# **Higher Order Statistics** for Neutral Hydrogen Intensity Mapping

**Pauline Gorbatchev** 

Joint ARGOS-TITAN-TOSCA workshop 06/06/2024



**FOR H** 

Signal Processing Laboratory

🚡 🌀 Соѕмо Ѕтат



Funded by

the European Union

1

# Summary

Physical background and Motivations

Intensity Mapping and challenges

SKA and State of the Art

Tools for simulating 21cm signal maps

**Bayesian Likelihood for Cosmological Parameter Inference** 

cea

**Utility of Higher Order Statistics** 

Prospective



**FORTH** Signal Processing 

🛉 🌑 СоѕмоЅтат



# **Motivations**

- Hydrogen: most abundant element in the Universe.
- After reionization, HI is located inside galaxies.

 $\Rightarrow$  biased tracer of the underlying matter distribution of the Universe.

Signal Processing

Laboratory

1A

TITAN

0

**FORTH** 



# Why using 21cm line?

### **Benefits:**

- The only astrophysical spectral feature in the L-band (GHz).
- Can be **measured from earth** (penetrates the atmosphere).
- thermal noise in HI surveys is less important than shot noise in galaxy surveys ⇒ HI analysis is more constraining than galaxies.

### **Uses:**

- Probe the **Dark Ages** (future).
- Reconstruct **DM density fields.**
- Map 3D Large Scale Structures of the Universe.
- Complementary measurement to optical surveys to constrain cosmological parameters.

Signal Processing

# What is Intensity Mapping?

- Measurement of redshift and intensity of HI over the whole sky.
- Treats HI signal as a diffuse background.
- Large cosmological volume.
- Less costly, less time consuming.
- High spectral resolution  $\Rightarrow$  high redshift resolution.
- Individual galaxy detection not needed for LSS study.







Intensity map



**FORTH** Signal Processing



cea



# **State of the Art**

- For now detection by cross-correlation between galaxy and 21 cm.
- Not yet possible to obtain a measurement of the 21cm auto-Power Spectrum.



# **Inferring the Power Spectrum**



Q



### **Challenges of Intensity Mapping**



1A

Signal Processing

Laborator

0

#### Foregrounds:

Funded by

the European Union

cea

S COSMO STAT

- Milky way synchrotron emission (high energy electrons accelerated by magnetic fields).
- Extra-galactic point sources (Active Galactic Nuclei).
- Galactic/extra galactic free-free • emissions (electrons scattered by ions).

#### 4 orders of magnitude higher than the signal!

 $\Rightarrow$  Foreground removal needed.

# **Simulation tools**

- **CAMB** (Code for Anisotropies in the Microwave Background):
  - Provides matter power spectrum and transfer functions essential for large-scale structure studies.
  - Takes cosmological parameters (e.g., Hubble constant, matter density, dark energy parameters) as input.

### • 21cmFAST:

- A semi-numerical simulation code used to generate large-scale 21 cm signal maps.
- Models the cosmic 21 cm signal from the epoch of reionization (EoR) and cosmic dawn.

Signal Processing Laboratory

### From observations to cosmological information





# Limitations of the power spectrum

### Gaussian Assumption:

• The power spectrum is most effective for Gaussian random fields.

### Non-Gaussian Features:

• The universe exhibits non-Gaussian features due to non-linear growth of structures and primordial non-Gaussianities.

### Loss of Information:

- Higher order interactions and complex structures are not captured by the power spectrum.
- Important information about the morphology and connectivity of cosmic structures is lost.

Make use of Higher order statistics which are sensitive to the non-Gausianities.

**FORTH** 

1 COSMOSTAT CC2

Signal Processing



# **Participation in SKA Data-Challenge**

- Team Eos (Goddess of Dawn).
- Visibilities (points in the Fourier plane (u,v)) ~ 8 Tb.
- Cube images (ponderal and uniform) computed from the visibilities.
- Goal: compute the power spectrum of the 21 cm signal.
- Available codes : ps\_eor (it separates the foreground and the signal using GPR, reconstruct the power spectrum from images).



https://gitlab.com/flomertens



**FORTH** 

Signal Processing

S COSMO STAT



cea

the European Union

### References

- Cosmology with the SKA Observatory, Marta Spinelli , Observatoire de la Côte d'Azur 2024.
- Reza Ansari, "Current status and future of cosmology with 21 cm Intensity Mapping," 2022.
- Soares, P., et al. "Gaussian Process Regression for foreground removal in HI Intensity Mapping experiments," in *Monthly Notices of the Royal Astronomical Society*, vol. 510, no. 4, pp. 5872–5890, 2021.
- M. Irfan, P. Bull. "Cleaning foregrounds from single-dish 21 cm intensity maps with Kernel principal component analysis," in *Monthly Notices of the Royal Astronomical Society*, vol. 508, no. 3, pp. 3551–3568, 2021.
- HI Intensity Mapping with the MIGHTEE Survey, Aishrila Mazumder, University of Machester, 2024.
- The MeerKLASS survey: updates, Mário G. Santos, University of the Western Cape, 2024.
- Foreground Leakage from Calibration Errors inInterferometric MeerKAT 21 cm Observations, Zhaoting Chen, University of Edinburgh, 2024.

All pictures were modified following my needs for the presentation



**FORTH** 

