Comprendre l'Infiniment Grand Introduction to Cosmology Part II

Ch. Yèche, CEA-Saclay, IRFU/DPhP

July 4, 2024

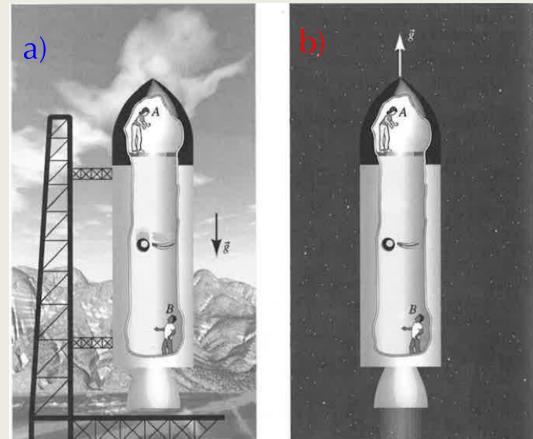
Summary of Part I

Equivalence principle

a) $m_i a = m_g g \Rightarrow$ the lead ball and the feather experience the same Acceleration $\Rightarrow m_i = m_g$ and a=g

b) they have the same constant speed but appear with the same acceleration

uniform gravitational field
 uniform acceleration

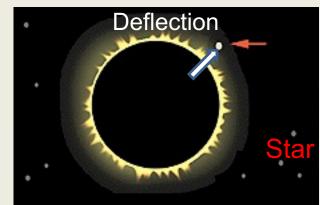


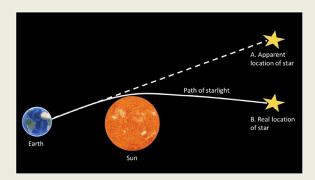
James B. Hartle

study effect of acceleration \Rightarrow study gravitation

Light rays are bent – Clocks and Gravitation

- In 1919: Arthur Eddington observes light deviation by the sun during a solar eclipse:
 - 1.75 arc second = 8.5 μrad as predicted by Einstein
 - Twice the deflection predicted by first computation (Eq. principle alone)





$$\Delta t_B = \left(1 - \frac{\Phi_A - \Phi_B}{c^2}\right) \Delta t_A$$

At the surface of a star: $\phi_A = -GM/R$ and far away: $\phi_B = 0$

$$\Delta t_{\infty} = \left(1 + \frac{GM}{Rc^2}\right) \Delta t_*$$

Cosmology - Part II

1. Geometry of the Universe

- Curved spacetime Metric
- Cosmological principles
- FLWR metric

2. Expansion of the Universe

- Cosmological redshift
- Friedman equation

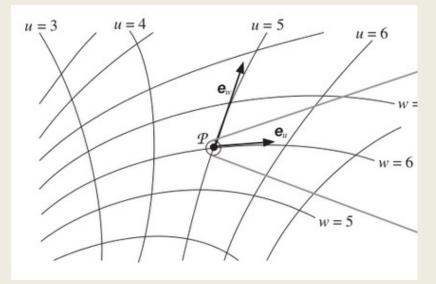
3. History of the Universe

1) Geometry of the Universe

From 3D space to 4D spacetime

1) In the usual 3D Euclidian

- Define a coordinate system $x^{i} = a$ labeling of space ex plan (x,y) or (r, ϕ)
- We can measure distances with a ruler: $dS^2 = g_{ij}(x) dx^i dx^j$



- The metric $g_{ij}(x)$ alone totally defines the geometry
- but $dS^2 = dr^2 + r^2 d\Phi^2$ and $dS^2 = dx^2 + dy^2$: same geometry we mean $(dx)^2$ and not $d(x^2)$! length² not surface
- 2) We generalize to a non-Euclidian 4D spacetime

Curved spacetime – Metric

• We generalize the 3D metrics to 4D in special relativity

$$ds^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2 = \eta_{\alpha\beta} dx^\alpha dx^\beta$$

- We generalize in GR with non constant terms $g_{\mu\nu}$ $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu}$
- The equivalence principle tells, $\Delta \tau_B = \left(1 \frac{\Phi_A \Phi_B}{c^2}\right) \Delta \tau_A$
- GR : for a weak and static field, the metric is :

$$ds^{2} = \left(1 + \frac{2\Phi(x)}{c^{2}}\right)c^{2}dt^{2} - \left(1 - \frac{2\Phi(x)}{c^{2}}\right)(dx^{2} + dy^{2} + dz^{2})$$
equivalence principle
fixed object
$$\Delta\tau^{2} = \frac{ds^{2}}{c^{2}} = \left(1 + \frac{2\Phi}{c^{2}}\right)dt^{2} \Rightarrow \Delta\tau_{B} = \left(1 - \frac{\Phi_{A} - \Phi_{B}}{c^{2}}\right)\Delta\tau_{A}$$
8

Homogenous and isotropic

Cosmological principle

- Universe isotropic + homogeneous on large scales
- Universe looks the same whoever and wherever you are
- **Isotropic** (on large scales)
- CMB very isotropic
- X ray background, radio galaxies
- Homogeneous
- Test with 3D galaxy surveys
- Only at large scales.... > Mpc

FLRW metric

• Homogeneous and isotropic ⇒ Friedmann, Lemaitre, Robertson, Walker metric

$$ds^2 = dt^2 - R^2(t) \left[\frac{dr^2}{1 - kr^2} + r^2(d\theta^2 + \sin^2\theta d\phi^2) \right]$$

- Isotropic: spherical coordinates $dr^2 + r^2(d\theta^2 + sin^2\theta d\phi^2)$
- Homogeneous: scale factor R(t) due to expansion, it does not depend on (r, θ, ϕ)
- Dimensionless scale factor : $a(t)=R(t) / R(t_0)$ now $a(t_0) = 1$ index 0, means today in the past a(t) < 1Big Bang a(t) = 0

FLRW metric

Friedmann, Lemaitre, Robertson, Walker metric

k =

k = -

$$ds^{2} = dt^{2} - R^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$$

k = 1 : spherical geometry
or closed (\sum \alpha \approx 180\circ)
k = -1 : hyperbolic geometry
or open (\sum \alpha \approx 180\circ)
k = 0 : flat geometry (\sum \alpha = 180\circ)
k = 0 : flat geometry (\sum \alpha = 180\circ)

MAP990006

Comoving distance

• Change of coordinates $r = \sin \chi$ (k=1, closed) $r = \chi$ (k=0, flat)

$$r = \sinh \chi \quad (k=-1, \text{ open})$$

$$ds^{2} = dt^{2} - R^{2}(t) \left[d\chi^{2} + \left\{ \begin{array}{c} \sin^{2} \chi \\ \chi^{2} \\ \sinh^{2} \chi \end{array} \right\} \left(d\theta^{2} + \sin^{2} \theta d\phi^{2} \right) \right] \left\{ \begin{array}{c} \text{closed} \\ \text{flat} \\ \text{open} \end{array} \right\}$$

$$\sin \rightarrow \text{spherical} \quad \sinh \rightarrow \text{hyperbolical}$$

- Distance:
 - Galaxies remain at $\chi = cst$ (up to small local velocities)
 - Physical distance between 2 galaxies : $R(t) \times \Delta \chi$ (Mpc) increases with the expansion
 - "comoving" distance : $R(t_0) \times \Delta \chi$ is fixed (comoving Mpc)
 - = distance including the expansion up to **t=t**₀
 - = independent from Universe expansion

2) Expansion of the Universe

Cosmological rec

ι_r

t

t_e+

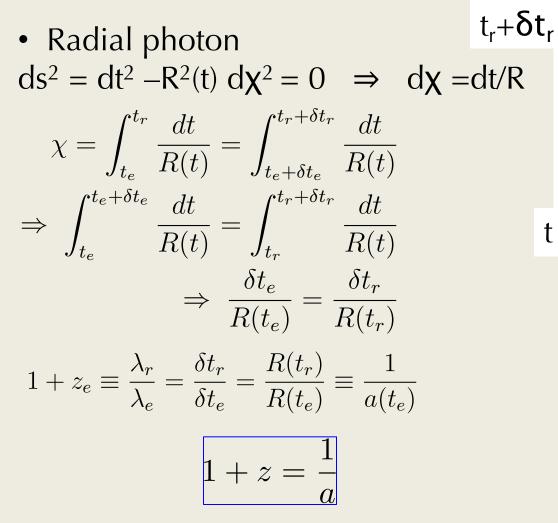
X

t_e+**δt**_e

t_e

χ

X



« λ is dilating with the Universe »

Redshift: A fundamental concept in cosmology

- Measuring $z \rightarrow$ scale factor *a* when light emitted
- It is a cosmological redshift, 1+z = 1/a can be e.g. z=1000 (at CMB) cannot be interpreted as a simple Doppler effect
- In case of Hubble law (v=H₀d), it is locally interpreted as a Doppler effect
- z is also a measurement of time: e.g. CMB occurred at z = 1100 (i.e. when a=0.0009)

Hubble parameter

• Assume $t_e \sim t_0$ (locally) \Rightarrow a ~ 1, small z

$$1 + z = \frac{1}{a} \qquad z = \frac{v}{c} = \frac{1 - a}{a} = \frac{\dot{a}\Delta t}{a} \quad \Rightarrow \quad v = \frac{\dot{a}}{a}(c\Delta t)$$
$$v = \frac{\dot{a}}{a}D \qquad \text{Hubble law with} \quad H_0 = \frac{\dot{a}(t_0)}{a(t_0)} = H(t_0)$$

- Hubble parameter $H(t) \equiv \frac{\dot{a}(t)}{a(t)}$
- H_0 is not very precisely measured, we define

$$h \equiv \frac{H_0}{100 \; (\mathrm{km/s})/\mathrm{Mpc}} \approx 0.7$$

 cosmological results in units like h⁻¹Mpc numerical result independent of h

Thermodynamic

 a volume V including a fixed number of particles (i.e. galaxies !)

$$d E = -P dV$$
 $E = \rho V$

• the physical volume is $V = a^3(t) V_{com}$ (V_{com} = comoving volume)

 $d_t \left(\rho \ a^3 \ V_{com} \right) = -P \ d_t \left(a^3 \ V_{com} \right) \qquad but \ V_{com} = cst = V_0$

$$d_t [\rho(t) a^3(t)] = -P(t) d_t [a^3(t)]$$

matter, radiation

• Matter: $d_t [\rho \ a^3] = -P \ d_t \ [a^3]$ Galaxies may be approximated as a pressure-less gas: galaxies have no velocity relative to the overall expansion $\Rightarrow d_t \ [\rho_m \ a^3] = 0$ $\rho_m \ (t) = \rho_m \ (t_0) \ a^{-3}(t)$

• Pure radiation (black body) Stefan's law: $\rho_r = g \frac{\pi^2}{30} \frac{(k_B T)^4}{(\hbar c)^3}$ Thermodynamics: $P_r = (1/3) \rho_r$

 $d_t \left[\rho \; a^3 \right] = -(1/3) \; \rho \; d_t \; \left[a^3 \right] \Rightarrow 4\rho a^3 d(a) + a^4 d(\rho) = 0$

 $\rho_r (t) = \rho_r (t_0) a^{-4}(t) \qquad a^{-3} \text{ for volume} \\ a^{-1} \text{ since } E \propto \lambda^{-1} \\ T(t) = T(t_0) / a(t)$

Vacuum

- "Vacuum is not empty" virtual particle-antiparticle pairs
- Results in a vacuum energy density constant in space and time

 $d_t \left[\rho \ a^3 \right] = -P \ d_t \left[a^3 \right] \implies \rho \ d_t \left[a^3 \right] = -P \ d_t \left[a^3 \right]$

 $P_v = -\rho_v = cst < 0$

- Vacuum pressure is negative !
- Vacuum energy equivalent to cosmological constant or a form of dark energy: $\rho_v = \Lambda/(8\pi G)$ in Einstein equation

Friedman equation

• Einstein Eq =>

$$\left(rac{\dot{R}}{R}
ight)^2+rac{k}{R^2}=rac{8\pi
ho}{3}$$

(Friedmann Eq.)

• Critical density today for which the Universe is flat (k=0)

t=t₀:
$$\frac{8\pi\rho_c}{3} = \left(\frac{\dot{R}}{R}\right)_0^2 = \left(\frac{\dot{a}}{a}\right)_0^2 = H_0^2$$

$$\rho_c = \frac{3H_0^2}{8\pi} = 1.88 \times 10^{-29} h^2 \text{ g/cm}^3 \sim 5 \text{ protons / m}^3$$

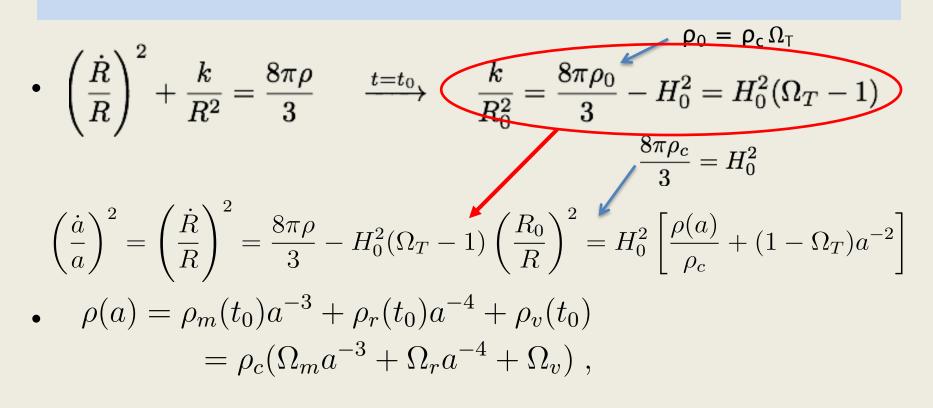
• We introduce $\Omega_m \equiv \frac{\rho_m(t_0)}{\rho_c}, \qquad \Omega_r \equiv \frac{\rho_r(t_0)}{\rho_c}, \qquad \Omega_v \equiv \frac{\rho_v(t_0)}{\rho_c}$

 $\Omega_T = \Omega_m + \Omega_r + \Omega_v = \rho_0 / \rho_c$ (Ω_x , at t=t₀, should be Ω_x^0)

$$\rho(a) = \rho_m(t_0)a^{-3} + \rho_r(t_0)a^{-4} + \rho_v(t_0)$$

= $\rho_c(\Omega_m a^{-3} + \Omega_r a^{-4} + \Omega_v)$, 2

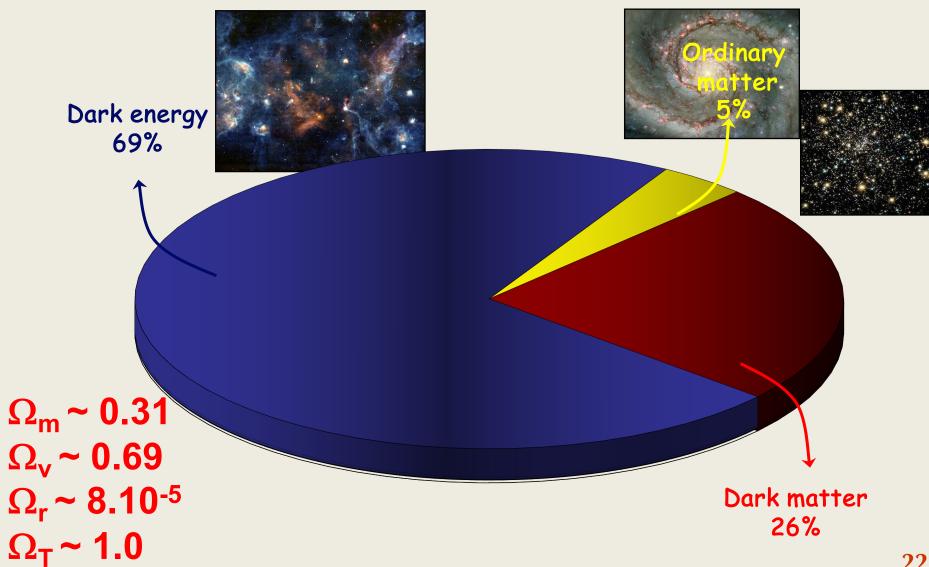
Friedman equation



$$\left(rac{\dot{a}}{a}
ight)^2 = H_0^2 \left[\Omega_m a^{-3} + \Omega_r a^{-4} + \Omega_v + (1-\Omega_T)a^{-2}
ight]$$

Simplification: for a flat Universe ($k=0 \Rightarrow 1 - \Omega_T = 0$)

Content of the Universe



3) History of the Universe

Age of the Universe

$$\left(\frac{\dot{a}}{a}\right)^2 = H_0^2 \left[\Omega_m a^{-3} + \Omega_r a^{-4} + \Omega_v + (1 - \Omega_T) a^{-2}\right]$$

- many quantities may be computed from this equation by expressing in terms of 'a' and \dot{a}/a
- e.g. the age of the universe : $dt = \frac{dt}{da}da = \frac{da}{\dot{a}} = \frac{da}{a(\dot{a}/a)}$

$$t = H_0^{-1} \int_0^1 \frac{da}{a \left[\Omega_m a^{-3} + \Omega_r a^{-4} + \Omega_v + (1 - \Omega_T) a^{-2}\right]^{1/2}}$$

• $H_0 = 70(km/s)/Mpc = \frac{70km/s}{10^6 \times 3.262 \times 1an \times 300000 km/s}$

 $H_0^{-1}=14.10^9$ years

Age of the Universe

• Note: - our Universe is flat ($k=0 \Rightarrow \Omega_T =1$) - one may often neglect $\Omega_r = 9 \ 10^{-5}$ (Ω_r)

 $(\Omega_{\rm m}=0.3, \ \Omega_{\rm v}=0.7)$

• Simplification of the equation:

$$t = H_0^{-1} \int_0^a \frac{da}{a \left(\Omega_r a^{-4} + \Omega_m a^{-3} + \Omega_v\right)^{1/2}}$$

• Universe with just matter $\Omega_m \approx 1$

$$t(a) = H_0^{-1} \int_0^a \frac{da}{a^{-1/2}} = H_0^{-1} \int_0^a a^{1/2} da = \frac{2}{3} H_0^{-1} a^{3/2}$$

T ~9.10⁹ years, incompatible with the age of the first stars in MW

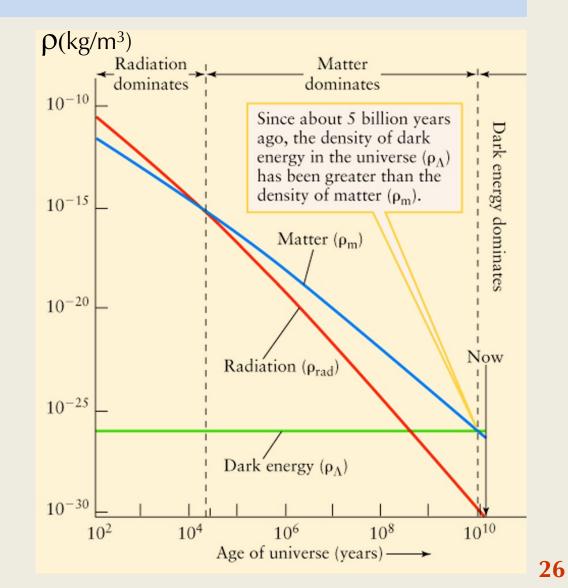
Epochs of the universe

$$\rho(a) = \rho_{crit} \left(\Omega_v + \frac{\Omega_m}{a^3} + \frac{\Omega_r}{a^4} \right)$$

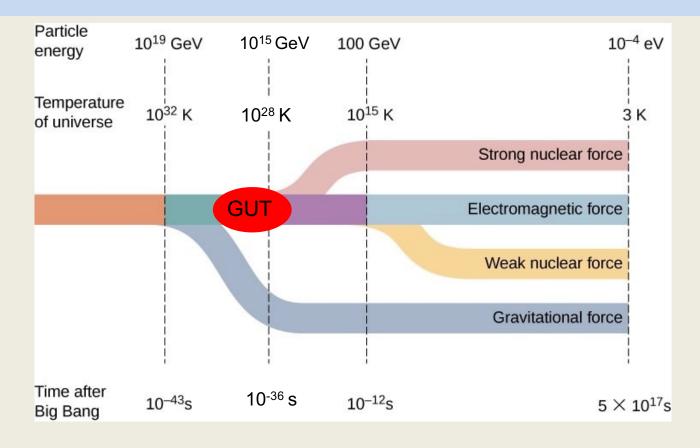
- beginning

 ('a' very small)

 radiation dominates
- then mater dominates
- "recently" vacuum (or dark energy) dominates



Unification of forces



- EW force ~ 100 GeV
- Grand unification Theory (GUT) ~10¹⁵ GeV at 10⁻³⁶s after BB
- Theory of Everything ~10¹⁹ GeV (Planck scale)

Evolution of homogeneous Universe

Governed by coupled differential equations :

• Friedmann equation for a(t)

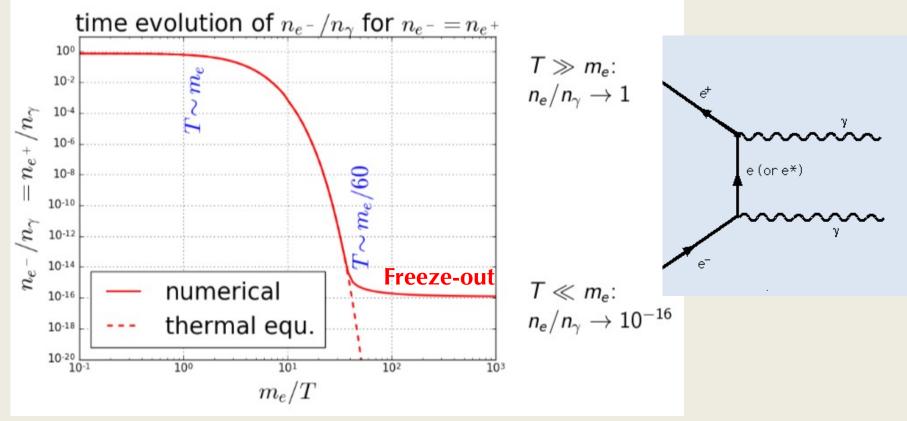
$$\left(\frac{\dot{a}}{a}\right)^2 + \frac{k}{R^2} = \frac{8\pi G\rho}{3}$$

• Boltzmann equations for phase space density of each particle species :

 $\frac{\partial f_i(x, p, t)}{\partial t} = (\text{Liouville}) + (\text{collision}) + (\text{creation}) + (\text{destruction})$

- Solved numerically but intuition by comparing
 Γ : Number of reactions per particle per unit time
 - H(z) = expansion of Universe

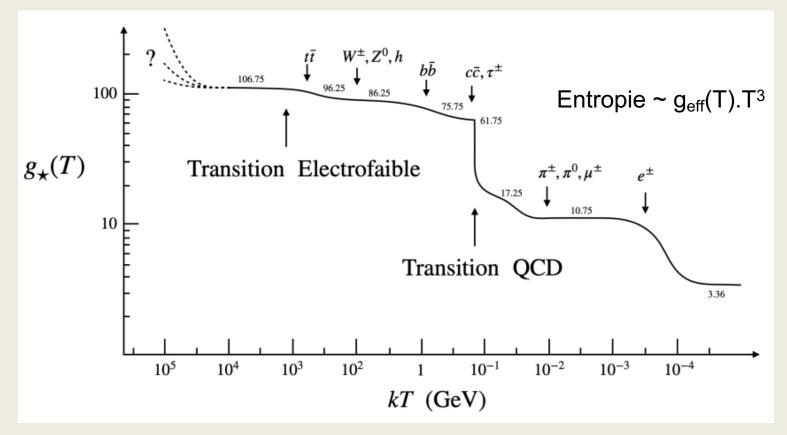
The simplest example, electrons and positrons annihilation



- Freeze-out for $T_{freeze} \sim \frac{m_e}{60} \sim 10$ keV when $\Gamma \sim H$
- After the freeze-out, the number of e⁺ and e⁻ is constant
- The density n_e decreases as 1/a³
- Caveat: the asymmetry of matter/antimatter is not considered! 29

Thermal history with primordial particles

Effective number of spin states ~ Number of degrees of freedom



- See classes of particles physics
- Time of particle physics: age of Universe < 1s

Timeline of Universe history

History of the Universe

