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Multi-temporal Observations

* Developments in multi-sensor technology
* Massive timely and spatio-spectral observations
* Useful information on several applications

** Time domain information is a key to the physical b

understanding of certain phenomena in astrophysics T

+* Satellite data can contribute to environmental monitoring and
other earth observation applications

Challenges

Termporal Direction [Time senals)

* Leverage all time-series information in all dimensions

* Consider the structures of the multi-way relations of the data
* High demands on the signal analysis process S T
* Difficulty in handling and making operations
* Increased computational requirements
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Tensors

* Multidimensional arrays

* Processing using tensor analysis tools, e.g. tensor decomposition
* Reduce the complexity of the representation space

* Capture high-order relationships in the data

* Used in machine/deep learning
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*%* Feature extraction

+$* Reduction of the number of parameters
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Tensor Based Observation Modeling

Atensor X € RI1 X XIn g4 N-way array, a higher-
order generalization of vectors and matrices.

Temporal Direction (Time senais)

Mode-2 4

Band Dirensor,

m The mode-n unfolded matrix X(n) e RInXILign Li

corresponds to a matrix with columns being the
vectors obtained by fixing all indices of A’ except
the n-th index.
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Tucker Decomposition

X € RIvxxIng decomposed into a core tensor G € RE1X " XEN 3nd multiple matrices A(™) € RI»*En
which correspond to different core scaling along each mode.
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Tensor Decomposition Learning

Learn a basis for each mode, D,, € RI»*fin formp =1, .., N from S training samples X = (Xl, ..,Xs) € Riix-

such that
. 1 2
ming p,,. Dy, 5l& =G X1 D1 Xo -+ Xy Dy Xni1 Dnyallz + A4l
subject to A = Dy and Dg SO T, n —
where G € RRlX”'XRNXS,DN-q-l e RS*S and A € RS%S, Basis Matrices
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M Tensor decomposition techniques in the machine learning framework
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A. Aidini, G. Tsagkatakis, and P. Tsakalides. "Tensor decomposition learning for compression of
multidimensional signals." IEEE Journal of Selected Topics in Signal Processing 15.3 (2021): 476-490.
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Application: Change detection of extreme events in multi-temporal images

Monitor and assess the impacts of extreme events

Identify changes in image time series

The location of actual changes is not available in real-world scenarios

Related works focus on detecting changes in bi-temporal images, underutilizing the wealth of available observations

Image 4 After event Change mask
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Proposed Change Detection Method

® Unsupervised approach based on tensor decomposition learning
® Exploit simultaneously the spatial and spectral features in the images with low complexity
® Applied to multi-temporal multispectral images

Training Feature Space
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A. Aidini, G. Tsagkatakis, and P. Tsakalides, “Unsupervised Change Detection on Multi-Temporal Satellite Images Using

Tensor Decomposition Learning,” in Proc. 2024 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS '24), Athens, Greece, July 7-12, 2024.
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Experimental Results

® Events: 5 locations of fires, 4 locations of floods

® Time series: 4 images before the event, 1image after the event
® 5 Monte-Carlo Simulations, 3 x 3 patches
® Multilinear Rank: 1 for the spatial dimensions, full rank for the spectral dimension

Table: Comparison of the proposed method with RaVAEn on each
extreme event, using 1 and 3 history frames.

Complexity:

AUPRC History Fires Floods
Proposed 1 0.939 0.764
Method (1.71-10-10) (8.78 - 10-9)
3 0.937 0.741
(1.91 - 10-10) (518 - 10-9)
RaVZAn 1 0.833 0.448
(0.008) (0.011)
3 0.913 0.443
(0.008) (0.009)
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Proposed The number of parametersis the

Method number of elements in the 3 basis
matrices learned for the representation
of the feature space.

RaVZEn: Million parameters
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Change Mask
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Tensor-based Models in the Deep Learning Framework

* Leverage the benefits of both tensor analysis and deep learning techniques

* Analyze high-dimensional data in all dimensions

* Improve the performance of standard models

* Use prior domain knowledge

* Interpretable networks

* Combination of tensor-based networks with other popular networks to perform two tasks simultaneously

+»* Recovery of missing or corrupted measurements in combination with classification problems in multitemporal data

Proposed Network \
Tensor Pixel-level
Completion > Classification
Network Network
Incomplete Image Completed Image Land Cover
X \ X / Class Labels
- __d
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Model-based Deep Learning
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Shlezinger, N, Whang, J., Eldar, Y. C,, & Dimakis, A. G. (2023). Model-based deep learning. Proceedings of the IEEE.
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Model-based Methods

Domain know
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* Utilize mathematical formulations ~,
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Data-driven Methods

Data-driven
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* Learn their mapping from data

Model-based
main knowledge }

~ative procedure
e

* Require massive amounts of data and immense \

computational resources

* Limited applicability for some scenarios
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Model-aided Networks — DNN-aided Inference

Domain know
Data-driven e Model-based machine learnin Model-based
i (Partial} domain : g (Partial) domain
Diata i knowledge [Limited) data (Limited) L{'|t1‘, knowledae IJnm:linklmwl—rdge;

Iterative procedure Iterative procedure

-"-DEEP neural network _‘-~ "-\_ Madel-aided network DNN-aided inference -~ ___,,Eﬂ""' Model-based algorithm -~ ~
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7o Use model-based methods for inference
' Specific parts are augmented with deep learning
tools

(* Utilize DNNs for inference
* A specific DNN tailored for the problem at
hand is designed by following the
operation of suitable model-based methods

* Learning to overcome partial or mismatched
~domain knowledge from data,
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Algorithm unrolling technique

Generic Neural Network
A connection of the iterative algorithms with neural networks
Higher representation power than the iterative algorithms

Better generalization than generic networks

Fewer parameters and require less training data, so they can be computationally faster
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Conclusion

® Tensor analysis tools for multi-temporal observations processing
® Tensor decomposition technigues in the machine learning framework

“* Tensor decomposition learning method

< Applicable to several problems e.g. Unsupervised change detection of extreme events
® Deep learning formulation of tensor models

+* Model-based deep learning approaches

Thank you
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