Weak lensing Higher Order Statistics theoretical prediction

Joint ARGOS-TITAN-TOSCA workshop, 6th June 2024

Vilasini Tinnaneri Sreekanth

Multiple realisations, **Highly resource** intensive!

My work: Have a theory for the wavelet l₁-norm

One-point PDF from Large Deviation Theory

Large Deviation Theory——>A framework to predict one-PDF in mildly non-linear regime from the 1st principles of Cosmology

The approximation by the central limit theorem may not be accurate if x is far from E[X] and N is not sufficiently large.

LDP: The probability of rare events happening decreases exponentially with the size of the sample, and the rate function quantifies how unlikely these events are.

One-point PDF from Large Deviation Theory

Large Deviation Theory——>A framework to predict one-PDF in mildly non-linear regime from the 1st principles of Cosmology

Spherical Collapse

Simulation used: Takahashi's

[Vilasini+ Submitted]

Vilasini Tinnaneri Sreekanth

Simulation used: MassiveNus

Forward modelling

- Directly extracts information the convergence map
- Systematic effects can be directly incorporated
- Combination of multiple probes

Full N-body simulations -- resource

• Can reproduce the summary statistics and maps produced from an N-body simulation,

POLYNOMIAL INTERPOLATION

GAUSSIAN REGRESSION

POLYNOMIAL CHAOS

DEEP LEARNING

PREDICTIVE

CALIBRATED

EMULATORS

ASSUMPTION

AI BASED

Emulators can reproduce the summary statistics

• Emulators can reproduce the correct 2 point summary statistics • Might not be the case for HOS.

How to have a convergence map with the correct HOS incorporated in that as well?

Emulator based on theory prediction

• Need something that will have the correct higher order statistics as well! Main ingredient: inverse CDF transformation

the target histogram.

is the inverse of the target CDF F^{-1} target

- The goal is to transform the histogram of the input image to match
 - $I_{\text{transformed}}(i,j) = F_{\text{target}}^{-1}(F_I(I(i,j)))$
 - $F_{I}(I(i,j))$ is the CDF value of the input image intensity at (i,j)

Correct Fourier amplitudes

Apply iCDF

Iterate till the error stabilises

EXTRA SLIDES

Vilasini Tinnaneri Sreekanth

Wavelets:

• Highly localized in space/time Has a vanishing mean

A useful tool in analyzing signals where there are sharp spikes and discontinuities

A set of mathematical function that is defined by the following properties:

0.5 y(t) -1.5 0 2 4 6 8 10 12 14 16 18 20

The Continuous Wavelet Transform

$$W(a,b) = K \int_{-\infty}^{+\infty} \psi^* \left(\frac{x-b}{a}\right) f(x) dx$$

where:

- W(a, b) is the wavelet coefficient of the function f(x)
- $\psi(x)$ is the analyzing wavelet
- a (> 0) is the scale parameter
- *b* is the position parameter

In Fourier space, we have: $\hat{W}(a,\nu) = \sqrt{a}\hat{f}(\nu)\hat{\psi}^*(a\nu)$ keeping the same pattern.

Jean Morlet

When the scale *a* varies, the filter $\hat{\psi}^*(a\nu)$ is only reduced or dilated while

According to various theories the word "Biryani" is either derived from farsi word "brishtah" (fried onions) or biryan (frying).

https://en.wikipedia.org/wiki/Biryani

Pulao - The vegetable/meat is cooked with pre-ground masala paste. No whole spices, cashews, etc.

Biryani - Vegetable/meat is either (1) Cooked along with rice or (2) Layered with 80% cooked rice. Whole spices are added. Toppings include fried cashews, raisins, chopped mint, chopped coriander, etc. Saffron milk and ghee is added generously.

Biryani

Notice the layering

link to difference.

🛛 Meena Agarwal | www.hookedonh

