Iterative Regularization of NN-Based Inverse Problems via Gradient Flow

Jalal Fadili

Normandie Université-ENSICAEN, GREYC CNRS UMR 6072

Joint ARGOS-TITAN-TOSCA workshop 6-7 June 2024

Join work with Nathan Buskulic and Yvain Quéau

Inverse problems

- Throughout the talk : finite-dimensional setting.
- $m{F}:\mathbb{R}^n o\mathbb{R}^m$ is the forward operator (physics of the observation formation model).
- $oldsymbol{arepsilon}$ arepsilon : noise.

Inverse problems

- Throughout the talk: finite-dimensional setting.
- $m P:\mathbb R^n o\mathbb R^m$ is the forward operator (physics of the observation formation model).
- $oldsymbol{arepsilon}$ arepsilon : noise.

Goal

Recover \overline{x} from y is generally an ill-posed inverse problem.

Model-based variational approach

Solve :

Synthesis sparsity

Model-based variational approach

Solve :

$$\min_{\mathbf{x} \in \mathbb{R}^n} \underbrace{\mathcal{L}_{\mathbf{y}}(\mathbf{F}(\mathbf{x}))}_{ ext{Data fidelity}} + \sum_{i=1}^{n} \underbrace{R_i(\mathbf{x})}_{ ext{Model knowledge}}$$

Pros

- Well-understood.
- Wealth of theoretical guarantees:
 - recovery: exact, stability.
 - algorithms.
 - explainability/interpretability.
 - etc.

Model-based variational approach

Solve :

$$\min_{\mathbf{x} \in \mathbb{R}^n} \underbrace{\mathcal{L}_{\mathbf{y}}(\mathbf{F}(\mathbf{x}))}_{ ext{Data fidelity}} + \sum_{i=1}^{r} \underbrace{R_i(\mathbf{x})}_{ ext{Model knowledge}}$$

Pros

- Well-understood.
- Wealth of theoretical guarantees:
 - recovery: exact, stability.
 - algorithms.
 - explainability/interpretability.
 - etc.

Cons

- Choice of the prior class not always easy.
- Diversity and complexity of objects to recover.

$$\min_{\boldsymbol{\theta} \in \Theta \subset \mathbb{R}^p} \frac{1}{N} \sum_{i=1}^N \ell(\mathbf{x}_i, \mathbf{g}(\mathbf{y}_i, \boldsymbol{\theta}))$$

$$\min_{\boldsymbol{\theta} \in \Theta \subset \mathbb{R}^p} \frac{1}{N} \sum_{i=1}^N \ell(\mathbf{x}_i, \mathbf{g}(\mathbf{y}_i, \boldsymbol{\theta}))$$

Pros

- Off-the-shelf NN learning frameworks.
- No model to think about (... not quite so).
- Training once for all.

$$\min_{\boldsymbol{\theta} \in \Theta \subset \mathbb{R}^p} \frac{1}{N} \sum_{i=1}^N \ell(\mathbf{x}_i, \mathbf{g}(\mathbf{y}_i, \boldsymbol{\theta}))$$

Pros

- Off-the-shelf NN learning frameworks.
- No model to think about (... not quite so).
- Training once for all.

Cons

- Supervised: availability of training data.
- NN design (prior design is traded for NN design).
- No physical/forward model included.
- Lack of guarantees from IP perspective: recovery, stability, explainability, etc.

Hybrid (model-based) learning

- Mix model- and data-driven methods in various ways: e.g.
 - Learn the regularizer.
 - Plug-and-Play.
 - Unrolling.
 - Deep equilibrium.
 - Learn other inference methods and/or generative priors.
 - etc.
- An extremely active area, with extensive literature and reviews.

Hybrid (model-based) learning

- Mix model- and data-driven methods in various ways: e.g.
 - Learn the regularizer.
 - Plug-and-Play.
 - Unrolling.
 - Deep equilibrium.
 - Learn other inference methods and/or generative priors.
 - etc.
- An extremely active area, with extensive literature and reviews.

Pros

- Tries to get the best of both worlds.
- Accounts for the forward model.
- Prior learned explicitly/implicitly.
- Training once for all.
- Some guarantees: e.g. non-expansiveness/ Lipschitz constant in unrolling or PnP.

Hybrid (model-based) learning

- Mix model- and data-driven methods in various ways: e.g.
 - Learn the regularizer.
 - Plug-and-Play.
 - Unrolling.
 - Deep equilibrium.
 - Learn other inference methods and/or generative priors.
 - etc.
- An extremely active area, with extensive literature and reviews.

Pros

- Tries to get the best of both worlds.
- Accounts for the forward model.
- Prior learned explicitly/implicitly.
- Training once for all.
- Some guarantees: e.g. non-expansiveness/ Lipschitz constant in unrolling or PnP.

Cons

- Supervised: availability of training data.
- NN design (or even many NNs).
- Lack of guarantees from IP perspective: recovery, stability, explainability, etc.

$$\min_{m{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{F}(\mathbf{x}_{m{ heta}}))$$

s.t.
$$\mathbf{x}_{\boldsymbol{\theta}} \in \Sigma$$

 $\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$

- ullet An unsupervised approach : generator from a latent variable ${f u}\sim \mu.$
- Hope for NN to induce "implicit regularization" and produce meaningful content before overfitting.
- lacksquare A early stopping strategy for the NN to generate a vector close to $\overline{\mathbf{x}}$.

Example: DIP for image deblurring

$$\mathbf{y} = \mathbf{A}\overline{\mathbf{x}} + \varepsilon$$
$$\varepsilon \sim \mathcal{N}(0, 50^2)$$

 $\overline{\mathbf{x}}$ \mathbf{x}_0 \mathbf{x}_{80} \mathbf{x}_{1000}

$$\min_{\boldsymbol{\theta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{F}(\mathbf{x}_{\boldsymbol{\theta}}))$$

s.t.
$$\mathbf{x}_{\boldsymbol{\theta}} \in \Sigma$$

 $\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$

Pros

- Unsupervised.
- Accounts for the forward model.
- Easy to implement with (very) good empirical success.

$$\min_{m{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{F}(\mathbf{x}_{m{ heta}}))$$

s.t.
$$\mathbf{x}_{\boldsymbol{\theta}} \in \Sigma$$

$$\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$$

Pros

- Unsupervised.
- Accounts for the forward model.
- Easy to implement with (very) good empirical success.

Cons

- Optimize/train for each signal to recover.
- No theoretical guarantees: recovery, stability, NN design.

Today's talk: Guarantees of DIP

- Recovery guarantees of DIP when optimized with gradient descent in :
 - ightharpoonup Observation space : convergence to zero-loss \Rightarrow early stopping strategy.
 - ullet Object space : restricted injectivity of the forward operator on Σ .
- General loss functions verifying the Kurdyka-Łojasewicz (KL) property: role of the desingularizing function on the convergence rate.
- NN design: role of overparametrization for the two-layer DIP setting.

Today's talk: Guarantees of DIP

- Recovery guarantees of DIP when optimized with gradient descent in :
 - ightharpoonup Observation space : convergence to zero-loss \Rightarrow early stopping strategy.
 - ullet Object space : restricted injectivity of the forward operator on Σ .
- General loss functions verifying the Kurdyka-Łojasewicz (KL) property: role of the desingularizing function on the convergence rate.
- NN design: role of overparametrization for the two-layer DIP setting.

In the rest of the talk, linear forward operator

Outline

- Our setting.
- Main recovery guarantees.
- Case of the two-layer DIP.
- Numerical results.
- Conclusion.

Outline

- Our setting.
- Main recovery guarantees.
- Case of the two-layer DIP.
- Numerical results.
- Conclusion.

Globalized KL functions

Definition (KL inequality) A continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ satisfies the KL inequality if there exists $r_0 > 0$ and a strictly increasing function $\psi \in \mathcal{C}^0([0, r_0[) \cap \mathcal{C}^1(]0, r_0[)$ with $\psi(0) = 0$ such that

$$\psi'(f(\mathbf{z}) - \min f) \|\nabla f(\mathbf{z})\| \ge 1, \quad \forall \mathbf{z} \in [\min f < f < \min f + r_0].$$

We use the shorthand notation $f \in \mathsf{KL}_{\psi}(r_0)$ for a function satisfying this inequality.

Globalized KL functions

Definition (KL inequality) A continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ satisfies the KL inequality if there exists $r_0 > 0$ and a strictly increasing function $\psi \in \mathcal{C}^0([0, r_0[) \cap \mathcal{C}^1(]0, r_0[)$ with $\psi(0) = 0$ such that

$$\psi'(f(\mathbf{z}) - \min f) \|\nabla f(\mathbf{z})\| \ge 1, \quad \forall \mathbf{z} \in [\min f < f < \min f + r_0].$$

We use the shorthand notation $f \in \mathsf{KL}_{\psi}(r_0)$ for a function satisfying this inequality.

- KL is a gradient domination inequality.
- \blacksquare KL expresses the fact that f is sharp under a reparameterization of its values :

$$\|\nabla(\psi \circ (f - \min f))(\mathbf{z})\| \ge 1, \quad \forall \mathbf{z} \in [\min f < f < \min f + r_0],$$

hence the name "desingularizing function" for ψ .

- ullet Popular Łojasiewicz inequality : $\psi(s)=cs^{\alpha}$ with $\alpha\in[0,1]$.
- KL inequality plays a fundamental role in several fields of applied mathematics among which optimization, neural networks, PDE's, to cite a few.
- KL closely related to error bounds used to derive complexity bounds of descent-like algorithms.

Globalized KL functions

Definition (KL inequality) A continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ satisfies the KL inequality if there exists $r_0 > 0$ and a strictly increasing function $\psi \in \mathcal{C}^0([0, r_0[) \cap \mathcal{C}^1(]0, r_0[)$ with $\psi(0) = 0$ such that

$$\psi'(f(\mathbf{z}) - \min f) \|\nabla f(\mathbf{z})\| \ge 1, \quad \forall \mathbf{z} \in [\min f < f < \min f + r_0].$$

We use the shorthand notation $f \in \mathsf{KL}_{\psi}(r_0)$ for a function satisfying this inequality.

- KL is a gradient domination inequality.
- \blacksquare KL expresses the fact that f is sharp under a reparameterization of its values :

$$\|\nabla(\psi \circ (f - \min f))(\mathbf{z})\| \ge 1, \quad \forall \mathbf{z} \in [\min f < f < \min f + r_0],$$

hence the name "desingularizing function" for ψ .

- ullet Popular Łojasiewicz inequality : $\psi(s)=cs^{\alpha}$ with $\alpha\in[0,1]$.
- KL inequality plays a fundamental role in several fields of applied mathematics among which optimization, neural networks, PDE's, to cite a few.
- KL closely related to error bounds used to derive complexity bounds of descent-like algorithms.
- Examples :
 - Convex functions with sufficient growth.
 - Uniformly convex functions.
 - Real semi-algebraic functions and more generally, definable functions are KL.
 - Most examples of losses in applications are KL : MSE, ℓ_p -loss, Kullback-Leibler divergence, cross-entropy, etc.

$$\min_{\boldsymbol{\theta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}))$$

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

$$\min_{m{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, m{ heta}))$$

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

$$\begin{aligned} \mathsf{GF} & \begin{cases} \dot{\boldsymbol{\theta}}(t) = -\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_{0}. \end{cases} \\ \mathsf{GD} & \boldsymbol{\theta}_{\ell+1} = \boldsymbol{\theta}_{\ell} - s_{\ell} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{v}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}_{\ell})). \end{aligned}$$

$$\min_{oldsymbol{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, oldsymbol{ heta}))$$

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

$$\begin{aligned} & \text{GF} & \begin{cases} \dot{\boldsymbol{\theta}}(t) = -\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_{0}. \end{cases} \\ & \text{GD} & \boldsymbol{\theta}_{\ell+1} = \boldsymbol{\theta}_{\ell} - s_{\ell} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}_{\ell})). \end{aligned}$$

$$\begin{aligned} \text{ISEHD} & \begin{cases} \ddot{\boldsymbol{\theta}}(t) + \alpha \dot{\boldsymbol{\theta}}(t) + \beta \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) + \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) = 0 \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_0, \dot{\boldsymbol{\theta}}(0) = 0. \end{cases} \end{aligned}$$

$$\mathsf{IGAHD} \begin{cases} \boldsymbol{\eta}_{\ell} &= \boldsymbol{\theta}_{\ell} + (1 - \alpha \sqrt{s_{\ell}})(\boldsymbol{\theta}_{\ell} - \boldsymbol{\theta}_{\ell-1}) - \beta \sqrt{s_{\ell}} \left(\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}_{\ell})) - \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}_{\ell-1})) \right), \\ \boldsymbol{\theta}_{\ell+1} &= \boldsymbol{\eta}_{\ell} - s_{\ell} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}_{\ell})). \end{cases}$$

$$\min_{oldsymbol{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, oldsymbol{ heta}))$$

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

Assumptions on the loss

- WLOG min $\mathcal{L}_{\mathbf{y}}(\cdot) = 0$.
- $m{\mathcal{L}}_{\mathbf{y}}(\cdot) \in \mathcal{C}^1(\mathbb{R}^m)$ whose gradient is locally Lipschitz continuous.

$$\min_{m{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, m{ heta}))$$

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

Assumptions on the loss

- WLOG min $\mathcal{L}_{\mathbf{y}}(\cdot) = 0$.
- $m{\mathcal{L}}_{\mathbf{y}}(\cdot) \in \mathcal{C}^1(\mathbb{R}^m)$ whose gradient is locally Lipschitz continuous.
- $\mathcal{L}_{\mathbf{v}}(\cdot) \in \mathsf{KŁ}_{\psi}(\mathcal{L}_{\mathbf{v}}(\mathbf{y}(0)) + \eta) \text{ for some } \eta > 0.$

Assumptions on the activation

 $m{\Psi}$ $\phi \in \mathcal{C}^1(\mathbb{R})$ and $\exists B>0$ such that $\sup_{x\in\mathbb{R}}|\phi'(x)|\leq B$ and ϕ' is B-Lipschitz continuous.

Outline

- Our setting.
- Main recovery guarantees.
- Case of the two-layer DIP.
- Numerical results.
- Conclusion.

$$\sigma_{\mathbf{A}} \stackrel{\text{def}}{=} \inf_{\mathbf{z} \in \text{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

Theorem Suppose that our assumptions hold. Assume that the initialization $m{ heta}_0$ is such that

$$\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0)) > 0$$
 and $R' < R$

where R' and R obey

$$R' = \frac{2}{\sigma_{\mathbf{A}}\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}\psi(\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))) \quad \text{and} \quad R = \frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}{2\mathrm{Lip}_{\mathbb{B}(\boldsymbol{\theta}_0,R)}(\mathcal{J}_{\mathbf{g}})}.$$

Then

- (i) the loss converges to 0 at a rate depending solely on ψ , $\sigma_{\mathbf{A}}$ and $\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))$.
- (ii) $\theta(t)$ (resp. $\mathbf{x}(t) = \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))$) converges to a global minimizer $\boldsymbol{\theta}_{\infty}$ of $\mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \cdot))$ (resp. $\mathbf{x}_{\infty} = \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}_{\infty})$), at a rate depending solely on the desingularizing function ψ .
- (iii) If $\operatorname{Argmin} (\mathcal{L}_{\mathbf{y}}(\cdot)) = \{\mathbf{y}\}$, then $\lim_{t \to +\infty} \mathbf{y}(t) = \mathbf{y}$. In addition, if $\mathcal{L}_{\mathbf{y}}$ is convex then

$$\|\mathbf{y}(t) - \overline{\mathbf{y}}\| \le 2 \|\varepsilon\| \quad \textit{when} \quad t \ge \frac{4\Psi(\psi^{-1}(\|\varepsilon\|))}{\sigma_{\mathbf{A}}^2 \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2} - \Psi(\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))),$$

with Ψ a primitive of $-\psi'^2$.

$$\sigma_{\mathbf{A}} \stackrel{\text{def}}{=} \inf_{\mathbf{z} \in \text{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

Theorem Suppose that our assumptions hold. Assume that the initialization θ_0 is such that

where R' and R obey

$$R' = \frac{2}{\sigma_{\mathbf{A}}\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}\psi(\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))) \quad \text{and} \quad R = \frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}{2\mathrm{Lip}_{\mathbb{R}(\mathbf{g}_{0},R)}(\mathcal{J}_{\mathbf{g}})}.$$

 $\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0)) > 0$ and R' < R

Non degenerate initialization

Then

- (i) the loss converges to 0 at a rate depending solely on ψ , $\sigma_{\mathbf{A}}$ and $\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))$.
- (ii) $\theta(t)$ (resp. $\mathbf{x}(t) = \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))$) converges to a global minimizer $\boldsymbol{\theta}_{\infty}$ of $\mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \cdot))$ (resp. $\mathbf{x}_{\infty} = \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}_{\infty})$), at a rate depending solely on the desingularizing function ψ .
- (iii) If $\operatorname{Argmin} (\mathcal{L}_{\mathbf{y}}(\cdot)) = \{\mathbf{y}\}$, then $\lim_{t \to +\infty} \mathbf{y}(t) = \mathbf{y}$. In addition, if $\mathcal{L}_{\mathbf{y}}$ is convex then

$$\|\mathbf{y}(t) - \overline{\mathbf{y}}\| \le 2 \|\varepsilon\| \quad \textit{when} \quad t \ge \frac{4\Psi(\psi^{-1}(\|\varepsilon\|))}{\sigma_{\mathbf{A}}^2 \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2} - \Psi(\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))),$$

with Ψ a primitive of $-\psi'^2$.

$$\sigma_{\mathbf{A}} \stackrel{\text{def}}{=} \inf_{\mathbf{z} \in \text{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

Theorem Suppose that our assumptions hold. Assume that the initialization θ_0 is such that

where R' and R obey

$$R' = \frac{2}{\sigma_{\mathbf{A}}\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}\psi(\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))) \quad \text{and} \quad R = \frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}{2\mathrm{Lip}_{\mathbb{R}(\mathbf{g}_{0},R)}(\mathcal{J}_{\mathbf{g}})}.$$

 $\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0)) > 0$ and R' < R

Non degenerate initialization

Then

- (i) the loss converges to 0 at a rate depending solely on ψ , $\sigma_{\mathbf{A}}$ and $\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))$.
- (ii) $\theta(t)$ (resp. $\mathbf{x}(t) = \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))$) converges to a global minimizer $\boldsymbol{\theta}_{\infty}$ of $\mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \cdot))$ (resp. $\mathbf{x}_{\infty} = \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}_{\infty})$), at a rate depending solely on the desingularizing function ψ .
- (iii) If $\operatorname{Argmin} (\mathcal{L}_{\mathbf{y}}(\cdot)) = \{\mathbf{y}\}$, then $\lim_{t \to +\infty} \mathbf{y}(t) = \mathbf{y}$. In addition, if $\mathcal{L}_{\mathbf{y}}$ is convex then

Trajectory close to initialization

$$\|\mathbf{y}(t) - \overline{\mathbf{y}}\| \le 2 \|\varepsilon\| \quad \textit{when} \quad t \ge \frac{4\Psi(\psi^{-1}(\|\varepsilon\|))}{\sigma_{\mathbf{A}}^2 \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2} - \Psi(\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))),$$

with Ψ a primitive of $-\psi'^2$.

$$\sigma_{\mathbf{A}} \stackrel{\text{def}}{=} \inf_{\mathbf{z} \in \text{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

Theorem Suppose that our assumptions hold. Assume that the initialization θ_0 is such that

where R' and R obey

$$R' = \frac{2}{\sigma_{\mathbf{A}}\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}\psi(\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))) \quad \text{and} \quad R = \frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}{2\mathrm{Lip}_{\mathbb{R}(\boldsymbol{\theta}_{0},R)}(\mathcal{J}_{\mathbf{g}})}.$$

 $\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0)) > 0$ and R' < R

Non degenerate initialization

Then

- (i) the loss converges to 0 at a rate depending solely on ψ , $\sigma_{\mathbf{A}}$ and $\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))$.
- (ii) $\theta(t)$ (resp. $\mathbf{x}(t) = \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))$) converges to a global minimizer $\boldsymbol{\theta}_{\infty}$ of $\mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \cdot))$ (resp. $\mathbf{x}_{\infty} = \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}_{\infty})$), at a rate depending solely on the desingularizing function ψ .
- (iii) If $\operatorname{Argmin} (\mathcal{L}_{\mathbf{y}}(\cdot)) = \{\mathbf{y}\}$, then $\lim_{t \to +\infty} \mathbf{y}(t) = \mathbf{y}$. In addition, if $\mathcal{L}_{\mathbf{y}}$ is convex then

Trajectory close to initialization

$$\|\mathbf{y}(t) - \overline{\mathbf{y}}\| \le 2 \|\varepsilon\| \quad \textit{when} \quad t \ge \frac{4\Psi(\psi^{-1}(\|\varepsilon\|))}{\sigma_{\mathbf{A}}^2 \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2} - \Psi(\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))),$$

with Ψ a primitive of $-\psi'^2$. Stable recovery of $\overline{\mathbf{y}}$ by early stopping

$$\psi(s)=cs^{\alpha},\,\alpha\in[0,1]$$

$$\mathcal{L}_{\mathbf{y}}(\mathbf{y}(t)) \leq \begin{cases} O(t^{-\frac{1}{1-2\alpha}}) & 0 < \alpha < \frac{1}{2} \\ O\left(\exp\left(-\frac{\sigma_{\mathbf{A}}^2 \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2}{c^2}t\right)\right) & \alpha = \frac{1}{2} \\ C(\hat{t}-t)^{-\frac{1}{2\alpha-1}} & \frac{1}{2} < \alpha < 1 \text{ and } t \leq \hat{t} \\ 0 & \frac{1}{2} < \alpha < 1 \text{ and } t > \hat{t}. \end{cases}$$

$$\|\boldsymbol{\theta}(t) - \boldsymbol{\theta}_{\infty}\| \leq \begin{cases} O(t^{-\frac{\alpha}{1-2\alpha}}) & 0 < \alpha < \frac{1}{2} \\ O\left(\exp\left(-\frac{\sigma_{\mathbf{A}}^2 \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2}{c^2}t\right)\right) & \alpha = \frac{1}{2} \\ C(\hat{t} - t)^{-\frac{\alpha}{2\alpha - 1}} & \frac{1}{2} < \alpha < 1 \text{ and } t \leq \hat{t} \\ 0 & \frac{1}{2} < \alpha < 1 \text{ and } t > \hat{t}. \end{cases}$$

$$\psi(s)=cs^{\alpha},\,\alpha\in[0,1]$$

$$\mathcal{L}_{\mathbf{y}}(\mathbf{y}(t)) \leq \begin{cases} O(t^{-\frac{1}{1-2\alpha}}) & 0 < \alpha < \frac{1}{2} \\ O\left(\exp\left(-\frac{\sigma_{\mathbf{A}}^2 \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2}{c^2}t\right)\right) & \alpha = \frac{1}{2} \\ C(\hat{t}-t)^{-\frac{1}{2\alpha-1}} & \frac{1}{2} < \alpha < 1 \text{ and } t \leq \hat{t} \\ 0 & \frac{1}{2} < \alpha < 1 \text{ and } t > \hat{t}. \end{cases}$$

$$\|\boldsymbol{\theta}(t) - \boldsymbol{\theta}_{\infty}\| \leq \begin{cases} O(t^{-\frac{\alpha}{1-2\alpha}}) & 0 < \alpha < \frac{1}{2} & \text{Sublinear rate} \\ O\left(\exp\left(-\frac{\sigma_{\mathbf{A}}^2 \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2}{c^2}t\right)\right) & \alpha = \frac{1}{2} \\ C(\hat{t} - t)^{-\frac{\alpha}{2\alpha - 1}} & \frac{1}{2} < \alpha < 1 \text{ and } t \leq \hat{t} \\ 0 & \frac{1}{2} < \alpha < 1 \text{ and } t > \hat{t}. \end{cases}$$

$$\psi(s) = cs^{\alpha}, \, \alpha \in [0, 1]$$

$$\mathcal{L}_{\mathbf{y}}(\mathbf{y}(t)) \leq \begin{cases} O(t^{-\frac{1}{1-2\alpha}}) & 0 < \alpha < \frac{1}{2} \\ O\left(\exp\left(-\frac{\sigma_{\mathbf{A}}^2\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2}{c^2}t\right)\right) & \alpha = \frac{1}{2} \end{cases} \quad \text{Linear rate} \\ C(\hat{t}-t)^{-\frac{1}{2\alpha-1}} & \frac{1}{2} < \alpha < 1 \text{ and } t \leq \hat{t} \\ 0 & \frac{1}{2} < \alpha < 1 \text{ and } t > \hat{t}. \end{cases}$$

$$\|\boldsymbol{\theta}(t) - \boldsymbol{\theta}_{\infty}\| \leq \begin{cases} O(t^{-\frac{\alpha}{1-2\alpha}}) & 0 < \alpha < \frac{1}{2} & \text{Sublinear rate} \\ O\left(\exp\left(-\frac{\sigma_{\mathbf{A}}^2 \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2}{c^2}t\right)\right) & \alpha = \frac{1}{2} & \text{Linear rate} \\ C(\hat{t} - t)^{-\frac{\alpha}{2\alpha - 1}} & \frac{1}{2} < \alpha < 1 \text{ and } t \leq \hat{t} \\ 0 & \frac{1}{2} < \alpha < 1 \text{ and } t > \hat{t}. \end{cases}$$

$$\psi(s)=cs^{\alpha},\,\alpha\in[0,1]$$

$$\mathcal{L}_{\mathbf{y}}(\mathbf{y}(t)) \leq \begin{cases} O(t^{-\frac{1}{1-2\alpha}}) & 0 < \alpha < \frac{1}{2} & \text{Sublinear rate} \\ O\left(\exp\left(-\frac{\sigma_{\mathbf{A}}^2\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2}{c^2}t\right)\right) & \alpha = \frac{1}{2} & \text{Linear rate} \\ C(\hat{t}-t)^{-\frac{1}{2\alpha-1}} & \frac{1}{2} < \alpha < 1 \text{ and } t \leq \hat{t} \\ 0 & \frac{1}{2} < \alpha < 1 \text{ and } t > \hat{t}. \end{cases}$$

$$\|\boldsymbol{\theta}(t) - \boldsymbol{\theta}_{\infty}\| \leq \begin{cases} O(t^{-\frac{\alpha}{1-2\alpha}}) & 0 < \alpha < \frac{1}{2} & \text{Sublinear rate} \\ O\left(\exp\left(-\frac{\sigma_{\mathbf{A}}^2 \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2}{c^2}t\right)\right) & \alpha = \frac{1}{2} & \text{Linear rate} \\ C(\hat{t} - t)^{-\frac{\alpha}{2\alpha - 1}} & \frac{1}{2} < \alpha < 1 \text{ and } t \leq \hat{t} \\ Finite termination} \\ 0 & \frac{1}{2} < \alpha < 1 \text{ and } t > \hat{t}. \end{cases}$$

All claims rely on the fact for a good initial point, the whole trajectory remains in a ball around it.

- All claims rely on the fact for a good initial point, the whole trajectory remains in a ball around it.
- Closely related to the Hartman–Grobman theorem:
 - local behaviour of an autonomous dynamical system in the neighbourhood of a hyperbolic equilibrium point is topologically conjugate to its linearization.

- All claims rely on the fact for a good initial point, the whole trajectory remains in a ball around it.
- Closely related to the Hartman–Grobman theorem:
 - local behaviour of an autonomous dynamical system in the neighbourhood of a hyperbolic equilibrium point is topologically conjugate to its linearization.
- Relation to conservation laws (and symmetries of variational problems via E. Noether's Theorem) of the gradient flow seen as an isolated evolving physical system.

$$\sigma_{\mathbf{A}} = \inf_{\mathbf{z} \in \operatorname{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

$$\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\mathbf{x})) = \inf\{\|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| : \mathbf{z} \in T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma})\}.$$

$$\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$$

$$T_{\Sigma}(\mathbf{x}) = \overline{\operatorname{conv}} \left(\mathbb{R}_{+} (\Sigma - \mathbf{x}) \right)$$

$$\sigma_{\mathbf{A}} = \inf_{\mathbf{z} \in \operatorname{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

$$\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$$

$$\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\mathbf{x})) = \inf\{\|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| : \mathbf{z} \in T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma})\}.$$

$$T_{\Sigma}(\mathbf{x}) = \overline{\operatorname{conv}}(\mathbb{R}_{+}(\Sigma - \mathbf{x}))$$

Theorem Suppose that our assumptions hold. Assume that the gradient flow is initialized as before. If $\mathcal{L}_{\mathbf{y}}$ is convex, $\operatorname{Argmin}(\mathcal{L}_{\mathbf{y}}(\cdot)) = \{\mathbf{y}\}$, and

$$\operatorname{Ker}(\mathbf{A}) \cap T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}) = \{0\},\$$

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{2\psi \left(\Psi^{-1} \left(\frac{\sigma_{\mathbf{A}}^2 \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2}{4}t - \hat{t}\right)\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))}\right) \operatorname{dist}(\overline{\mathbf{x}}, \Sigma) + \frac{\|\varepsilon\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))}.$$

$$\sigma_{\mathbf{A}} = \inf_{\mathbf{z} \in \operatorname{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

$$\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$$

$$\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\mathbf{x})) = \inf\{\|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| : \mathbf{z} \in T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma})\}.$$

$$T_{\Sigma}(\mathbf{x}) = \overline{\operatorname{conv}}\left(\mathbb{R}_{+}(\Sigma - \mathbf{x})\right)$$

Theorem Suppose that our assumptions hold. Assume that the gradient flow is initialized as before. If \mathcal{L}_y is convex,

$$\operatorname{Argmin} (\mathcal{L}_{\mathbf{y}}(\cdot)) = \{\mathbf{y}\}$$
, and

$$\operatorname{Ker}(\mathbf{A}) \cap T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}) = \{0\}, \begin{array}{l} \operatorname{Restricted Injectivity} \\ \operatorname{Condition (RIC)} \end{array}$$

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{2\psi \left(\Psi^{-1} \left(\frac{\sigma_{\mathbf{A}}^2 \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2}{4}t - \hat{t}\right)\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))}\right) \operatorname{dist}(\overline{\mathbf{x}}, \Sigma) + \frac{\|\varepsilon\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))}.$$

$$\sigma_{\mathbf{A}} = \inf_{\mathbf{z} \in \operatorname{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

$$\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$$

$$\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\mathbf{x})) = \inf\{\|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| : \mathbf{z} \in T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma})\}.$$

$$T_{\Sigma}(\mathbf{x}) = \overline{\operatorname{conv}}\left(\mathbb{R}_{+}(\Sigma - \mathbf{x})\right)$$

Theorem Suppose that our assumptions hold. Assume that the gradient flow is initialized as before. If \mathcal{L}_y is convex,

$$\operatorname{Argmin} (\mathcal{L}_{\mathbf{y}}(\cdot)) = \{\mathbf{y}\}$$
, and

$$\operatorname{Ker}(\mathbf{A}) \cap T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}) = \{0\}, \begin{array}{l} \operatorname{Restricted Injectivity} \\ \operatorname{Condition (RIC)} \end{array}$$

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{2\psi \left(\Psi^{-1} \left(\frac{\sigma_{\mathbf{A}}^2 \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2}{4}t - \hat{t}\right)\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))}\right) \operatorname{dist}(\overline{\mathbf{x}}, \Sigma) + \frac{\|\varepsilon\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))}.$$
Optimization error

$$\sigma_{\mathbf{A}} = \inf_{\mathbf{z} \in \operatorname{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

$$\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$$

$$\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\mathbf{x})) = \inf\{\|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| : \mathbf{z} \in T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma})\}.$$

$$T_{\Sigma}(\mathbf{x}) = \overline{\operatorname{conv}}(\mathbb{R}_{+}(\Sigma - \mathbf{x}))$$

Theorem Suppose that our assumptions hold. Assume that the gradient flow is initialized as before. If \mathcal{L}_y is convex,

$$\operatorname{Argmin} (\mathcal{L}_{\mathbf{y}}(\cdot)) = \{\mathbf{y}\}$$
, and

$$\operatorname{Ker}(\mathbf{A}) \cap T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}) = \{0\}, \begin{array}{l} \operatorname{Restricted Injectivity} \\ \operatorname{Condition (RIC)} \end{array}$$

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{2\psi \left(\Psi^{-1} \left(\frac{\sigma_{\mathbf{A}}^2 \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2}{4}t - \hat{t}\right)\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))}\right) \operatorname{dist}(\overline{\mathbf{x}}, \Sigma) + \frac{\|\varepsilon\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))}.$$
Optimization error
Approximation error

$$\sigma_{\mathbf{A}} = \inf_{\mathbf{z} \in \operatorname{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

$$\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$$

$$\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\mathbf{x})) = \inf\{\|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| : \mathbf{z} \in T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma})\}.$$

$$T_{\Sigma}(\mathbf{x}) = \overline{\operatorname{conv}} \left(\mathbb{R}_{+} (\Sigma - \mathbf{x}) \right)$$

Theorem Suppose that our assumptions hold. Assume that the gradient flow is initialized as before. If \mathcal{L}_{v} is convex,

Argmin $(\mathcal{L}_{\mathbf{y}}(\cdot)) = \{\mathbf{y}\}$, and

$$\operatorname{Ker}(\mathbf{A}) \cap T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}) = \{0\}, \begin{array}{l} \operatorname{Restricted Injectivity} \\ \operatorname{Condition (RIC)} \end{array}$$

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{2\psi \left(\Psi^{-1} \left(\frac{\sigma_{\mathbf{A}}^2 \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2}{4}t - \hat{t}\right)\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))}\right) \operatorname{dist}(\overline{\mathbf{x}}, \Sigma) + \frac{\operatorname{Noise}_{\mathbf{F}}\operatorname{error}}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))}.$$
Optimization error

Approximation error

$$\sigma_{\mathbf{A}} = \inf_{\mathbf{z} \in \operatorname{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

$$\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$$

$$\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\mathbf{x})) = \inf\{\|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| : \mathbf{z} \in T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma})\}.$$

$$T_{\Sigma}(\mathbf{x}) = \overline{\operatorname{conv}}(\mathbb{R}_{+}(\Sigma - \mathbf{x}))$$

Theorem Suppose that our assumptions hold. Assume that the gradient flow is initialized as before. If \mathcal{L}_y is convex,

$$\operatorname{Argmin} \left(\mathcal{L}_{\mathbf{y}}(\cdot) \right) = \{\mathbf{y}\}$$
, and

$$\operatorname{Ker}(\mathbf{A}) \cap T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}) = \{0\}, \begin{array}{l} \operatorname{Restricted Injectivity} \\ \operatorname{Condition (RIC)} \end{array}$$

then

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{2\psi \left(\Psi^{-1} \left(\frac{\sigma_{\mathbf{A}}^2 \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2}{4}t - \hat{t}\right)\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))}\right) \operatorname{dist}(\overline{\mathbf{x}}, \Sigma) + \frac{\operatorname{Noise}_{\mathbf{F}}\operatorname{error}}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))}.$$
Optimization error

Approximation error

Sample bounds for RIC can be given in a compressed sensing framework via the Gaussian width of the tangent cone.

$$\sigma_{\mathbf{A}} = \inf_{\mathbf{z} \in \operatorname{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

$$\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$$

$$\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\mathbf{x})) = \inf\{\|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| : \mathbf{z} \in T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma})\}.$$

$$T_{\Sigma}(\mathbf{x}) = \overline{\operatorname{conv}}\left(\mathbb{R}_{+}(\Sigma - \mathbf{x})\right)$$

Theorem Suppose that our assumptions hold. Assume that the gradient flow is initialized as before. If \mathcal{L}_{v} is convex, Argmin $(\mathcal{L}_{\mathbf{y}}(\cdot)) = \{\mathbf{y}\}$, and

$$\operatorname{Ker}(\mathbf{A}) \cap T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}) = \{0\}, \begin{array}{l} \operatorname{Restricted Injectivity} \\ \operatorname{Condition (RIC)} \end{array}$$

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{2\psi\left(\Psi^{-1}\left(\frac{\sigma_{\mathbf{A}}^2\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2}{4}t - \hat{t}\right)\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))}\right) \operatorname{dist}(\overline{\mathbf{x}}, \Sigma) + \frac{\operatorname{Noise}_{\mathbf{F}}\operatorname{error}}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))}.$$
Optimization error

Approximation error

- Sample bounds for RIC can be given in a compressed sensing framework via the Gaussian width of the tangent cone.
- Trade-off between the expressivity of the model and the RIC.

$$\mathsf{ISEHD} \begin{cases} \ddot{\boldsymbol{\theta}}(t) + \alpha \dot{\boldsymbol{\theta}}(t) + \beta \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) + \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) = 0 & \alpha = \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}} \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_{0}, \dot{\boldsymbol{\theta}}(0) = 0. & \beta = \frac{1}{2\alpha} \end{cases}$$

Theorem Suppose that our assumptions hold. Assume that the inertial gradient flow is initialized merely as before. If $\mathcal{L}_{\mathbf{v}}$ is $\|\cdot\|^2$ and

$$\operatorname{Ker}(\mathbf{A}) \cap T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}) = \{0\},\$$

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{C\sqrt{\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))} \exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{8}t\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))} + \frac{\|\varepsilon\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))}\right) \operatorname{dist}(\overline{\mathbf{x}}, \Sigma)$$

$$\mathsf{ISEHD} \begin{cases} \ddot{\boldsymbol{\theta}}(t) + \alpha \dot{\boldsymbol{\theta}}(t) + \beta \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) + \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) = 0 & \alpha = \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}} \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_{0}, \dot{\boldsymbol{\theta}}(0) = 0. & \beta = \frac{1}{2\alpha} \end{cases}$$

Theorem Suppose that our assumptions hold. Assume that the inertial gradient flow is initialized merely as before. If $\mathcal{L}_{\mathbf{v}}$ is $\|\cdot\|^2$ and

$$\operatorname{Ker}(\mathbf{A}) \cap T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}) = \{0\},$$
 Restricted Injectivity Condition (RIC)

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{C\sqrt{\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))} \exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{8}t\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))} + \frac{\|\varepsilon\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))}\right) \operatorname{dist}(\overline{\mathbf{x}}, \Sigma)$$

$$\mathsf{ISEHD} \begin{cases} \ddot{\boldsymbol{\theta}}(t) + \alpha \dot{\boldsymbol{\theta}}(t) + \beta \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) + \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) = 0 & \alpha = \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}} \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_{0}, \dot{\boldsymbol{\theta}}(0) = 0. & \beta = \frac{1}{2\alpha} \end{cases}$$

Theorem Suppose that our assumptions hold. Assume that the inertial gradient flow is initialized merely as before. If $\mathcal{L}_{\mathbf{v}}$ is $\|\cdot\|^2$ and

$$\operatorname{Ker}(\mathbf{A}) \cap T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}) = \{0\},$$
 Restricted Injectivity Condition (RIC)

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{C\sqrt{\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))} \exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{8}t\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))} + \frac{\|\varepsilon\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))}\right) \operatorname{dist}(\overline{\mathbf{x}}, \Sigma)$$
Optimization error

$$\mathsf{ISEHD} \begin{cases} \ddot{\boldsymbol{\theta}}(t) + \alpha \dot{\boldsymbol{\theta}}(t) + \beta \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) + \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) = 0 & \alpha = \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}} \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_0, \dot{\boldsymbol{\theta}}(0) = 0. & \beta = \frac{1}{2\alpha} \end{cases}$$

Theorem Suppose that our assumptions hold. Assume that the inertial gradient flow is initialized merely as before. If $\mathcal{L}_{\mathbf{v}}$ is $\|\cdot\|^2$ and

$$\operatorname{Ker}(\mathbf{A}) \cap T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}) = \{0\},$$
 Restricted Injectivity Condition (RIC)

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{C\sqrt{\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))} \exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{8}t\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))} + \frac{\|\varepsilon\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))}\right) \operatorname{dist}(\overline{\mathbf{x}}, \Sigma)$$
Optimization error

Approximation error

$$\mathsf{ISEHD} \begin{cases} \ddot{\boldsymbol{\theta}}(t) + \alpha \dot{\boldsymbol{\theta}}(t) + \beta \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}(t))) + \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}(t))) = 0 & \alpha = \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}} \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_0, \dot{\boldsymbol{\theta}}(0) = 0. & \beta = \frac{1}{2\alpha} \end{cases}$$

Theorem Suppose that our assumptions hold. Assume that the inertial gradient flow is initialized merely as before. If $\mathcal{L}_{\mathbf{v}}$ is $\|\cdot\|^2$ and

$$\operatorname{Ker}(\mathbf{A}) \cap T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}) = \{0\},$$
 Restricted Injectivity Condition (RIC)

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{C\sqrt{\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))} \exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{8}t\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))} + \frac{\|\varepsilon\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))}\right) \operatorname{dist}(\overline{\mathbf{x}}, \Sigma)$$
Optimization error
Noise error
Approximation error

$$\mathsf{ISEHD} \begin{cases} \ddot{\boldsymbol{\theta}}(t) + \alpha \dot{\boldsymbol{\theta}}(t) + \beta \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) + \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) = 0 & \alpha = \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}} \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_0, \dot{\boldsymbol{\theta}}(0) = 0. & \beta = \frac{1}{2\alpha} \end{cases}$$

Theorem Suppose that our assumptions hold. Assume that the inertial gradient flow is initialized merely as before. If $\mathcal{L}_{\mathbf{v}}$ is $\|\cdot\|^2$ and

$$\operatorname{Ker}(\mathbf{A}) \cap T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}) = \{0\},$$
 Restricted Injectivity Condition (RIC)

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{C\sqrt{\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))} \exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{8}t\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))} + \frac{\|\varepsilon\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma}))}\right) \operatorname{dist}(\overline{\mathbf{x}}, \Sigma)$$
Optimization error
Noise error
Approximation error

- ullet Optimization error of GF : $O\left(\exp\left(-rac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2\sigma_{\mathbf{A}}^2}{4}t
 ight)
 ight)$.
- ullet Optimization error of ISEHD : $O\left(\exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{8}t\right)\right)$.

Outline

- Our setting.
- Main recovery guarantees.
- Case of the two-layer DIP.
- Numerical results.
- Conclusion.

Non degenerate initialization

$$\min_{m{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, m{ heta}))$$

$$\mathbf{A} \in \mathbb{R}^{m \times r}$$

$$\begin{cases} \dot{\boldsymbol{\theta}}(t) = -\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}(t))) \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_{0}. \end{cases}$$

Theorem Suppose that our assumptions hold. Assume that the initialization $m{ heta}_0$ is such that

where R' and R obey

$$\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0)) > 0$$
 and $R' < R$

$$R' = \frac{2}{\sigma_{\mathbf{A}}\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}\psi(\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))) \quad \text{and} \quad R = \frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}{2\mathrm{Lip}_{\mathbb{B}(\boldsymbol{\theta}_0,R)}(\mathcal{J}_{\mathbf{g}})}.$$

Non degenerate initialization

etc.

Non degenerate initialization

$$\min_{m{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, m{ heta}))$$

$$\mathbf{A} \in \mathbb{R}^{m \times r}$$

$$\begin{cases} \dot{\boldsymbol{\theta}}(t) = -\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}(t))) \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_{0}. \end{cases}$$

Theorem Suppose that our assumptions hold. Assume that the initialization $m{ heta}_0$ is such that

where R' and R obey

$$\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0)) > 0$$
 and $R' < R$

$$R' = \frac{2}{\sigma_{\mathbf{A}}\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}\psi(\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))) \quad \text{and} \quad R = \frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}{2\mathrm{Lip}_{\mathbb{B}(\boldsymbol{\theta}_0,R)}(\mathcal{J}_{\mathbf{g}})}.$$

Non degenerate initialization

etc.

How to ensure this?

Non degenerate initialization

$$\min_{m{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, m{ heta}))$$

$$\mathbf{A} \in \mathbb{R}^{m \times r}$$

$$\begin{cases} \dot{\boldsymbol{\theta}}(t) = -\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}(t))) \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_{0}. \end{cases}$$

Theorem Suppose that our assumptions hold. Assume that the initialization $m{ heta}_0$ is such that

where R' and R obey

$$\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0)) > 0$$
 and $R' < R$

$$R' = \frac{2}{\sigma_{\mathbf{A}}\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}\psi(\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))) \quad \textit{and} \quad R = \frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}{2\mathrm{Lip}_{\mathbb{B}(\boldsymbol{\theta}_0,R)}(\mathcal{J}_{\mathbf{g}})}.$$

Non degenerate initialization

etc.

How to ensure this?

Two-layer DIP

$$\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) = \frac{1}{\sqrt{k}} \mathbf{V} \phi(\mathbf{W} \mathbf{u})$$

$$\begin{cases} \dot{\boldsymbol{\theta}}(t) = -\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}(t))) \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_{0}. \end{cases}$$

- lacksquare ${f u}$ is a uniform vector on \mathbb{S}^{d-1} .
- $oldsymbol{\Psi}(0)$ has iid $\mathcal{N}(0,1)$ entries.
- ightharpoonup V(0) independent from W(0) and u and has iid columns with identity covariance and D-bounded centred entries.

Overparametrization bound

$$\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) = \frac{1}{\sqrt{k}} \mathbf{V} \phi(\mathbf{W} \mathbf{u})$$
$$\begin{cases} \dot{\boldsymbol{\theta}}(t) = -\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A} \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_{0}. \end{cases}$$

Overparametrization bound

Theorem Consider the one-hidden DIP layer network with the architecture parameters obeying

$$k \ge C' \sigma_{\mathbf{A}}^{-4} n \psi \left(C \left(\sqrt{n \log(d)} + \sqrt{m} \right)^2 \right)^4.$$

Then with probability at least $1 - n^{-1} - d^{-1}$, $\boldsymbol{\theta}(0) = (\mathbf{W}(0), \mathbf{V}(0))$ is a nondegenerate initial point.

Overparametrization bound

$$\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) = \frac{1}{\sqrt{k}} \mathbf{V} \phi(\mathbf{W} \mathbf{u})$$

$$\begin{cases} \dot{\boldsymbol{\theta}}(t) = -\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}(t))) \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_{0}. \end{cases}$$

Theorem Consider the one-hidden DIP layer network with the architecture parameters obeying

$$k \ge C' \sigma_{\mathbf{A}}^{-4} n \psi \left(C \left(\sqrt{n \log(d)} + \sqrt{m} \right)^2 \right)^4.$$

Then with probability at least $1 - n^{-1} - d^{-1}$, $\boldsymbol{\theta}(0) = (\mathbf{W}(0), \mathbf{V}(0))$ is a nondegenerate initial point.

- For the MSE loss, the bounds reads : $k \gtrsim n^3 m^2$.
- ullet If ${f V}$ is fixed and only is ${f W}$ is optimized for :

Outline

- Our setting.
- Main recovery guarantees.
- Case of the two-layer DIP.
- Numerical results.
- Conclusion.

Overparamerization for noiseless MSE

$$\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) = \frac{1}{\sqrt{k}} \mathbf{V} \phi(\mathbf{W} \mathbf{u})$$

$$\begin{cases} \dot{\boldsymbol{\theta}}(t) = -\nabla_{\mathbf{W}} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}(t))) & \mathcal{L}_{\mathbf{y}} : \mathsf{MSE} \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_{0}. & \mathbf{A}_{ij} \text{ iid } \mathcal{N}(0, 1/m) \end{cases}$$

Overparamerization for noiseless MSE

$$\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) = \frac{1}{\sqrt{k}} \mathbf{V} \phi(\mathbf{W} \mathbf{u})$$

$$\begin{cases} \dot{\boldsymbol{\theta}}(t) = -\nabla_{\mathbf{W}} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}(t))) & \mathcal{L}_{\mathbf{y}} : \mathsf{MSE} \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_{0}. & \mathbf{A}_{ij} \text{ iid } \mathcal{N}(0, 1/m) \end{cases}$$

Probability of converging to zero-loss for networks with different architecture parameters confirming our theoretical predictions $k \gtrsim n^2 m$.

Signal recovery under ill-conditioning

$$\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) = \frac{1}{\sqrt{k}} \mathbf{V} \phi(\mathbf{W} \mathbf{u})$$

$$\begin{cases} \dot{\boldsymbol{\theta}}(t) = -\nabla_{\mathbf{W}} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}(t))) \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_{0}. \end{cases}$$

$$\eta(s) = s^{p+1}/(2(p+1)), p \in [0,1]$$
 $\mathcal{L}_{\mathbf{y}} = \eta(\|\cdot - \mathbf{y}\|^2)$
 $\sigma_i(\mathbf{A}) = \frac{1}{1+i^2}$

Signal recovery under ill-conditioning

$$\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) = \frac{1}{\sqrt{k}} \mathbf{V} \phi(\mathbf{W} \mathbf{u})$$

$$\begin{cases} \dot{\boldsymbol{\theta}}(t) = -\nabla_{\mathbf{W}} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}(t))) \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_{0}. \end{cases}$$

$$\eta(s) = s^{p+1}/(2(p+1)), p \in [0,1]$$

$$\mathcal{L}_{\mathbf{y}} = \eta(\|\cdot - \mathbf{y}\|^2)$$

$$\sigma_i(\mathbf{A}) = \frac{1}{1+i^2}$$

$$p = 0.2$$

Convergence to a noise-dominated region for different noise levels.

Impact of the KL property

As expected the smaller p the faster the convergence rate.

Application to image recovery: deblurring

Recovery guarantees of DIP when optimized with gradient descent in both observation and signal spaces.

- Recovery guarantees of DIP when optimized with gradient descent in both observation and signal spaces.
- Influence if the forward operator and the loss function via its desingularizing function.

- Recovery guarantees of DIP when optimized with gradient descent in both observation and signal spaces.
- Influence if the forward operator and the loss function via its desingularizing function.
- NN design: need for overparametrization.

- Recovery guarantees of DIP when optimized with gradient descent in both observation and signal spaces.
- Influence if the forward operator and the loss function via its desingularizing function.
- NN design: need for overparametrization.
- Empirical results agree with theoretical predictions.

- Recovery guarantees of DIP when optimized with gradient descent in both observation and signal spaces.
- Influence if the forward operator and the loss function via its desingularizing function.
- NN design: need for overparametrization.
- Empirical results agree with theoretical predictions.
- Discrete setting √.

- Recovery guarantees of DIP when optimized with gradient descent in both observation and signal spaces.
- Influence if the forward operator and the loss function via its desingularizing function.
- NN design: need for overparametrization.
- Empirical results agree with theoretical predictions.
- Discrete setting √.
- Stochastic setting.

- Recovery guarantees of DIP when optimized with gradient descent in both observation and signal spaces.
- Influence if the forward operator and the loss function via its desingularizing function.
- NN design: need for overparametrization.
- Empirical results agree with theoretical predictions.
- Discrete setting √.
- Stochastic setting.
- Non-smooth setting.

- Recovery guarantees of DIP when optimized with gradient descent in both observation and signal spaces.
- Influence if the forward operator and the loss function via its desingularizing function.
- NN design: need for overparametrization.
- Empirical results agree with theoretical predictions.
- Discrete setting √.
- Stochastic setting.
- Non-smooth setting.
- Other NN-based frameworks: PINNs, supervised setting.

- Recovery guarantees of DIP when optimized with gradient descent in both observation and signal spaces.
- Influence if the forward operator and the loss function via its desingularizing function.
- NN design: need for overparametrization.
- Empirical results agree with theoretical predictions.
- Discrete setting √.
- Stochastic setting.
- Non-smooth setting.
- Other NN-based frameworks: PINNs, supervised setting.
- Other overparametrization regimes.

Preprint on arxiv and paper on

https://fadili.users.greyc.fr/

Thanks Any questions?