Comprendre l'Infiniment Grand

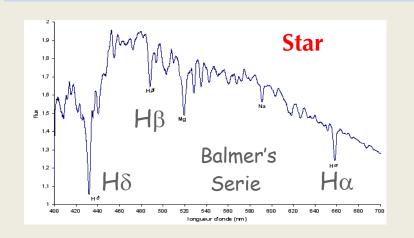
Introduction to Cosmology

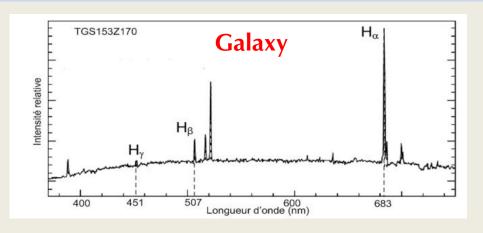
Ch. Yèche, CEA-Saclay, IRFU/DPhP

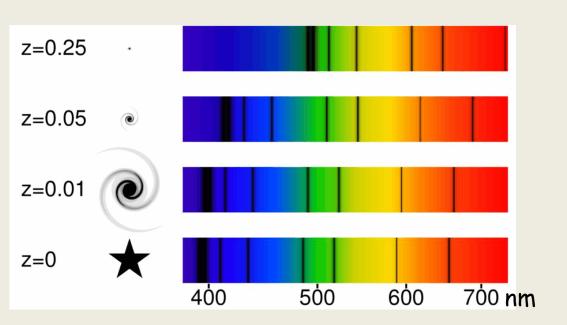
July 2, 2024

Cosmology - Part I

1. Introduction


- Hubble law
- Content of the Universe


2. Gravitation and General Relativity

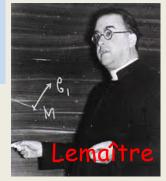

- Equivalence principle
- Tests of GR

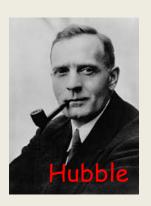
1) Introduction

How do we measure velocity?

Stars spectra

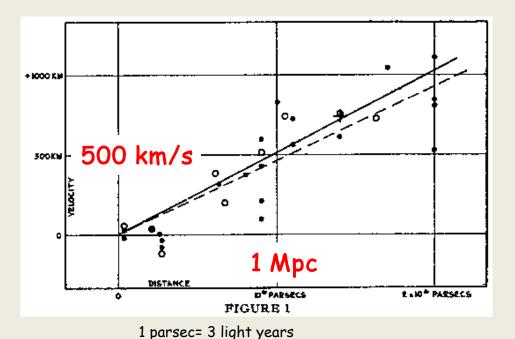
- Absorption lines

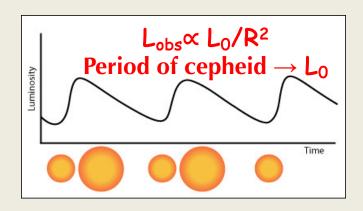

Galaxies


- Emission lines
- Balmer/Lyman breaks

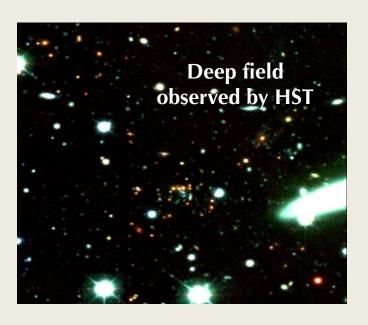
Redshift

- Doppler effect
- $V/c=(\lambda-\lambda_0)/\lambda_0=z$


Expanding Universe



History of the discovery


- > 1914, Slipher: farther the « nebula » (galaxy) is from us, the more it seems to be escaping away
- ➤ 1927, Lemaître: solutions of Einstein General Relativity for a non static universe ⇒ velocity proportional to distance.

➤ 1929, Hubble: Relation distance – velocity thanks to cepheid in extragalactic "nebula "

Expanding Universe

Hubble's law

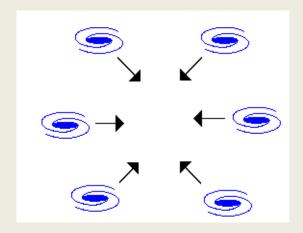
$$V=H_0D$$

Measurement of the velocity of galaxies with **their redshift** (z) Doppler effect : $v/c=(\lambda-\lambda_0)/\lambda_0=z$

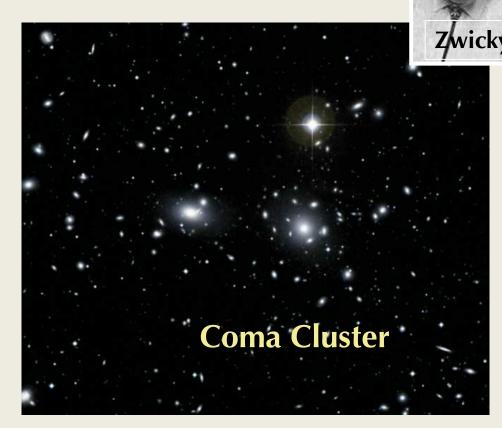
 \triangleright Increasing $z \Rightarrow$ Back in time

What value of H_0 ?

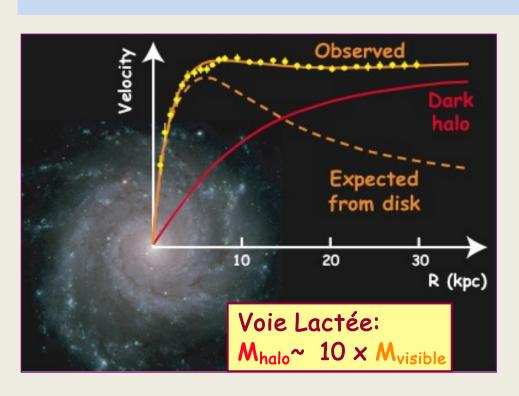
> Controversial and controverted measurement.


What about gravitation?

- It will slow the expansion of the universe for dark matter - Deceleration.
- ➤ It will accelerate the expansion of the universe for "repulsive" matter Acceleration.


Discovery of Dark Matter

Zwicky, 1933


"Invisible" matter

- ➤ Galaxy cluster.
- ➤ Peculiar velocity of galaxies too high.
- ➤ Virial theorem.
- ➤ Visible galaxies are about 1-10% of the total mass.

$$E_p + 2 E_c = 0$$

 $E_c = 1/2 \text{ M V}^2 \text{ and } E_p = -\frac{1}{2} \text{ GM}^2/\text{R}$
 $M = 2RV^2/G$

1970: how to weigh galaxies?

Galactic rotation curves

➤ Final proof by measuring the velocity of stars within galaxies ➤ Work of Vera Rubin and Kent Ford in the 70′

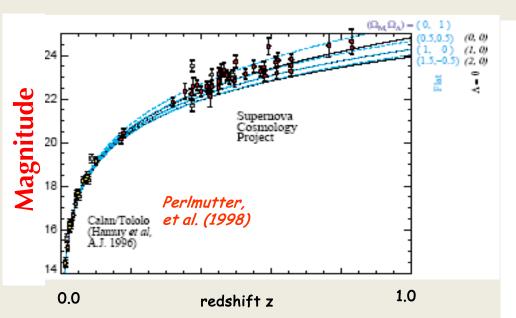
Newton Law

$$E_c + E_p = 0$$

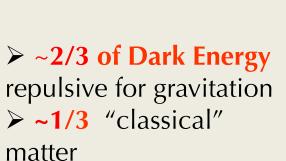
$$V_{rot} = \sqrt{\frac{2GM}{R}}$$

Constant rotation curve

Halo of Dark Matter

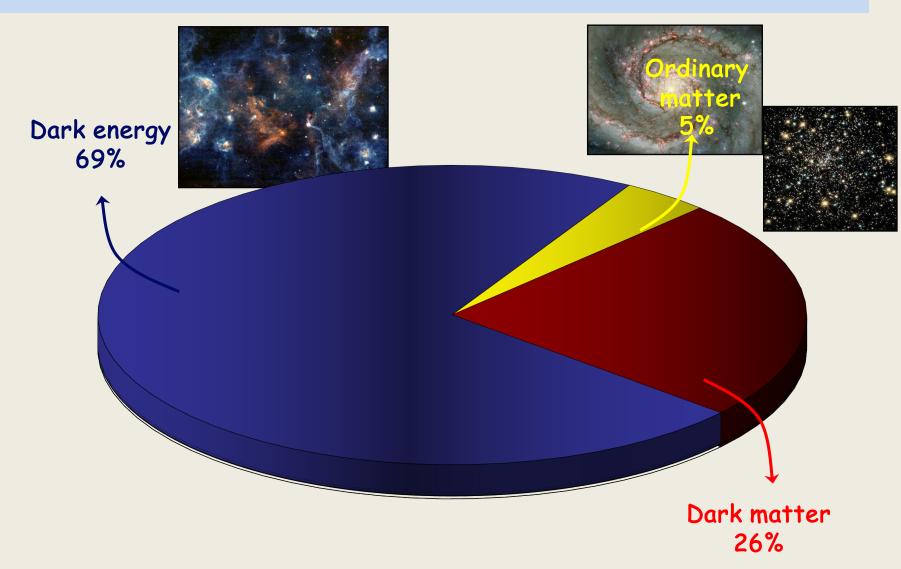

Dark energy

Discovery with supernovae


➤ In 1998, Hubble diagram (magnitude \leftrightarrow z) with standard candles (SN Ia)

$L_{\rm obs} \propto L_0/R^2$

➤ Acceleration of expanding Universe



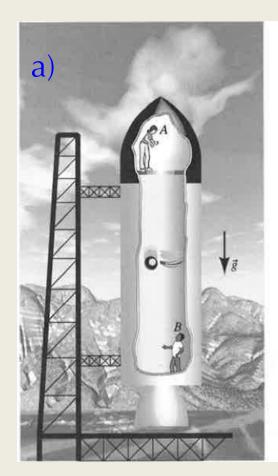
Content of the Universe

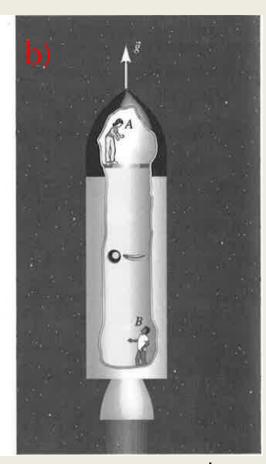
Summary - Content of the Universe

- Radiation 5 10⁻⁵
 Cosmic microwave background (CMB) + neutrinos
- Ordinary matter (baryonic) ~5% ~ 1 proton / 4 m³
 - galaxies (stars, interstellar gas, dust)
 - typical galaxy: 10¹² M_☉
 - $< \rho_{\text{visible}} > = 10^{-31} \text{ g/cm}^3$ 0.2%
 - intergalactic gas
- Dark matter ~26%, many evidences:
 - star rotation curves in galaxies
 - galaxy rotation curves in clusters
 - structure development, ...
- Dark energy ~69%
- Acceleration of the Universe expansion (SNIa)

2) Gravitation and General Relativity

Gravitation and relativity


- 1905 : Special Relativity
- Incompatible with Newton $F = \frac{Gm_1m_2}{|r_1(t) r_2(t)|^2}$
- Instantaneous force, $r_1(t)$ et $r_2(t)$ at the same t
- Newton = approximation of a more fundamental theory $F = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r_1^2}$ Coulomb law approximation of Maxwell eq.
- 1915 : General relativity
- Not just a new theory of gravitation
- But a revolution in our conception of space and time
- Gravitation = curvature of spacetime → Pure geometry

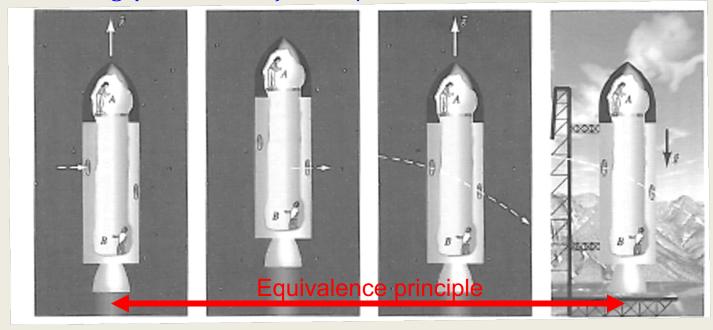

Equivalence principle

a) $m_i a = m_g g \Rightarrow$ the lead ball and the feather experience the same Acceleration

$$\Rightarrow$$
 m_i= m_g and a=g

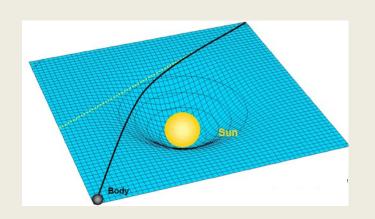
- b) they have the same constant speed but appear with the same acceleration
- uniform gravitational field
 uniform acceleration

James B. Hartle

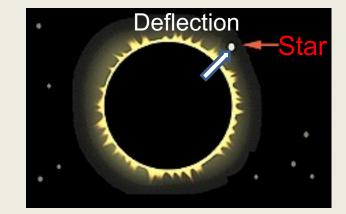

Equivalence principle

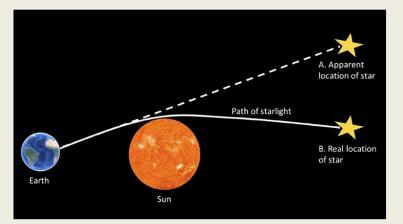
Equivalence Principle: An experiment in a freely falling laboratory, small enough and over a sufficiently small duration, is indistinguishable from the same experiment in an inertial frame away from all sources of gravitation

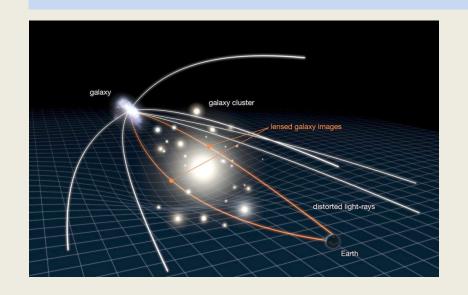
Gravity can be removed by free fall or conversely created by an acceleration


Light is falling!

 Equivalence principle applies for all physical laws including photon trajectory


• $\Delta v = g \Delta t = g d/c \ll c \Rightarrow tiny effect on earth$ $\theta \sim \Delta v/c \sim g d/c^2 \qquad d=10m \Rightarrow \theta \sim 9.81 x 10/(3 10^8)^2 = 10^{-15}!$ $\theta \sim 2GM/Rc^2 \sim 4 \mu rad around sun!$

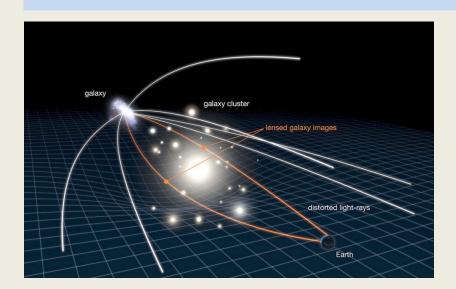

Curved spacetime - Light rays are bent


• 1915 : Einstein, General Relativity mass curves spacetime and bends light

- 1919: Arthur Eddington observes light deviation by the sun during a solar eclipse:
 - 1.75 arc second = 8.5 μrad as predicted by Einstein
 - Twice the deflection predicted by first computation (based on Eq. principle alone)

Curved spacetime - Gravitational lensing

Strong gravitational lensing modern proof of RG

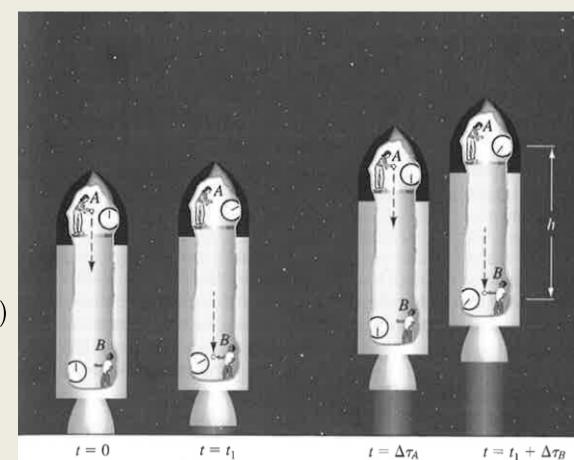


H0licow- Lensed quasars

- Image from HST
- Almost perfect align between the lens and the lensed galaxy
- One of the most complete Einstein rings ever seen

Curved spacetime - Gravitational lensing

- On July 11 2022 James Webb Space Telescope released this deep field
- Galaxies behind galaxy cluster SMACS 0723 (z=0.39, R_{vir}=2.4Mpc) are curved and warped


 Strong gravitational lensing: modern proof of RG

2.25 arcmin, 0.7Mpc at z=0.39

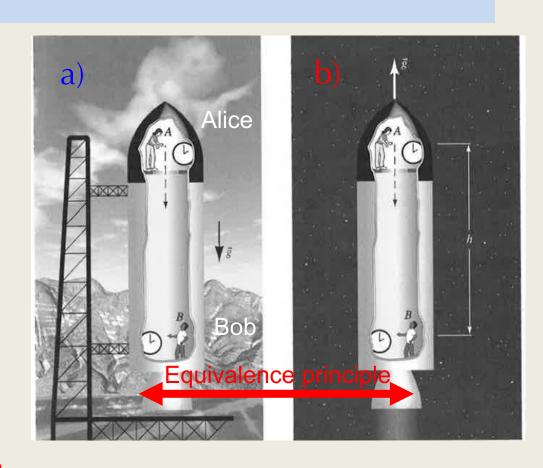
Clocks and gravitation

- a rocket in deep space with acceleration +g
- A emits at t=0 and $\Delta \tau_A$
- B receives at $t=t_1$ and $t_1 + \Delta \tau_B$
- Propagation time : $(t_1 0)$ acceleration \Rightarrow faster $(t_1 + \Delta \tau_B) - \Delta \tau_A < t_1 - 0$ $\Rightarrow \Delta \tau_B < \Delta \tau_A$

Calculation gives (totally classic):

$$\Delta t_B = \left(1 - \frac{gh}{c^2}\right) \Delta t_A$$

Clocks and gravitation


Equivalence Principle (a) equivalent to (b)

$$\Delta t_B = \left(1 - \frac{gh}{c^2}\right) \Delta t_A$$

Times run slower in a gravitational field!

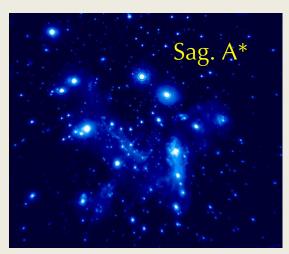
$$h=z_A-z_B \Rightarrow gh \sim \Phi_A - \Phi_B$$

$$\Delta t_B = \left(1 - \frac{\Phi_A - \Phi_B}{c^2}\right) \Delta t_A$$

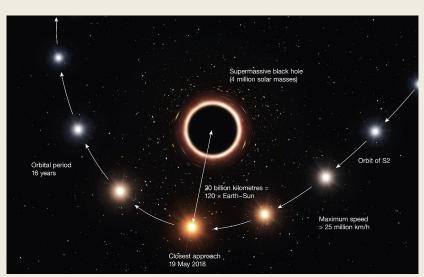
Bob is younger than Alice....

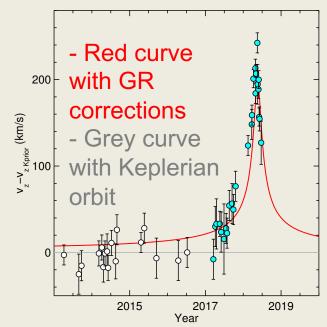
Gravitational "redshift"

$$\Delta t_B = \left(1 - \frac{\Phi_A - \Phi_B}{c^2}\right) \Delta t_A$$


• at the surface of a star: $\phi_A = -GM/R$ far away: $\phi_B = 0$

$$\Delta t_{\infty} = \left(1 + \frac{GM}{Rc^2}\right) \Delta t_* \qquad v_{\infty} = \left(1 - \frac{GM}{Rc^2}\right) v_* < v_*$$


 \Rightarrow gravitational redshift the photon looses energy going out of the potential well Positive shift in wavelength $\Delta\lambda/\lambda>0$


• very important for GPS : $\Delta v/v \sim 4.10^{-10}$ after 1h : 10^{-10} x 3600 s error $\Rightarrow \sim 400$ m error

S2 star close to MW black Hole

- Close to source Sagittarius A*, BH in the Milky way (~4.10⁶ solar mass)
- S2 star very close to the BH on May 19 2018
- Verification of Einstein shift (plot below)
- Redshift (c. $\Delta\lambda/\lambda \rightarrow$ speed km/s), note sign!

Science in movies

Planet of the Apes

- Twin paradox in Special Relativity (SR)
- Lorentz boost $ct=\gamma(ct' + \beta x)$ $\gamma = 1/(1 - \beta^2)^{1/2} > 1$
- Time dilatation $T=\gamma T'$

Interstellar

- Strong gravitational field (GR)
- Proximity to a black hole (BH)
- $T=(1+GM/(Rc^2)).T'$