

<u>Alexis Pereda</u>¹, Hermann Fuchs⁴, Dietmar Georg⁴, Jean Michel Létang², Étienne Testa³, Michael Beuve³, Lydia Maigne¹ ¹LPCA, ²CREATIS, ³IP2I, ⁴Medical University of Vienna/MedAustron

 $<\!\! {\rm alexis.pereda@clermont.in2p3.fr} \!>$

Laboratoire de Physique Clermont Auvergne, UCA, CNRS, France

GATE Scientific Meeting 2024

Biological dose

Objective of the biological dose

effects of the physical dose on biological tissues

$$D_{B} = RBE \times D_{\varphi} = \frac{-\alpha_{ref} + \sqrt{\overline{\alpha} D_{\varphi} + (\overline{\sqrt{\beta}} D_{\varphi})^{2}}}{2\beta_{ref}}$$

- D_B: biological dose
- D_{φ} : physical dose
- RBE: Relative Biological Effectiveness
- α_{ref}/β_{ref} : reference X-ray beam values (0.313/0.0615)
- $\overline{\alpha}/\overline{\sqrt{\beta}}$: mean $\alpha/\sqrt{\beta}$ values

Biological dose

nano/micro scale

• mMKM (Kase et al., 2006)

 NanOx (Cunha et al., 2017)

Biophysical model databases

Cell line Human Salivary Glands (HSG): $HSG_mMKM.db$ or $HSG_NanOx.db$ \implies easy to provide new cell lines or biophysical models

Example:

ſ	// Ion type	// energy	alpha	beta
		// (MeV)	(Gy ⁻¹)	(Gy ⁻²)
	Н	Н		
Т		0.1	3.528	0.059
	He	0.125	3.584	0.022
4		0.15	3.642	0.098
Т	С			
4		1	0.932	0.059
	0			
		10	0.376	0.063
	Li			
J		300	0.339	0.109

 $\alpha,\beta:$ from Geant4-DNA/LPCHEM simulations

User interface

GATE 9.4 (macros):

	DI D A I DI
/gate/actor/addActor	BloDoseActor Blo
/gate/actor/Bio/attachio	volume
/gate/actor/Bio/setVoxelSize	1 60 60 mm
/gate/actor/Bio/setPosition	0 0 0
, 8400, 40001, 210, 2001 0010101	
/gate/actor/Bio/setCellLine	HSG
/gate/actor/Bio/setBioPhysicalModel	NanOx
/gate/actor/Bio/setAlphaRef	0.313
, Batto, actor, Dro, Dromphanor	
/gate/actor/Bio/setSqrtBetaRef	0.0615
/gate/actor/Bio/enableDose	true
/gate/actor/Bio/enableUncertainty	true
/gate/actor/Bio/save	output/biodose.mhd

GATE 10 (Python):

<pre>biodose = sim.add_actor("BioDoseActor", "biodose")</pre>				
biodose.attached_to	= volume			
biodose.spacing	= [1 * mm, 60 * mm, 60 * mm]			
biodose.translation	= [0, 0, 0]			
biodose.size	= [400, 1, 1]			
biodose.cell_line	= "HSG"			
biodose.biophysical_model	= "NanOx"			
biodose.alpha_ref	= 0.313			
biodose.sqrt_beta_ref	= 0.0615			
biodose.dose	= True			
biodose.uncertainty	= True			
biodose.output	<pre>= "output/biodose.mhd"</pre>			

H/C-ion SOBP clinical PBS beams in water

Results – dose profiles

Figure: H-ion in water with 1×10^7 primaries, production cut 100 m, step limiter 10 μm (HSG, NanOx)

Figure: C-ion in water with 1×10^6 primaries, production cut 100 m, step limiter 10 μm (HSG, mMKM)

Tests on stepping parameters

Parameter	Value				
Legend ID	default	c 100 m sl 1 μm sf default	c 100 m sl 10 μm sf default	c 100 m sl 100 µm sf default	sf .01 1 μm
Production Cut (e-, gamma, positron)	1 mm	100 m			
Step Limiter (proton, deuteron, triton, alpha, Genericlon)	1	1 µm	10 µm	100 µm	-
Step Function (proton, deuteron, triton, alpha, Genericlon)	default: $lpha_R=$ 0.2 $ ho_R=$ 1 mm			$lpha_{R}=$ 0.01 $ ho_{R}=$ 1 μm	

H-ion SOBP clinical beam (reference)

H-ion SOBP clinical beam (differences)

Implementation and validation of a biological dose actor in GATE 10 GATE Scientific Meeting 2024 11 / 17

C-ion SOBP clinical beam (reference)

C-ion SOBP clinical beam (differences)

Alexis Pereda

Implementation and validation of a biological dose actor in GATE 10 GATE Scientific Meeting 2024 13 / 17

Runtime performances

CPU: 11th Gen Intel(R) Core i7-1165G7, 2.80 GHz

Simulation were run on a single thread

	default	c 100 m sl 1 μm sf default	c 100 m sl 10 µm sf default	c 100 m sl 100 µm sf default	sf .01 5 μm
H-ion NanOx,	2.36	0.33	0.25	0.247	1.01
$1 imes 10^6$ particles	(×0.14)	$(\times 1)$	(×1.32)	(×1.34)	(×0.33)
C-ion mMKM,	82.87	100.80	15.26	6.93	7.63
$1 imes 10^5$ particles	(×1.22)	$(\times 1)$	$(\times 6.61)$	(×14.55)	(×13.21)
C-ion NanOx,	83.06	99.16	15.54	6.75	7.40
$1 imes 10^5$ particles	(×1.19)	$(\times 1)$	(×6.38)	(×14.69)	(×13.4)

Table: Mean simulation time per primary particule (ms)

C-ion clinical PBS beams in patient

MedAustron

- Human Salivary Glands
- Pencil Beam Scanning
- CT: $50 \times 50 \times 44 \text{ cm}^3$
- Voxel size: $0.97 \times 0.97 \times 2 \text{ mm}^3$
- PhysicsList: Shielding_EMZ
- 3 beams
- sinonasal chordoma

Alexis Pereda

Implementation and validation of a biological dose actor in GATE 10 GATE Scientific Meeting 2024 15 / 17

Results – C-ion, biological dose (NanOx)

Figure: biological dose with C-ion in patient, 1×10^6 primaries per beam, production cut 100 m, step limiter 10 µm (HSG, NanOx)

Figure: Cumulative biological DVH comparison GATE/NanOx (solid lines) and Raysearch (dashed lines)

40

biodose (NanOx)

ptic nerve (left) (GATE) ptic nerve (right) (GATE) rainstem (GATE)

GTV sinonasal (Raysearch) optic nerve (left) (Raysearch) optic nerve (right) (Raysearch brainstem (Raysearch)

Conclusion

BioDose actor

- validated in water and patient
- with statistical uncertainty
- execution speed similar to dose actor

Availability

- current GATE release (9.4)
- in future GATE 10 official release

to be published soon in Medical Physics journal