

22 May 2024

www.cea.fr

Activates for Gate 9.4

- Release
- Digitizer Unit

Developments for ClearMind project

- Spatial resolution
- TB TOF studies
- Marc: TB and Clear Mind
- Waveform generator

Activates for Gate 10

Coincidence Sorter

New version of Geant4 11.2.1

 \rightarrow Gate 9.4 release on the 4th of April 2024

New features

- New Track Length Estimator (TLE) of prompt gamma with time tagging, vpgTLE-tt (by CREATIS @ Lyon) for prompt gamma production in proton therapy simulations
- → BioDose Actor (by LPCA @ Clermont-Ferrand)
- Digitizer modules adaptation continued (by BioMaps @ Orsay)
 - Buffer
 - Intrinistic Resolution
 - Light Yield
 - Transfer Efficiency
 - Quantum Efficiency
 - Calibration
 - CrossTalk
 - 8 Comtpon Camera digitizer modules

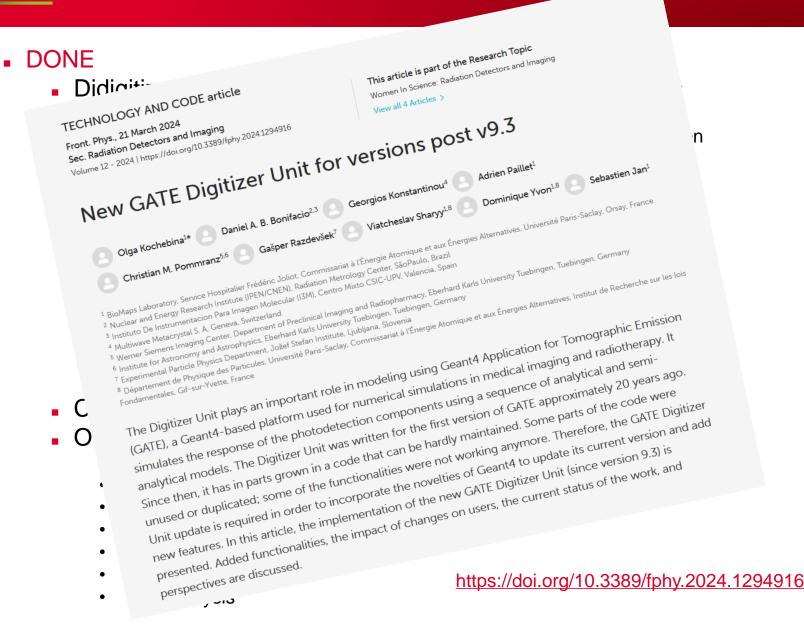
DE LA RECHERCHE À L'INDUSTRIE

CA RECAP (2023)

DONE

- Didigitizer Modules
 - Adder
 - Adder Optical
 - Adder Compton
 - Readout
 - Energy resolution
 - Time resolution
 - Spatial resolution
 - Energy framing
 - Efficiency
 - Adder Compton
 - Dead time
 - Pile-up
 - Noise
- Coincidence Sorter
- Outputs
 - Root
 - Tree
 - ASCII
 - Binary
 - Projection
 - Analysis
 - FastAnalysis

- Coming next
 - Didigitizer Modules
 - Buffer
 - Intrinistic Resolution
 - Light Yield
 - Transfer Efficiency
 - Quantum Efficiency
 - Calibration
 - CrossTalk
 - CC functionalities
 - CC digitizer modules
 - CC Coincidence Sorter
 - Outputs
 - Coincidence digitizers
 - Outputs
 - Sino
 - LMF
 - Ecat7
 - Offline digitizer


DE LA RECHERCHE À L'INDUSTRIE

CA RECAP (2023)

DONE

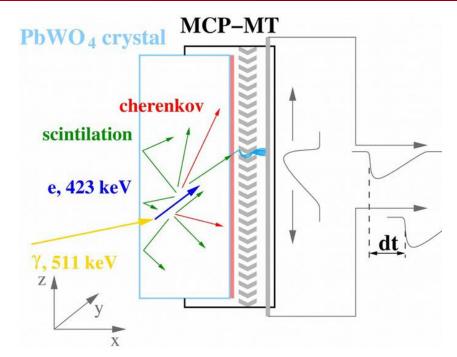
- Didigitizer Modules
 - Adder
 - Adder Optical
 - Adder Compton
 - Readout
 - Energy resolution
 - Time resolution
 - Spatial resolution
 - Energy framing
 - Efficiency
 - Adder Compton
 - Dead time
 - Pile-up
 - Noise
- Coincidence Sorter
- Outputs
 - Root
 - Tree
 - ASCII
 - Binary
 - Projection
 - Analysis
 - FastAnalysis

- Coming next
 - Didigitizer Modules
 - Buffer
 - Intrinistic Resolution
 - Light Yield
 - Transfer Efficiency
 - Quantum Efficiency
 - Calibration
 - CrossTalk
 - CC functionalities
 - CC digitizer modules
 - CC Coincidence Sorter
 - Outputs
 - Coincidence digitizers
 - Outputs
 - Sino
 - LMF
 - Ecat7
 - Offline digitizer

223 RECAP (2024)

DE LA RECHERCHE À L'INDUSTRI

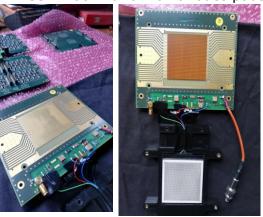
Developments for ClearMind project


CLEARMIND PROJECT

Collaboration

- DRF/IRFU CEA Saclay
- CPPM Marseille
- IJCLab Orsay
- DES/ISAS CEA Saclay
- BioMaps/SHFJ Orsay

ClearMind PET main goals


- Total body PET scanner
- TOF Targeting few 10 ps
- Al for position reconstruction
- Spatial resolution of 1 mm³

MAPMT253 : Matrix of 64x64 anodes pads

Detector

- Large (59 x 59 x 5 mm³) Monolithic PbWO₄ crystal
- Detection of 20 γ Cherenkov, 150 fast scintillation γ
 - Photo-cathode is deposited directly on the crystal
 - Recons. of $\boldsymbol{\gamma}$ interaction 3D position, time, energy, etc

DE LA RECHERCHE À L'INDUSTRI

Cea SPATIAL RESOLUTION

AAIMME project (CEA, in 2020-2023):

 \rightarrow Quantitative estimation with AI of the spatial coordinates of gamma interactions within a monolithic scintillator

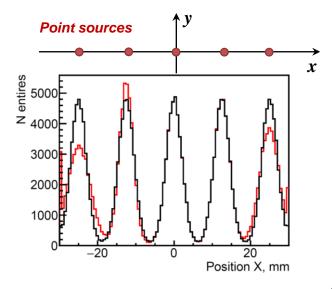
 \rightarrow Use waveforms information

 \rightarrow Consideration of uncertainties on the estimated coordinates

 \rightarrow Uncertainty is increased toward crystal borders

How these uncertainties are propagated into reconstructed image?

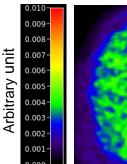
- Generalization of GateSpatialResolution
 - \rightarrow Gaussian blurring of a hit position
 - \rightarrow Current version: σ_x , σ_y , σ_z
 - → Generalization: $\sigma_x(x)$, $\sigma_y(y)$, $\sigma_z(z)$

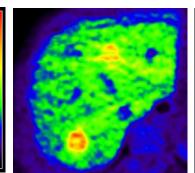


https://doi.org/10.1016/j.engappai.2024.107876

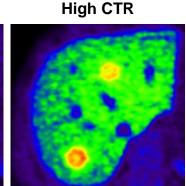
Work in progress: internship of Radia Oudihat

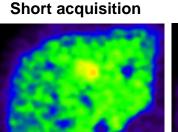
STUDY OF VERY HIGH TEMPORAL RESOLUTION (<100PS) IN CLINICAL TOTAL BODY PET IMAGING

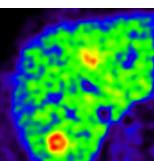

- Gate Simulation of SIGNA PET/MR by GE
 - \rightarrow Matrix of LYSO crystals
 - \rightarrow Model NEMA validations for:
 - Sensitivity
 - NECR
 - Spatial resolution
 - Percent Contrast Recovery



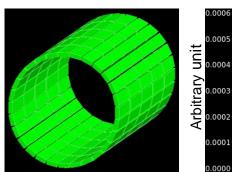
- TOF CTR of SIGNA GE: 390 ps → 100 ps

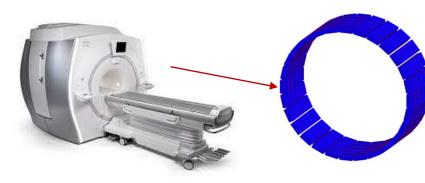

Study cases:


- \rightarrow Gold Standard: CTR = 390 ps, Acquisition time = 300s
- \rightarrow High CTR: CTR = 100 ps, Acquisition time = 300s
- \rightarrow Short acquisition: CTR = 100 ps, Acquisition time = 60s
- \rightarrow Low dose: CTR = 100 ps, Acquisition time = 300s, dose/10



Gold Standard



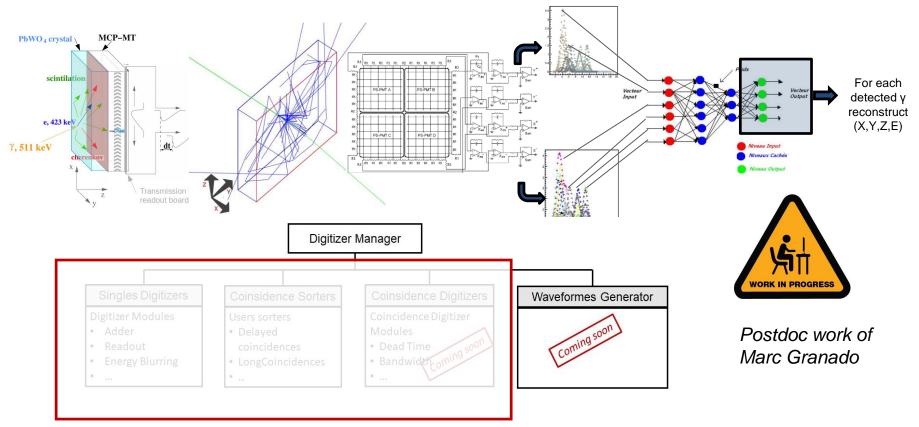


Low dose

10

STUDY OF CLEARMIND TOTAL BODY PET

- ClearMind detection elements
 - → Material: PbWO4
 - \rightarrow Monolithic crystal :
 - 59x59x10 mm³
 - \rightarrow MCP-PMT readout on one side
 - \rightarrow SiPM readout on other side
- PbWO₄ crystal scintilation e, 423 kev Y, 511 keV cherenkov y Transmission line readout board


Postdoc work of Marc Granado

- Total body PET
 - \rightarrow 1m long
 - \rightarrow Digitizer parameters from prototype tests
 - \rightarrow Castor reconstruction for monolithic crystals
 - → Image corrections:
 - Normalization
 - Attenuation
 - Scatter
 - Random
- More details in presentation tomorrow at 10h10 by Marc Ganado : «ClearMind total body PET simulations with GATE»

COO WAVEFORMS GENERATOR @ GATE

Another version of GATE simulation

- Simulation of all optical photons
- Simulation of photo-electrons on a MCP-PMT photo-cathode
- Simulation of signal waveform by electronics (TDC et ADC)

Scheduled 1st meeting on the 28th of May with others working/interested

Let me know if you want to participate

Activates for Gate 10

COINCIDENCE SORTER

Several work meetings in 2023-2024

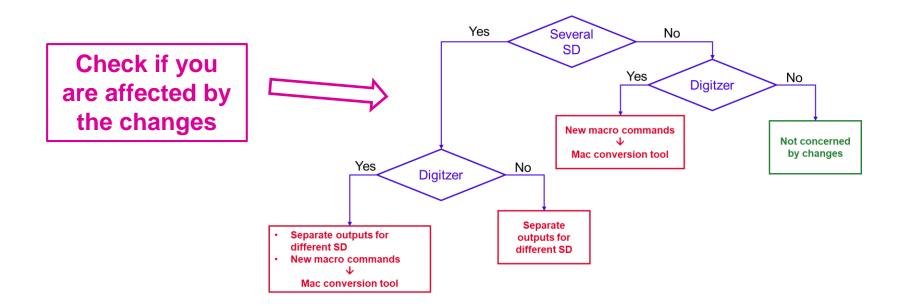
First version of Coincidence Sorter

- \rightarrow Offline (online is also planned)
- \rightarrow Available user parameters so far:
 - Time window
 - Multiples Policies:

keepAll (ex-takeAllGoods)
removeMultiples (ex-killAll)

- \rightarrow Already available in master branch of Gate 10
- → Test072 as an exemple use
- Next steps
 - \rightarrow Improve tests
 - \rightarrow Other policies (Users survey is coming)
 - → Geometry filters (*minSectorDiff*, *maxRingDiff*)
 - → TimeOffset for randoms estimation

• Working <u>google doc</u>. You are welcome to contribute !



Activates for Gate 9.4

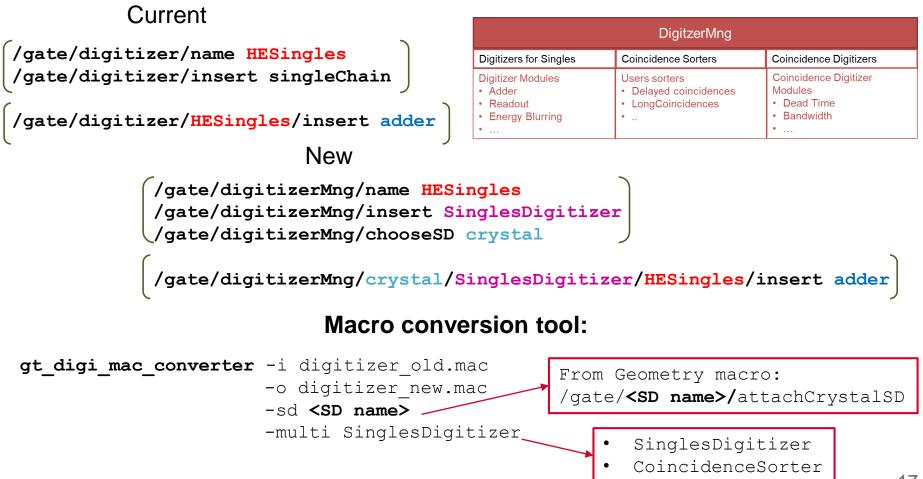
- The releases follow the Geant4 releases
- New developments are ongoing but not actively
- Developments for ClearMind project
 - Total Body TOF
 - Monolithic crystals
 - Waveform generator
- Activates for Gate 10
 - Developments are actively ongoing on Coincidence Sorter

SEVERAL SENSITIVE DETECTORS

- Multilayer detectors with different materials and/or readout
- Compton Cameras

Macros commands :

/gate/crystal/attachCrystalSD
/gate/crystal2/attachCrystalSD

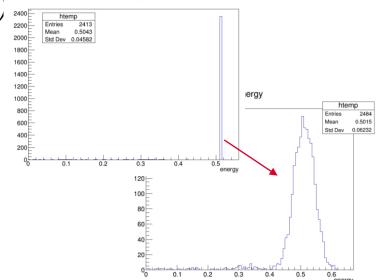

/gate/crystal/attachCrystalSDnoSystem
/gate/crystal2/attachCrystalSDnoSystem

Output TTrees:

	KEY: TTree Hits_crystal; The roo	ot tree for hits
	KEY: TTree Hits_crystal2/1 The roo	
	KEY: TTree OpticalData;1 Optical	LData
	KEY: TTree Coincidences;1 The roo	ot tree for coincidences
	KEY: TTree 🧹 Singles_crystal;1	The root tree for singles
	KEY: TTree Singles_crystal2;1	The root tree for singles
1	KEY: TTree LongCoincidences;1	The root tree for coincidences

CHANGES IN DIGITIZER COMMANDS

- Macros commands are longer but more explicit
- Everything is managed by Digitizer Manager



Modifications in some Digitizer Modules

ENERGY RESOLUTION

(ex blurring, crystal blurring, local energy blurring)

- What it does
 - Apply a Gauss on energy Resolution (FWHM), at a given energy, E
- Options:
 - fwhm for a given E
 - fwhmMin, fwhmMax
 - Inverse square law or linear
 - Use option «slope» to choose linear

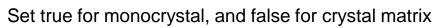
energy

How it is now

/gate/digitizerMng/crystal/SinglesDigitizer/Singles/insert energyResolution /gate/digitizerMng/crystal/SinglesDigitizer/Singles/energyResolution/fwhm 0.15 /gate/digitizerMng/crystal/SinglesDigitizer/Singles/energyResolution/energyOfReference 511. keV

 $(R=R_0\frac{\sqrt{E_0}}{\sqrt{E}})$

/gate/digitizerMng/crystal/SinglesDigitizer/Singles/insert energyResolution /gate/digitizerMng/crystal/SinglesDigitizer/Singles/energyResolution/fwhmMin 0.12 /gate/digitizerMng/crystal/SinglesDigitizer/Singles/energyResolution/fwhmMax 0.18 /gate/digitizerMng/crystal/SinglesDigitizer/Singles/energyResolution/energyOfReference 511. keV /gate/digitizerMgr/crystal/SinglesDigitizer/Singles/energyResolution/slope -0.055 1/MeV

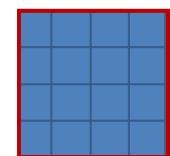

How it was before

/gate/digitizer/Singles/insert blurring/crystalBlurring/localEnergyBlurring
/gate/digitizer/Singles/blurring/linear/setSlope -0.055 1/MeV

COO SPATIAL RESOLUTION

(ex spatial blurring)

- What it does
 - Apply a Gauss on position Resolution (FWHM), at a given position
- Options:
 - fwhm 1 for X, Y, Z directions
 - fwhmX, fwhmY, fwhmZ
 - New: confineInsideOfSmallestElement What to do if outside of a SD? Bring to a border but which one? Of a crystal? Of a module? etc


How it is now

/gate/digitizerMng/crystal/SinglesDigitizer/Singles/insert spatialResolutin /gate/digitizerMng/crystal/SinglesDigitizer/Singles/spatialResolution/fwhm 0.15 /gate/digitizerMng/crystal/SinglesDigitizer/Singles/spatialResolution/ confineInsideOfSmallestElement true

How it was before

/gate/digitizer/Singles/insert spBlurring
/gate/digitizer/Singles/spblurring/setSpresolution 2.0 mm

confineInsideOfSmallestElement true false

EFFICENCY

(ex Energy Efficiency, Local efficiency, Crystal Blurring)

- What it does
 - Set an efficiency
- Options:
 - Unique efficiency
 - Energy mode: efficiency as a function of energy
 - From GateDistribuitions
 - From a file (energy, efficiency)
 - Crystal mode: for different crystals, or groups of crystals
 - From a file
- How it is now

/gate/digitizerMng/crystal/SinglesDigitizer/Singles/insert efficiency
/gate/digitizerMng/ crystal/SinglesDigitizer/Singles/efficency/setUniqueEfficiency

0.93

How it was before

/gate/digitizer/Singles/insert crystalblurring
/gate/digitizer/Singles/crystalblurring/setCrystalQE 0.9

Energy mode: Energy (keV) Efficiency 100 0.01 200 0.12 511 0.43

COO NEW MODULE: MERGER

- What it does
 - Merges two Singles collections into one
- Options:
 - Set input collection
- Macro example

```
From Geometry macro:
/gate/BGO/attachCrystalSD
/gate/LSO/attachCrystalSD
```



```
/gate/digitizerMng/BGO/SinglesDigitizer/Singles/insert adder
/gate/digitizerMng/LSO/SinglesDigitizer/Singles/insert adder
```

/gate/digitizerMng/LSO/SinglesDigitizer/Singles/insert merger
/gate/digitizerMng/LSO/SinglesDigitizer/Singles/merger/setInputCollection adder/BGO


/gate/digitizerMng/LSO/SinglesDigitizer/Singles/insert readout

- Use in the output:
 - Singles_LSO
- A bit tricky in command line: to simplify in the future

Cea New Module: Merger

- What it does
 - Merges two Singles collections into one
- Options:
 - Set input collection
- Macro example

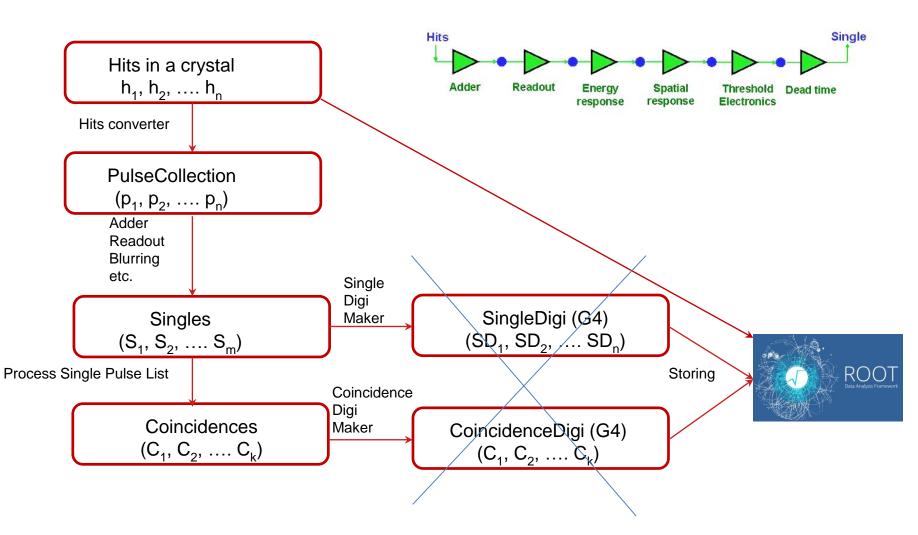
```
From Geometry macro:
/gate/BGO/attachCrystalSD
/gate/LSO/attachCrystalSD
```

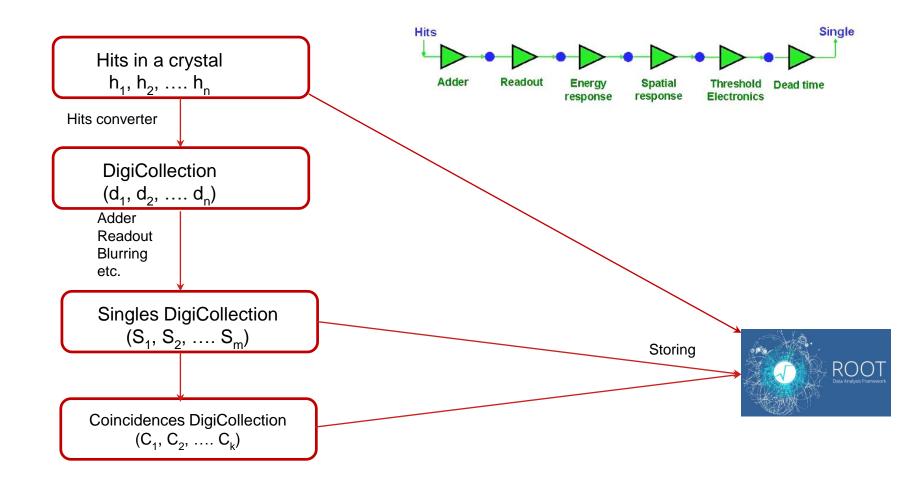


```
/gate/digitizerMng/BGO/SinglesDigitizer/Singles/insert adder
/gate/digitizerMng/LSO/SinglesDigitizer/Singles/insert adder
/gate/digitizerMng/LSO/SinglesDigitizer/Singles/insert merger
/gate/digitizerMng/LSO/SinglesDigitizer/Singles/merger/setInputCollection adder/BGO
/gate/digitizerMng/LSO/SinglesDigitizer/Singles/insert readout
Must be the second collection (last used)
Singles LSO
```

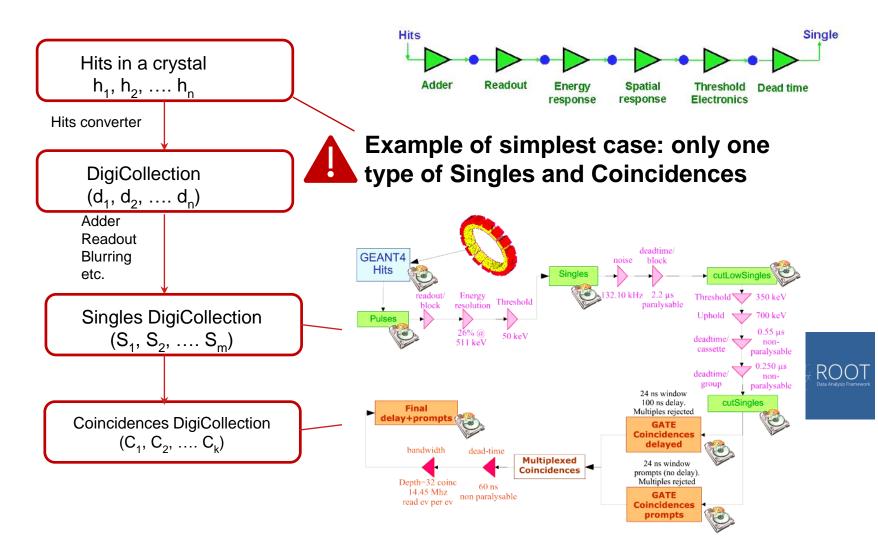
A bit tricky in command line: to simplify in the future

CONCLUSION AND PERSPECTIVES

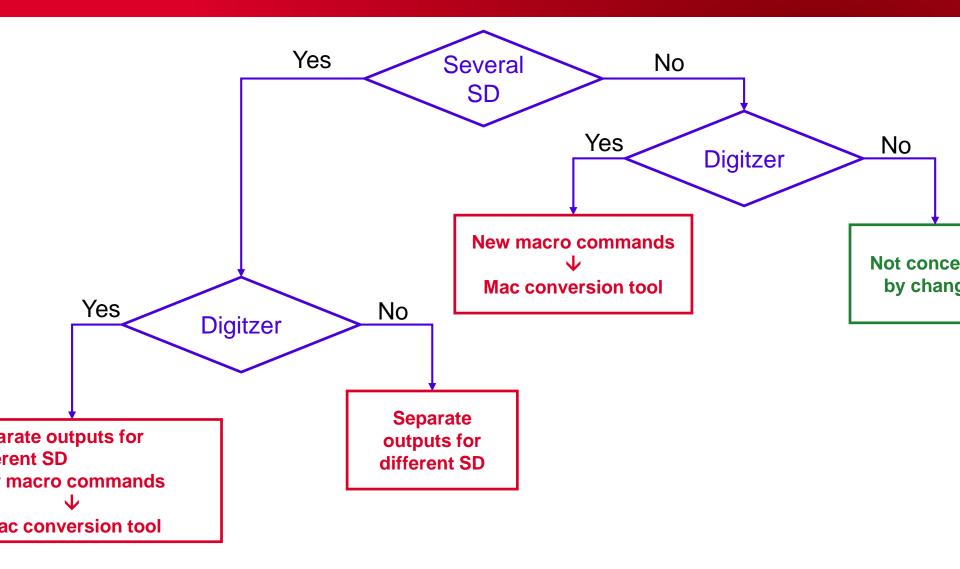

- Gate New Digitizer in version 9.3
 - Multiple Sensitive Detectors that can be attached even without system defined
 - New commands but macro conversion tool
 - Speed-up
 - More coming ...
- Next developments of digitizer in Gate 9.3
 - Adapt the modules that are in a "waiting list"
 - Coincidence Digitizer implementation
 - Waveform generator
 - Offline digitizer
- Gate 10
 - New Digitizer integration for this version is also planed



Thanks!


ARCHITECTURE SIMPLIFICATION

ARCHITECTURE SIMPLIFICATION



ARCHITECTURE SIMPLIFICATION

DE LA RECHERCHE À L'INDUSTRIE

NEW FEATURES AND MAIN CHANGES FOR USERS

