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Image Inpainting
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Li, Wenbo, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, and Jiaya Jia. "Mat: Mask-aware transformer for large hole image inpainting.” In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 10758-10768. 2022.
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Hallucinations
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Proposed Scheme
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Proposed Scheme
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Proposed Scheme
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Proposed Scheme

< Probability of CelebA: 0.96
Probability of NPWU: 0.04
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Proposed Scheme
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Proposed Scheme

NPWU Dataset

CelebA Dataset

< Probability of CelebA: 0.96
Probability of NPWU: 0.04
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Proposed Scheme

NPWU Dataset

CelebA Dataset

< Probability of CelebA: 0.96
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Proposed Scheme

NPWU Dataset

CelebA Dataset

< Probability of CelebA: 0.96
Probability of NPWU: 0.04

Overlap: 0.3
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Proposed Scheme

NPWU Dataset =4

CelebA Dataset

< Probability of CelebA: 0.96
Probability of NPWU: 0.04

Overlap: 0.6 Overlap: 0.3
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Masks

e Rectangular

e Random

e Irregular
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Inpainting with Masks
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Training § Evaluation scenarios

e Modules

o Generator — Inpainter: Mask-Aware Transformer for Large Hole Image Inpalntlng CVPR 2022

o Classifier — Detector: MobileNetV2 (ResNet)

e Scenario #1

o Generator w/ CelebA .. .m

o  Classifier /w CelebA and NPWU (dense residential)
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o Input: NPWU (medium residential)

e Scenario #2
o  Generator w/ CelebA
o Classifier /w CelebA and NPWU (dense residential)
o Input: UCMerced (airport)
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Initial Results

Rectangular

Pred_1 vs. x-axis
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Related approaches

-
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9 The diffusion model learns the in-domain manifold.
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Liu, Zhenzhen, et al. "Unsupervised out-of-distribution detection with diffusion inpainting.” Int. Conference on Machine Learning. 2023.
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Leveraging Sparse Input and Sparse Models:
Efficient Distributed Learning Iin
Resource-Constrained Environments
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Masked Autoencoders (MAE)

encoder —_ decoder

LB Il i

original mask 75% mask 85% mask 95%

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked autoencoders are scalable vision learners. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16000-16009, 2022.

'FORTH || =25~ # < CosmoStar Ce

INSTITUTE OF COMPUTER SCIENCE

Funded by
the European Unionl9




MAE for Self-supervised Learning
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Sparsified Encoders
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System Study - Random vs Fixed Masks
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System Study - Datasets Size

Masking Ratio 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
= Masked Images Size (in GB) 0.205 0.184 0.164 0.143 0.123 0.102 0.082 0.061 0.041 0.020
E CLS Tokens Size (in GB) 0.1536
o Max Accuracy 0.823 0.837 0.836 0.840 0.848 0.851 0.847 0.829 0.805 0.697
2 Masked Images Size (in GB) 7.078 6.370 5.662 4.954 4.247 3.539 2.831 2.123 1.416 0.708
;’ CLS Tokens Size (in GB) 0.083
g Max Accuracy 0.893 0.891 0.889 0.891 0.882 0.880 0.869 0.857 0.824 0.749
Masked Images Size (in GB) 12.240 11.016 9.792 8.568 7.344 6.120 4.896 3.672 2.448 1.224
CLS Tokens Size (in GB) 0.026
Max Accuracy 0.923 0.925 0.928 0.916 0.918 0.917 0.916 0.909 0.883 0.810
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Federated Learning & Class Imbalance

Accuracy vs Masking Ratio
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Conclusions

o Hallucinations < Out-of-Distribution Detection
- Positive vs Negative Examples
e Masking/Inpainting is an effective regularization... what about others?
e Sparsity is extremely beneficial
o Generative vs Discriminative models
o Classification vs Regression
o Specific applications domain??
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