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Inverse problems
Inverse problem
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Forward model
® Throughout the talk : finite-dimensional setting.
®» F:R"” — R™is the forward operator (physics of the observation formation model).
® : :noise.
Goal
Recover x from y is generally an ill-posed inverse problem.
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"~ Model-based variational approach

Inverse problem
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knowledge
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Forward model

® Solve: mln£ _I_Z R( )

xcR™ \“,_/
Data fidelity Model knowledge
Low complexity prior
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Low-complexity models

Synthesis sparsity
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Synthesis sparsity Group sparsity
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Low-complexity models

Synthesis sparsity Group sparsity

Analysis sparsity

|

ESI'24-4



—

Low-complexity models

Synthesis sparsity Group sparsity

Analysis sparsity

Hyperspectral
iImaging
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Model-based variational approach

Inverse problem

Prior
knowledge

O B |

Forward model .

® Solve: : |
min Ly (F(x)) + ; R;(x)

Data fidelity Model knowledge

Pros

® Well-understood.

® Wealth of theoretical guarantees:
B recovery: exact, stability.

® algorithms.
B explainability/interpretability.

» eftc. J
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Model-based variational approach

Inverse problem

Prior
knowledge

O B |

Forward model .

® Solve: min £y (F(x) + > Ri(x)
XERT e 2 ~—~——
Data fidelity ~ *~ © Model knowledge

Pros Cons

® Well-understood. ® Choice of the prior class not always
® Wealth of theoretical guarantees: easy.
& recovery: exact, stability. ® Diversity and complexity of objects to

» algori.thmg_ | - recover.
B explainability/interpretability.
B etc.
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Data-based approach

Inverse problem

Learn the
prior
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Forward model
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Data-based approach
Inverse problem
Learn the
: | prior
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Forward model
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Data-based approach
Inverse problem
Neural Network E..................-..-..-..-..-..-.)
; Learn the
E prior
: O
= +
E I
O
y F (X ) 3
Forward model
® Off-the-shelf NN learning frameworks.
® No model to think about (... not quite so).
® Training once for all.
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Data-based approach

Inverse problem

|

T__I

Forward model

Neural Network

R VR
R X 2 s
S s », ” « l’ N 7 Y

Learn the
prior

® Off-the-shelf NN learning frameworks. ® Supervised: availability of training data.

® No model to think about (... not quite so). ® NN design (prior design is traded for NN
® Training once for all. design).
® No physical/forward model included.
® Lack of guarantees from IP perspective:
recovery, stability, explainability, etc.
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Hybrid (model-based) learning

Inverse problem

®» Mix model- and data-driven methods in
various ways: e.g.
® Learn the regularizer.
® Plug-and-Play.
® Unrolling.
® Deep equilibrium.
B Learn other inference methods and/or
generative priors.
» etfc.
® An extremely active area, with extensive
literature and reviews.

Learn the
prior

m
O
E

Iterative procedure
//"\

Forward model
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Hybrid (model-based) learning

Inverse problem

® Mix model- and data-driven methods in
various ways: e.g.
® Learn the regularizer.
® Plug-and-Play.
® Unrolling.
® Deep equilibrium.
B Learn other inference methods and/or
generative priors.
» etfc.
® An extremely active area, with extensive
literature and reviews.

Learn the
prior

m
O
E

lterative procedure

Forward model

® Tries to get the best of both worlds.
® Accounts for the forward model.

® Prior learned explicitly/implicitly.
® Training once for all.
® Some guarantees: e.g. hon-expansiveness/
Lipschitz constant in unrolling or PnP. |
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Hybrid (model-based) learning

Inverse problem

® Mix model- and data-driven methods in
various ways: e.g.
® Learn the regularizer.
® Plug-and-Play.
® Unrolling.
® Deep equilibrium.
B Learn other inference methods and/or
generative priors.
B etc.
® An extremely active area, with extensive
literature and reviews.

Learn the
prior

m
O
E

lterative procedure

Forward model

® Tries to get the best of both worlds. ® Supervised: availability of training data.
® Accounts for the forward model. ® NN design (or even many NNs).

® Prior learned explicitly/implicitly. ® Lack of guarantees from IP perspective:
® Training once for all. recovery, stability, explainability, etc.
® Some guarantees: e.g. hon-expansiveness/

Lipschitz constant in unrolling or PnP.
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DIP: Deep Inverse/Image Prior

Inverse problem

O B

Forward model
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DIP: Deep Inverse/Image Prior

Inverse problem

Neural Network

08

=
NS
~—

O B

Forward model
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DIP: Deep Inverse/Image Prior

Inverse problem

Neural Network

O B

Forward model

min Ly (F(xg)) st. xg € X
¥ ={g(u,0): 0 €6}

L |
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~ DIP: Deep Inverse/Image Prior

Inverse problem

Neural Network

g.3)

O B

Forward model

min Ly (F(xg)) st. xg € X
¥ ={g(u,0): 0 €6}

® An unsupervised approach : generator from a latent variable u ~ .
® Hope for NN to induce “implicit regularization” and produce meaningful content before overfitting.
® A early stopping strategy for the NN to generate a vector close to X.

L .
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B Example: DIP for image deblurring

y =AX+¢
g ~ (0,52) |
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~ DIP: Deep Inverse/Image Prior

Inverse problem

Neural Network

g(u,0)

O B

Forward model

min L, (F(xg)) s.t. xg €
¥ ={g(u,0): 6 € ©}

Pros

® Unsupervised.
® Accounts for the forward model.
® Easy to implement with (very) good empirical

SUCCEeSS.

|
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DIP: Deep Inverse/Image Prior

Inverse problem

................................ »
Neural Network
- g(u,0)
N
E
Forward model
S.t. Xg € X
¥ ={g(u,0): 0 € 6}

Cons

® Unsupervised. ® Optimize/train for each signal to recover.
® Accounts for the forward model. ® No theoretical guarantees: recovery, stability,
® Easy to implement with (very) good empirical NN design.

SUCCEeSS.
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Today’s talk: Guarantees of DIP

Inverse problem
Neural Network

O B

Forward model

min L, (F(xg)) s.t. xg €

0co ¥ ={g(u,d): 0 06}

® Recovery guarantees of DIP when optimized with gradient descent in :
® Observation space : convergence to zero-loss = early stopping strategy.
® Obiject space : restricted injectivity of the forward operator on ..

® General loss functions verifying the Kurdyka-tojasewicz (KL) property : role of
the desingularizing function on the convergence rate.

® NN design : role of overparametrization for the two-layer DIP setting.

L .
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Today’s talk: Guarantees of DIP

Inverse problem
Neural Network

O B

Forward model

min L, (F(xg)) s.t. xg €

0co ¥ ={g(u,d): 0 06}

® Recovery guarantees of DIP when optimized with gradient descent in :
® Observation space : convergence to zero-loss = early stopping strategy.
® Obiject space : restricted injectivity of the forward operator on ..

® General loss functions verifying the Kurdyka-tojasewicz (KL) property : role of
the desingularizing function on the convergence rate.

® NN design : role of overparametrization for the two-layer DIP setting.

| In the rest of the talk, linear forward operator |
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Outline

Our setting.

Main recovery guarantees.
Case of the two-layer DIP.
Numerical results.
Conclusion.
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: Outline

® Our setting.
K

o o b
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: Globalized KL functions -

Definition (KL inequality) A continuously differentiable function f : R™ — R satisfies the KL inequality if there
exists rq > 0 and a strictly increasing function + € C°([0,rq[) N C1(]0, ro[) with(0) = 0 such that

' (f(z) —min f) [Vf(2)| = 1, Vz € [minf < f <min [+ 7.

We use the shorthand notation f € Kk, (o) for a function satisfying this inequality.

L .
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: Globalized KL functions -

Definition (KL inequality) A continuously differentiable function f : R™ — R satisfies the KL inequality if there
exists rq > 0 and a strictly increasing function + € C°([0,rq[) N C1(]0, ro[) with(0) = 0 such that

' (f(z) —min f) [Vf(2)| = 1, Vz € [minf < f <min [+ 7.

We use the shorthand notation f € Kk, (o) for a function satisfying this inequality.

® KL is a gradient domination inequality.
® KL expresses the fact that f is sharp under a reparameterization of its values :

V(o (f —min f))(z)|| >1, Vzé&€ minf < f < min f 4+ rg],

hence the name "desingularizing function” for 1.
Popular tojasiewicz inequality : 1(s) = cs* with a € [0, 1].

L J

KL inequality plays a fundamental role in several fields of applied mathematics among which optimization,
neural networks, PDE'’s, to cite a few.
® KL closely related to error bounds used to derive complexity bounds of descent-like algorithms.

L .
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Globalized KL functions -

Definition (KL inequality) A continuously differentiable function f : R™ — R satisfies the KL inequality if there
exists rq > 0 and a strictly increasing function + € C°([0,rq[) N C1(]0, ro[) with(0) = 0 such that

' (f(z) —min f) [Vf(2)| = 1, Vz € [minf < f <min [+ 7.

We use the shorthand notation f € Kk, (o) for a function satisfying this inequality.

9
9

L J

KL is a gradient domination inequality.
KL expresses the fact that f is sharp under a reparameterization of its values :

V(o (f —min f))(z)|| >1, Vzé&€ minf < f < min f 4+ rg],
hence the name "desingularizing function” for 1.
Popular tojasiewicz inequality : 1(s) = cs* with a € [0, 1].
KL inequality plays a fundamental role in several fields of applied mathematics among which optimization,

neural networks, PDE’s, to cite a few.
KL closely related to error bounds used to derive complexity bounds of descent-like algorithms.

Examples :

Convex functions with sufficient growth.

Uniformly convex functions.

Real semi-algebraic functions and more generally, definable functions are KL.

el

Most examples of losses in applications are KL : MSE, /,,-loss, Kullback-Leibler divergence, cross-entropy,

6. .
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B (Inertial) Gradient flow for DIP B

3 mXxXn
min Ly(Ag(u,d)) AeR
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B (Inertial) Gradient flow for DIP B

: mXxXn
min Ly(Ag(u,d)) AeR

GF

GD 95_|_1 — og — SgVeLy(Ag(u,eg)).

L |
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B (Inertial) Gradient flow for DIP B

: mXxXn
min Ly(Ag(u,d)) AeR

6(t) = —VoLy(Ag(u,0(t)))
0(0) = 6,.
GD 95_|_1 — Hg — 8gV9£y(Ag(u,05)).

GF

O(t) + af(t) + 55 VoLly(Ag(u,0(1))) + VoLy(Ag(u,6())) =0

ISEHD :
8(0) = 8,.0(0) = 0.
IGAHD JW =0, + (1 —ay/50)(00 — 00—1) — B/50 (Vo Ly(Ag(u,b;)) — VoLy(Ag(u,0,-1))),
Ocr1 =m0 —50VoLy(Ag(u,0y)).

L |
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B (Inertial) Gradient flow for DIP B

3 mXxXn
min Ly(Ag(u,d)) AeR

Assumptions on the loss

® WLOG min Ly () = 0.

® [ () € CHR™) whose gradient is locally Lipschitz continuous.
® L,() eKby(Ly(y(0)) +n) for some n > 0.

L |
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B (Inertial) Gradient flow for DIP E

3 mXxXn
min Ly(Ag(u,d)) AeR

Assumptions on the loss

$ WLOG min Ly (:) = 0.

® [ () € CHR™) whose gradient is locally Lipschitz continuous.
® L,() eKby(Ly(y(0)) +n) for some n > 0.

Assumptions on the activation
® ¢ < (C'(R)and3IB > 0suchthat sup, g |¢'(z)| < B and ¢’ is B-Lipschitz continuous.

L .
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Outline

Main recovery guarantees.
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Recovery guarantees: observation space

def .
oan = inf  ||Az| /| z] > 0.
zcKer(A)+

Theorem Suppose that our assumptions hold. Assume that the initialization 8 is such that
omin(Jg(0)) >0 and R' <R

where R’ and R obey

- 2 ~ omin(Jg(0))
R = OAUmin(jg(O))¢(ﬁy(Y(0))) and R = Lips 0, 1 (Je)

Then
(i) the loss converges to 0 at a rate depending solely on 1, oA and omin (Jg(0)).

(i) 8(t) (resp. x(t) = g(u,0(t))) converges to a global minimizer 0, of Ly (Ag(u,-)) (resp. X0 = g(u,0)), at
a rate depending solely on the desingularizing function .

(iii) If Argmin (Ly(-)) ={y}, thenlim;_, - y(t) =y. In addition, if Ly, is convex then

AU (¢~ ([lel])

ly®) =y <2|le|| when t>
O-io-min(jg(o))

5 — V(Ly(¥(0))),

with U a primitive of —'? .

L .
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Recovery guarantees: observation space

def .
oan = inf  ||Az| /| z] > 0.
zcKer(A)+
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Recovery guarantees: observation space

/

Ot~ 172« 0<a<32
0, (exp (— Oiamin(gjg(o)yt)) a =2
Ly(y(t)) <« L ;
N . A
C(t—t) za-1 s<a<landt <t
0 l<a<landt>1{.
( __x 1
O(t 1—20‘) D<a< 5
O (exp (— a‘%‘amin(gjg(o))Qt)) o= 2
10(H) =0 <3 N . 2 :
C(t—t) za-T1 l<a<landt<t
0 l<a<landt >t

P(s) =cs®, a € |0,1]

1

|
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Recovery guarantees: observation space
P(s) =cs®, a € |0,1]

¢ 1

Ot~ 7-2o) 0<a< % Sublinear rate
2 2
O (exp (— OAaminc(zjg ©) t)) o=
RO S A 1 A
C(t—t) za-1 s<a<landt <t
L0 l<a<landt>1{.
rO(t_ﬁ) 0<a<s Sublinear rate
O (exp (— J‘%‘Jmincgjg (O))2t)) o=
0(t) 0| < ¢ > . .
C(t—t) 21 l<a<landt<t
0 l<a<landt >t

|
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10(t)

A

C(t—t) 21

0

\

N c N
Recovery guarantees: observation space
P(s) =cs®, a € |0,1]

(O(t_ﬁ) D<a< % Sublinear rate
O (exp ( TATm: nc(2jg(0)) t)) o = % Linear rate
C(f—t)_ml—l I<a<landt<t

0 l<a<landt>1{.

rO(t_ﬁ) 0<a< % Sublinear rate
O (eXp ( TATmi nc(gjg (0))° t)) o = % Linear rate

%<Oz<1andt§f

l<a<landt>1{.

|
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Recovery guarantees: observation space
Y(s) =cs®, a € 10,1]

(O(t_ 1—12a) 0<a< % Sublinear rate
2 . 2
O (exp (— GAammc(zjg(O)) t)) o = % Linear rate
£Y(Y(t)) S < ~ 1 1 ~
C(t—1t) 2a—1 s<a<landt<t
Finite termination
0 l<a<landt>1{.
rO(t_ =2 ) 0<a< % Sublinear rate
2 2
O (exp (— UAJmin(gjg(O)) t)) Q= % Linear rate
0(t) =0 < ¢ . .
C(t—t) 7= I<a<landt<t
; Finite termination
L0 s<a<landt>{t.
L _
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Recovery guarantees: observation space

L |

ESI'24-20



- : B
Recovery guarantees: observation space

® All claims rely on the fact for a good initial point, the whole
trajectory remains in a ball around it.

L .
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Recovery guarantees: observation space

® All claims rely on the fact for a good initial point, the whole
trajectory remains in a ball around it.

® Closely related to the Hartman—Grobman theorem:

® local behaviour of an autonomous dynamical system in the
neighbourhood of a hyperbolic equilibrium point is
topologically conjugate to its linearization.

L .
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Recovery guarantees: observation space

® All claims rely on the fact for a good initial point, the whole
trajectory remains in a ball around it.

® Closely related to the Hartman—Grobman theorem:

® local behaviour of an autonomous dynamical system in the
neighbourhood of a hyperbolic equilibrium point is
topologically conjugate to its linearization.

® Relation to conservation laws (and symmetries of variational
problems via E. Noether’s Theorem) of the gradient flow seen as
an isolated evolving physical system.

L .
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Recovery guarantees: parameter space

opn = inf  ||Az]/|z] > 0. Y ={g(u,0): 6 cO}
zEKer(A)-+
Amin (A; Tx(x)) = inf{||Az]|| / ||z|| : z € Tx(Xx)}. Ty, (x) = conv (R, (2 — x))

<

L |
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Recovery guarantees: parameter space

opn = inf  ||Az]/|z] > 0. Y ={g(u,0): 6 cO}
zEKer(A)-+
Amin (A; Tx(x)) = inf{||Az]|| / ||z|| : z € Tx(Xx)}. Ty, (x) = conv (R, (2 — x))

.

Theorem Suppose that our assumptions hold. Assume that the gradient flow is initialized as before. If L, is convex,
Argmin (Ly(-) = {y}, and

Ker(A) M TE (iz) = {O} ,

then

—1 ((cAomin(Tg(0))? A
2¢(\111(A - t—t))

_ A
() % < — .

o ]
(A T (3X5))omm (Ta(0))oa (1 " Amm<A;Tz<f2)>) dist (X, 2) + A Ts (=)

L .
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o ]
(A T (3X5))omm (Ta(0))oa (1 " Amm<A;Tz<f2)>) dist (X, 2) + A Ts (=)

L .

ESI'24-21



—
Recovery guarantees: parameter space

opn = inf  ||Az]/|z] > 0. Y ={g(u,0): 6 cO}
zEKer(A)-+
Amin (A; Tx(x)) = inf{||Az]|| / ||z|| : z € Tx(Xx)}. Ty, (x) = conv (R, (2 — x))

Theorem Suppose that our assumptions hold. Assume that the gradient flow is initialized as before. If L, is convex,

Argmin (Ly () = {y}. and

Ker(A) 175(5) = 01, "ELEEEERE

then

—1 ((0Aomin(Tg(0))? A
2¢(\111(A : t—t))

_ A
Jx(t) | < 1 .

o €]l
— + 1+ — dist(x, X)) + —
(A T (5o ) o (T2 (0)) o ( Amm<A;Tz<xE)>) % 2) A T (%))
Optimization error

L .
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Recovery guarantees: parameter space

opn = inf  ||Az]/|z] > 0. Y ={g(u,0): 6 cO}
zEKer(A)-+
Amin (A; Tx(x)) = inf{||Az]|| / ||z|| : z € Tx(Xx)}. Ty, (x) = conv (R, (2 — x))

Theorem Suppose that our assumptions hold. Assume that the gradient flow is initialized as before. If L, is convex,

Argmin (Ly () = {y}. and

Ker(A) 175(5) = 01, "ELEEEERE

then
—1 ( oATmin(Tg(0))” ;
|x(t) — x| < 2 (\Ij 1 ( o i t>) + (1 + [A] ) dist(X, X)) + el
o )\min<A; TE (EE))Umin(jg(O))o-A )\min(A; TZ (EE)) ) )\min(A; TE (KE)) .
Optimization error Approximation error
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Recovery guarantees: parameter space
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Argmin (Ly () = {y}. and

Ker(A) 175(5) = 01, "ELEEEERE

then

—1 ((0Aomin(Tg(0))? A
2¢(\111(A : t—t))

|x(t) — x| < + (1 + [A] )d' t(X, %) + Noierr%ﬁarror
— 15t(X, — -
o )\min<A; TE (EE))Umin(jg(O))o-A )\min(A; TZ (EE)) )\min(A; TE (XE))
Optimization error Approximation error
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Recovery guarantees: parameter space

opn = inf  ||Az]/|z] > 0. Y ={g(u,0): 6 cO}
zEKer(A)-+
Amin (A Tx(x)) = inf{||Az|| /||z|| : z € Tx(Xx)}. Ty, (x) = conv (R, (2 — x))

Theorem Suppose that our assumptions hold. Assume that the gradient flow is initialized as before. If L, is convex,

Argmin (Ly () = {y}. and

Ker(A) 175(5) = 01, "ELEEEERE

then

—1 ((0Aomin(Tg(0))? A
mp(w'l( ATmin. t—t))

_ A
Jx(t) | < 1 -

+ (1 + ) dist(X, %) + I<f .
n(Aa TZ (EE))Umin(jg(o))O'A )\min(A; TE (XZ)) )\min(A; TE (KE))
Optimization error

® Sample bounds for RIC can be given in a compressed sensing
framework via the Gaussian width of the tangent cone.

L .
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—
Recovery guarantees: parameter space

opn = inf  ||Az]/|z] > 0. Y ={g(u,0): 6 cO}
zEKer(A)-+
Amin (A Tx(x)) = inf{||Az|| /||z|| : z € Tx(Xx)}. Ty, (x) = conv (R, (2 — x))

.

Theorem Suppose that our assumptions hold. Assume that the gradient flow is initialized as before. If L, is convex,
Argmin (Ly(-) = {y}, and

Ker(A) 175(5) = 01, "ELEEEERE

then

—1 ((0Aomin(Tg(0))? A
mp(m'l( ATmin. t—t))

i A
Jx(t) — x| < +—

+ (1 + ) dist(X, %) + I<f .
n(Aa TZ (EE))Umin(jg(O))UA )\min(A; TE (XZ)) Amin(A; TE (KE))
Optimization error

® Sample bounds for RIC can be given in a compressed sensing
framework via the Gaussian width of the tangent cone.

@ Trade-off between the expressivity of the model and the RIC. B
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~ TInertial system with Hessian damping

6(t) + aB(t) + 55 oLy (Ag(w,0(1)) + VoLy(Ag(u,p(t) =0 @ = Tmin(Te(0)7a

ISEHD ¢ . g1
9(0) = 00,0(0) = U. 200

Theorem Suppose that our assumptions hold. Assume that the inertial gradient flow is initialized merely as before.
If Ly is ||-||> and
Ker(A) NTx(Xx) = {0},

then

VL (y(0)) exp (- ZenlTeOa ) el A -,
|x(t) — x| < N (A T (X)) + Mo (A T () + (1 + )\min(A;Tz(fz))> dist(X, 2)
| ]
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~ TInertial system with Hessian damping

(é(t) —+ Oéé(t) —+ ﬂ%Voﬁy(Ag(u,e(t))) -+ V@ﬁy(Ag(uye(t))) — 0 Q — O-min(jg(()))O-A
9(0) — 00,0(0) = 0. 200

\

Theorem Suppose that our assumptions hold. Assume that the inertial gradient flow is initialized merely as before.
If Ly is ||-||> and

Ker(A) NTx(Xs) = {0}, Restricted Injectivity
(A) N To(Xe) =105, B ton (RIC)

then

VL (y(0)) exp (- ZenlTeOa ) el A -,
|x(t) — x| < N (A T (X)) + Mo (A T () + (1 + )\min(A;Tz(fz))> dist(X, 2)
| ]
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~ TInertial system with Hessian damping

(é(t) —+ Oéé(t) —+ ﬂ%Voﬁy(Ag(u,e(t))) -+ V@,Cy(Ag(u,H(t))) — 0 Q — O-min(jg(()))O-A
9(0) — 00,0(0) = 0. 200

\

Theorem Suppose that our assumptions hold. Assume that the inertial gradient flow is initialized merely as before.
If Ly is ||-||> and

Ker(A) NTx(Xs) = {0}, Restricted Injectivity
(A) N To(Xe) =105, B ton (RIC)

then
Omin(Jg(0))oa
Ix() — x| < YYD (——) P +(1+ - >d~ (%, 5)
x(t) — X 15t (X,
- )\min(A; TE (iZ)) Amin(A; TE (EE)) )\min(A; TE (EE))
Optimization error
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~ TInertial system with Hessian damping

(é(t) —+ Oéé(t) —+ ﬂ%Voﬁy(Ag(u,e(t))) -+ V@,Cy(Ag(u,H(t))) — 0 Q — O-min(jg(()))O-A
9(0) — 00,0(0) = 0. 200

\

Theorem Suppose that our assumptions hold. Assume that the inertial gradient flow is initialized merely as before.
If Ly is ||-||> and

Ker(A) NTx(Xs) = {0}, Restricted Injectivity
er(A) N T (az) =103, B o on (RIC)

then
Omin jg o
Ix() — x| < YYD (——) PR 1 T (1 P— )d~ H(x,5)
x(t) —x 1St (X,
- )\min(A; TZ (EZ)) Amin(A; TE (EE)) Amin(A; TE (EE))
Optimization error Approximation error
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~ TInertial system with Hessian damping

(1) + ab(t) + B4 VoLy (Ag(u,0(1) + VoLy(Ag(u,0(t) =0 @ = Tmin(Je(0)oa

ISEHD ¢ ) B =L
9(0) = 00,0(0) = U. 200

Theorem Suppose that our assumptions hold. Assume that the inertial gradient flow is initialized merely as before.
If Ly is ||-||> and

Ker(A) NTx(Xs) = {0}, Restricted Injectivity
(A) N To(Xe) =105, B ton (RIC)

then
Omin jg o
H@)ﬂch@W@WwG (Jm”)+ <] +O+ - )du—m
X(t) — X 1St (X,
- )\min(A; TZ (XZ)) Amin(A; TE (EE)) Amin(A; TZ (EE))
Optimization error Noise error Approximation error
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~ TInertial system with Hessian damping

(é(t) —+ Oéé(t) —+ ﬂ%Voﬁy(Ag(u,e(t))) -+ Veﬁy(Ag(uye(t))) — 0 Q — O-min(jg(()))O-A
9(0) — 00,0(0) = 0. 200

\

Theorem Suppose that our assumptions hold. Assume that the inertial gradient flow is initialized merely as before.
If Ly is ||-||> and

Ker(A) NTx(Xs) = {0}, Restricted Injectivity
(A) N To(Xe) =105, B ton (RIC)

then

 OV/Ly(y(0)) exp (—“mi“(ji(o))“t) lel N o
|x(t) — x| < i (A T (X)) + o (A T () + (1 + )\min(A;Tz(fz))> dist(X, X)

Optimization error Approximation error
_ 2 2

® Optimization error of GF : O (exp ( Umm(ji(o)) A t)) .

® Optimization error of ISEHD : O (exp ( 7umin(Tg ()0 t)) |
| |
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Outline

Case of the two-layer DIP.

|
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f [ ] o [ L ([ W
Non degenerate initialization
min Ly (Ag(u,8)) A e RM™*"
0co
0(t) = —VoLy(Ag(u,0(t)))
0(0) = 0.
Theorem Suppose that our assumptions hold. Assume that the initialization 8 is such that
Omin(Jg(0)) >0 and R <R
where R’ and R obey Non delgenerate
) 2 _ Omin(Jg(0)) initialization
B o armn(Ga(o) YO and = o 00 (Te)
L _|
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f [ o [ L o W
Non degenerate initialization
min Ly (Ag(u,8)) A e RM™*"
0co
0(t) = —VoLy(Ag(u,0(t)))
0(0) = 0.
Theorem Suppose that our assumptions hold. Assume that the initialization 8 is such that
Omin(Jg(0)) >0 and R <R
where R" and R obey Non delgenerate
, 2 _ omin(Jg(0)) initialization
B o armn(Ga(o) YO and = o 00 (Te)
etc. \
How to ensure this ?
L _|
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ﬁ [ [ [ [ ([ W
Non degenerate initialization
min Ly (Ag(u,8)) A e RM™*"
0cO
0(t) = —VoLy(Ag(u,0(1)))
0(0) = 6,.
Theorem Suppose that our assumptions hold. Assume that the initialization 8 is such that
Omin(Jg(0)) >0 and R <R
where R’ and R obey () Nqn_tqlelger;_erate
, 9 . _ _ Omin T (0 initialization
B o armn(Ga(o) YO and = o 00 (Te)
etc. \
How to ensure this ?
| The role of overparametrization -
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B Two-layer DIP B
1
g(u,0) = ﬁng(Wu)
0(1) = —VoLy(Ag(u,0(1)))

0(0) = 6.

® uis a uniform vector on S 1.

® W(0) hasiid N (0, 1) entries.

® V(0) independent from W (0) and u and has iid columns with
identity covariance and D-bounded centred entries.

L .
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Overparametrization bound

|

ESI'24-26



Overparametrization bound

1
B(1.0) = - Vo(Wuy
() = —VoLy (Ag(u,0(1))

Theorem Consider the one-hidden DIP layer network with the archi-
tecture parameters obeying

k> Cloy ny (O (W log(d) + \/n_z)2>4.

Then with probability at least1 —n~1 —d~1,0(0) = (W(0),V(0)) is
a nondegenerate initial point.

|
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Overparametrization bound
1

B(1.0) = - Vo(Wuy
0(t) = —VoLy (Ag(u,0(t))
0(0) = 0,

Theorem Consider the one-hidden DIP layer network with the archi-
tecture parameters obeying

k> Cloxtn ( (\/nlog \/_) )4

Then with probability at least1 —n~1 —d~1,0(0) = (W(0),V(0)) is
a nondegenerate initial point.

® For the MSE loss, the bounds reads : & 2> n°m?.
® If Visfixed and only is W is optimized for :

® k>0, np(C(n+m))?.
® MSE:k > n?m.

|
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Numerical results.

Outline
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‘7 [ [ o W
Overparamerization for noiseless MSE

i (1,0) = = V(W)
AEa=p u,l) = —
P oy i o( Wu
0(t) = —VwLy(Ag(u,0(t) L, :MSE
L N
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ﬁ [ [ o ‘ﬂ
Overparamerization for noiseless MSE

1
g(u,0) = ﬁv¢(wu>
0(t) = —VwLy(Ag(u,0(t)) L, :MSE

1000 - 1.0 1000 - 1.0
940
840 - 0.8 820 - 0.8
/ 760
/60 /00
' 640 )
630 // SEQ 1.6
x 600 yd L 520
e 460
520 ) == 400 0.4
, —_ 340
410 2680
360 220 0.2
160
260 = 100 |
i mlsh i 40 -
€8 288828828838¢8288¢8¢8-8 5 10 15 20 25 30 35 40 45 50 55 &0
— (Tp) log] m ™~ i 8] o m = Lol v Y m
- o~ N N M M = = =T
n
‘ Probability of converging to zero-loss for networks with different architecture ﬂ

. . . . . 2
parameters confirming our theoretical predictions k£ = n“m. ESI'24-28



B Signal recovery under ill-conditioning B

n(s) = sPT1/(2(p+1)), p € [0,1]
2
Ly =n(—yl")

0i(A) = 143@2

L |
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B Signal recovery under ill-conditioning B

g(u,8) = —V(Wu)

VEk
n(s) =" /(2(p+ 1)), p € [0,1]
0(t) = —VwLy(Ag(u,0(7))) Ly =n(]-—yl*)

0(0) = 0o. O'Z(A) — 1—|}i2

Theoretical bound

x|
i
I

o

DO

_-.01-

g =00
130-: g =05
g-1.0
Iteration number
L Convergence to a noise-dominated region for different noise levels. |
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Impact of the KL property

A =p u,0) = —Vo(Wu
T R e S~ g y
. Sy e T \
- o ~ *
17 k‘
\J\ > d)

n(s) = sPT/(2(p+1)), p € [0,1]

0(t) = —VwLy(Ag(u,0(1))) Ly =0 —y|*)

6(0) = 0. (A) =

10° = | p=0.1
) p=20.3
% 103 - p=0.5
i p=0.7
3 107° ) ~ p=0.9
_l )
§ 109 —_——
s

1012 1 ~
102 103 104 10°

[teration number

As expected

the smaller p the faster the convergence rate. N
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FApplication to iImage recovery: deblurringj

I W e

L |
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Take away messages
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Take away messages

® Recovery guarantees of DIP when optimized with gradient descent in
both observation and signal spaces.

L .
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Take away messages

Recovery guarantees of DIP when optimized with gradient descent in

both observation and signal spaces.
Influence if the forward operator and the loss function via its

desingularizing function.
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Take away messages

® Recovery guarantees of DIP when optimized with gradient descent in
both observation and signal spaces.

® Influence if the forward operator and the loss function via its
desingularizing function.

® NN design: need for overparametrization.

L .
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Take away messages

Recovery guarantees of DIP when optimized with gradient descent in
both observation and signal spaces.

Influence if the forward operator and the loss function via its
desingularizing function.

NN design: need for overparametrization.
Empirical results agree with theoretical predictions.

|

ESI'24-32



® oo o o

-
Take away messages

Recovery guarantees of DIP when optimized with gradient descent in
both observation and signal spaces.

Influence if the forward operator and the loss function via its
desingularizing function.

NN design: need for overparametrization.
Empirical results agree with theoretical predictions.

Discrete setting v'.
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-
Take away messages

Recovery guarantees of DIP when optimized with gradient descent in
both observation and signal spaces.

Influence if the forward operator and the loss function via its
desingularizing function.

NN design: need for overparametrization.
Empirical results agree with theoretical predictions.

Discrete setting v'.
Stochastic setting.
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Take away messages

Recovery guarantees of DIP when optimized with gradient descent in
both observation and signal spaces.

Influence if the forward operator and the loss function via its
desingularizing function.

NN design: need for overparametrization.
Empirical results agree with theoretical predictions.

Discrete setting v'.
Stochastic setting.
Non-smooth setting.
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Take away messages

Recovery guarantees of DIP when optimized with gradient descent in
both observation and signal spaces.

Influence if the forward operator and the loss function via its
desingularizing function.

NN design: need for overparametrization.
Empirical results agree with theoretical predictions.

Discrete setting v'.

Stochastic setting.

Non-smooth setting.

Other NN-based frameworks: PINNs, supervised setting.
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Take away messages

Recovery guarantees of DIP when optimized with gradient descent in
both observation and signal spaces.

Influence if the forward operator and the loss function via its
desingularizing function.

NN design: need for overparametrization.
Empirical results agree with theoretical predictions.

Discrete setting v'.

Stochastic setting.

Non-smooth setting.

Other NN-based frameworks: PINNs, supervised setting.
Other overparametrization regimes.
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Preprint on arxiv and paper on

https://fadili.users.greyvc.fr/

Thanks
Any questions ?

L |
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http://www.greyc.ensicaen.fr/~jfadili

