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General Idea
Create a pipeline:

Use it to investigate the impact of mass mapping algorithmsmass mapping algorithmsmass mapping algorithmsmass mapping algorithms on cosmology constraints.
Use it on UNIONS/CFISUNIONS/CFISUNIONS/CFISUNIONS/CFIS data to get observational constraints on cosmology.
Use it to test novel mass mapping methodsnovel mass mapping methodsnovel mass mapping methodsnovel mass mapping methods
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Introduction - Introduction - Introduction - Introduction - Weak Weak Weak Weak LensingLensingLensingLensing

WLWLWLWL = Observational technique in cosmology for
studying the matter distribution in the universe

Principle:Principle:Principle:Principle: deflection of light from distant galaxies
by gravitational fields → causes image distortion

Weak Weak Weak Weak →→→→    subtle & coherent distortions of
background galaxy shapes

WL provides a direct measurement of the gravitational distortion.
WL enables us to probe the cosmic structure, investigate the nature of dark matter, and constrain
cosmological parameters.
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Shear & Convergence

Convergence Convergence Convergence Convergence κ

κ =
1
2

(∂1∂1 + ∂2∂2)ψ =
1
2

∇2ψ

⟶ difficult to measure

Shear Shear Shear Shear γ

γ1 =
1
2

(∂1∂1 − ∂2∂2)ψ, γ2 = ∂1∂2ψ

⟶ can be measured by statistical analysis of
galaxy shapes
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Shear estimationShear estimationShear estimationShear estimation
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Shear estimationShear estimationShear estimationShear estimation

Galaxy shapes as estimators for gravitational shearGalaxy shapes as estimators for gravitational shearGalaxy shapes as estimators for gravitational shearGalaxy shapes as estimators for gravitational shear

e = γ + ei  with ei ∼ N(0, I)

We are trying the measure the ellipticity ellipticity ellipticity ellipticity e of galaxies as an estimator for the gravitational sheargravitational sheargravitational sheargravitational shear
γ
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Advantages of Convergence

7



Advantages of Convergence
Direct physical interpretationDirect physical interpretationDirect physical interpretationDirect physical interpretation → κ: dimensionless measure of the surface mass
density along LOS

7



Advantages of Convergence
Direct physical interpretationDirect physical interpretationDirect physical interpretationDirect physical interpretation → κ: dimensionless measure of the surface mass
density along LOS

κ-map shows the LSS of the Universe-map shows the LSS of the Universe-map shows the LSS of the Universe-map shows the LSS of the Universe → allows comparisons with other tracers of
matter distribution

7



Advantages of Convergence
Direct physical interpretationDirect physical interpretationDirect physical interpretationDirect physical interpretation → κ: dimensionless measure of the surface mass
density along LOS

κ-map shows the LSS of the Universe-map shows the LSS of the Universe-map shows the LSS of the Universe-map shows the LSS of the Universe → allows comparisons with other tracers of
matter distribution

Probes dark matter and its properties Probes dark matter and its properties Probes dark matter and its properties Probes dark matter and its properties directlydirectlydirectlydirectly

7



Advantages of Convergence
Direct physical interpretationDirect physical interpretationDirect physical interpretationDirect physical interpretation → κ: dimensionless measure of the surface mass
density along LOS

κ-map shows the LSS of the Universe-map shows the LSS of the Universe-map shows the LSS of the Universe-map shows the LSS of the Universe → allows comparisons with other tracers of
matter distribution

Probes dark matter and its properties Probes dark matter and its properties Probes dark matter and its properties Probes dark matter and its properties directlydirectlydirectlydirectly

Easier to work with than shearEasier to work with than shearEasier to work with than shearEasier to work with than shear: scalar quantity instead of spin-2 field

7



Advantages of Convergence
Direct physical interpretationDirect physical interpretationDirect physical interpretationDirect physical interpretation → κ: dimensionless measure of the surface mass
density along LOS

κ-map shows the LSS of the Universe-map shows the LSS of the Universe-map shows the LSS of the Universe-map shows the LSS of the Universe → allows comparisons with other tracers of
matter distribution

Probes dark matter and its properties Probes dark matter and its properties Probes dark matter and its properties Probes dark matter and its properties directlydirectlydirectlydirectly

Easier to work with than shearEasier to work with than shearEasier to work with than shearEasier to work with than shear: scalar quantity instead of spin-2 field

Allows higher order statisticsAllows higher order statisticsAllows higher order statisticsAllows higher order statistics in a convenient way

7



Advantages of Convergence
Direct physical interpretationDirect physical interpretationDirect physical interpretationDirect physical interpretation → κ: dimensionless measure of the surface mass
density along LOS

κ-map shows the LSS of the Universe-map shows the LSS of the Universe-map shows the LSS of the Universe-map shows the LSS of the Universe → allows comparisons with other tracers of
matter distribution

Probes dark matter and its properties Probes dark matter and its properties Probes dark matter and its properties Probes dark matter and its properties directlydirectlydirectlydirectly

Easier to work with than shearEasier to work with than shearEasier to work with than shearEasier to work with than shear: scalar quantity instead of spin-2 field

Allows higher order statisticsAllows higher order statisticsAllows higher order statisticsAllows higher order statistics in a convenient way

Cosmological parameter estimationsCosmological parameter estimationsCosmological parameter estimationsCosmological parameter estimations → can be used to constrain cosmological
parameters
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Relation between  and 
𝜅 𝛾
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Relation between κ and γ

Shear map Lensing 
potential

Mass map
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Relation between κ and γ

From convergenceconvergenceconvergenceconvergence to shearshearshearshear: γi = P̂iκ

From shearshearshearshear to convergenceconvergenceconvergenceconvergence: κ = P̂1γ1 + P̂2γ2

P̂1(k) =
k2

1 − k
2
2

k2 , P̂2(k) =
2k1k2

k2

Shear map Lensing 
potential

Mass map
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Kaiser-Squires inversion
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Kaiser-Squires inversion
Advantages:Advantages:Advantages:Advantages:

Simple linearlinearlinearlinear operator
Very easy to implement in Fourier space
Optimal, in theory
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Kaiser-Squires inversion

Practical difficulties:Practical difficulties:Practical difficulties:Practical difficulties:

Shear measurements are discrete, noisynoisynoisynoisy,
and irregularly sampledirregularly sampledirregularly sampledirregularly sampled

We actually measure the reduced shearreduced shearreduced shearreduced shear:
g = γ / (1 − κ)

Masks and integration over a subset of R2

lead to border errors ⇒ missing datamissing datamissing datamissing data
problemproblemproblemproblem

Convergence is recoverable up to a constant
⇒ mass-sheet mass-sheet mass-sheet mass-sheet degeneracy problemdegeneracy problemdegeneracy problemdegeneracy problem

Advantages:Advantages:Advantages:Advantages:

Simple linearlinearlinearlinear operator
Very easy to implement in Fourier space
Optimal, in theory

residualK
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Bayesian reconstruction
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Bayesian reconstruction
Mass mapping problem → statistical inference problem
GoalGoalGoalGoal: infer most probable value of κ-field given observed shear data

p(κ ∣ γ, M)
⏟

Posterior 

∝ p(γ ∣ κ, M)
⏟

likelihood 

p(κ ∣ M)
⏟

prior 

M: cosmological model
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Bayesian reconstruction
Mass mapping problem → statistical inference problem
GoalGoalGoalGoal: infer most probable value of κ-field given observed shear data

p(κ ∣ γ, M)
⏟

Posterior 

∝ p(γ ∣ κ, M)
⏟

likelihood 

p(κ ∣ M)
⏟

prior 

M: cosmological model

Likelihood distributionLikelihood distributionLikelihood distributionLikelihood distribution: prob. of observing γ data given true κ → encodes the forward process of the
model → contains the physics

Prior distributionPrior distributionPrior distributionPrior distribution: encodes the knowledge about the signal before observing data

Log-likelihoodLog-likelihoodLog-likelihoodLog-likelihood (when the noise is white Gaussian)

logp(γ ∣ κ) = −
1
2
γ − F ∗PFκ

†
Σ −1
n γ − F ∗PFκ +  constant 

Maximum A Posteriori solutionMaximum A Posteriori solutionMaximum A Posteriori solutionMaximum A Posteriori solution

x̂ = arg max
x

logp(y | x) + logp(x)

( ) ( )
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Wiener filter
Assumes priorpriorpriorprior on  → Gaussian random Gaussian random Gaussian random Gaussian random fieldfieldfieldfield 

Likelihood (assuming uncorrelated, Gaussian noise) → also GaussianGaussianGaussianGaussian 

The Gaussian prior encodes the assumptionencodes the assumptionencodes the assumptionencodes the assumption that the fluctuations in the -field are well described by a
Gaussian random field, with power power power power spectrumspectrumspectrumspectrum given by the cosmological model

Convergence power spectrumConvergence power spectrumConvergence power spectrumConvergence power spectrum

Stat. measure of the spatial distribution of the convergence field → quantifies the amplitude of the
fluctuations in κ as function of their spatial scale

𝜅 (𝜅) = exp (− )𝑝Gauss
1

det 2𝜋𝐒√
1
2 𝜅 ̃†𝐒−1𝜅 ̃

𝑝(𝛾|𝜅) = exp [− (𝛾 − 𝐀𝜅 (𝛾 − 𝐀𝜅)]1
2𝜋 det 𝐍√

1
2 )†𝐍−1

𝜅

⟨ (𝒌) ( )⟩ = (2𝜋 (𝒌 − ) (𝑘)𝜅 ̃ 𝜅 ̃∗ 𝒌′ )2𝛿𝐷 𝒌′ 𝑃𝜅
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Wiener filter
Wiener solution of the inverse problemWiener solution of the inverse problemWiener solution of the inverse problemWiener solution of the inverse problem

This solution corresponds to the maximum a posteriorimaximum a posteriorimaximum a posteriorimaximum a posteriori (MAP) solution under the assumption of a
Gaussian prior on , and it matches the meanmeanmeanmean of the Gaussian posterior.

Wiener reconstructionWiener reconstructionWiener reconstructionWiener reconstruction

= arg + log (𝜅)𝜅ŵiener  min
𝜅 (𝛾 − 𝐏𝐅𝜅)‖‖Σ−1/2 𝐅∗ ‖‖

2
2 𝑝Gaussian 

𝜅

= 𝐒𝜅ŵiener  𝐏†[𝐏𝐒 + 𝐍]𝐏† −1𝛾 ̃
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Sparse recovery
Decomposes the signal into another domain (dictionary), where it is sparsesparsesparsesparse

Implement the wavelet transformwavelet transformwavelet transformwavelet transform → decomposes the signal into wavelet functionswavelet functionswavelet functionswavelet functions (waveforms of limited
duration with an average value of zero)
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Use starlet waveletsstarlet waveletsstarlet waveletsstarlet wavelets → represent well structures resembling the  of a DM haloDM haloDM haloDM halo (positive & isotropic)

The application of sparsity prior enforcesenforcesenforcesenforces a cosmological model where the matter field is a combination of
spherically symmetric DM halos

𝜅
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MCALens
Models -field as a sum of a GaussianGaussianGaussianGaussian and non-Gaussiannon-Gaussiannon-Gaussiannon-Gaussian component

MCAMCAMCAMCA (morphological Component Analysis) performs an alternating minimization scheme:

Estimate  assuming  is known:

Estimate  assuming  is known:

𝜅

𝜅 = +𝜅NG⏟Standard Wiener filter approach
𝜅G⏟Modified wavelet approach+ ( ) + ( )min

,𝜅𝐺 𝜅𝑁𝐺
‖𝛾 − 𝐀 ( + )‖𝜅𝐺 𝜅𝑁𝐺

2
Σ𝑛 𝐶G 𝜅𝐺 𝐶NG 𝜅𝑁𝐺

𝜅G 𝜅NG

+ ( )min
𝜅𝐺

‖(𝛾 − 𝐀 ) − 𝐀 ‖𝜅𝑁𝐺 𝜅𝐺
2
Σ𝑛 𝐶G 𝜅𝐺

𝜅NG 𝜅G

+ ( )min
𝜅𝑁𝐺

‖(𝛾 − 𝐀 ) − 𝐀 ‖𝜅𝐺 𝜅𝑁𝐺
2
Σ𝑛 𝐶NG 𝜅𝑁𝐺
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Overview of mass mapping methods
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Overview of mass mapping methods
Wiener filterWiener filterWiener filterWiener filter: Prior on κ → Gaussian random field, Likelihood → Gaussian, Solution → corresponds to MAP
for gaussian κ

Sparse recoverySparse recoverySparse recoverySparse recovery: Prior on κ → sparse in wavelet basis, Enforces model where matter field is a combination
of DM halos

MCALensMCALensMCALensMCALens: Models κ-field as sum of a Gaussian and a non-Gaussian component, Uses Morphological
Component Analysis

Deep Learning MethodsDeep Learning MethodsDeep Learning MethodsDeep Learning Methods:
DeepMassDeepMassDeepMassDeepMass: CNN with a U-Net-based architecture, prior from simulations
DeepPosteriorDeepPosteriorDeepPosteriorDeepPosterior: Probabilistic mass mapping with deep generative models, Prior from 2pt statistics
modelling at large scales & Deep Learning on simulations for small scales, Sampling with Annealed HMC
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Mass mapping methods:
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Higher Order Statistics: Peak CountsPeak CountsPeak CountsPeak Counts

Second Order Higher Order

Power Spectrum Peak Counts

PeaksPeaksPeaksPeaks: local maxima of the SNR field 

Peaks trace regions where the value of  is high is high is high is high → they are associated to massive structuresmassive structuresmassive structuresmassive structures
𝜈 = ( ∗ 𝜅) ( )𝜃ker

𝜎 filt𝑛

𝜅
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Wavelet peaks
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Wavelet peaks
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Wavelet peaks
We consider a multi-scale analysismulti-scale analysismulti-scale analysismulti-scale analysis compared to a single-scale analysis
Apply (instead of Gaussian filter) a starlet starlet starlet starlet transformtransformtransformtransform → allows us to represent an image I as a sum of
wavelet coefficient images and a coarse resolution image

= +

Allows for the simultaneoussimultaneoussimultaneoussimultaneous processing of data at different scales → efficiencyefficiencyefficiencyefficiency
Each wavelet band covers a different frequency range, which leads to an almost diagonal peak countdiagonal peak countdiagonal peak countdiagonal peak count
covariance matrixcovariance matrixcovariance matrixcovariance matrix
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Starlet -norm
ℓ1
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Starlet ℓ1-norm
New higher order summary statistic for weak lensing observables
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Starlet ℓ1-norm

ℓj , i1 =

\# coef ( Si , j )

∑
u= 1

Sj , i[u] = ǁSj , iǁ1 , Sj , i = {wj , k /Biwj , kBi+ 1}

New higher order summary statistic for weak lensing observables
Provides a fast multi-scale calculation of the full void and peak distribution
ℓ1-norm-norm-norm-norm = sum of absolute values of the starlet decomposition coefficients of a weak lensing map

+=

| |
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Starlet ℓ1-norm

ℓj , i1 =

\# coef ( Si , j )

∑
u= 1

Sj , i[u] = ǁSj , iǁ1 , Sj , i = {wj , k /Biwj , kBi+ 1}

New higher order summary statistic for weak lensing observables
Provides a fast multi-scale calculation of the full void and peak distribution
ℓ1-norm-norm-norm-norm = sum of absolute values of the starlet decomposition coefficients of a weak lensing map

+=

| |

Information encoded in allallallall pixels
Automatically includes peaks and voids
Multi-scale approach
Avoids the problem of defining peaks and voids
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Inference with HOS
Use cosmoSLICS simulations: suite designed for the analysis of WL data beyond the standard 2pt cosmic
shear

cosmoSLICS cover a wide parameter space in Ωm, σ8, w0, h .[ ]
For Bayesian inferenceBayesian inferenceBayesian inferenceBayesian inference → use a Gaussian Gaussian Gaussian Gaussian likelihoodlikelihoodlikelihoodlikelihood for a cosmology independent covariance, and a flatflatflatflat
priorpriorpriorprior.

To have a prediction of each HOS given a new set of given a new set of given a new set of given a new set of parametersparametersparametersparameters→ employ an interpolation with
Gaussian Process RegressorGaussian Process RegressorGaussian Process RegressorGaussian Process Regressor (GPR)
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Noise & Covariance
We consider GaussianGaussianGaussianGaussian, but non-whitenon-whitenon-whitenon-white noise → the noise depends on the number of galaxiesnumber of galaxiesnumber of galaxiesnumber of galaxies in each
pixel

We incorporate masksmasksmasksmasks
Calculate covariance:

Starlet filter tends to make the covariance matrix more diagonalStarlet filter tends to make the covariance matrix more diagonalStarlet filter tends to make the covariance matrix more diagonalStarlet filter tends to make the covariance matrix more diagonal

=𝜎𝑛
𝜎𝜖

2𝑛gal𝐴pix‾ ‾‾‾‾‾‾‾√

, ==𝐶𝑖𝑗 ∑
𝑟=1

𝑁 ( − ) ( − )𝑥𝑟
𝑖 𝜇𝑖 𝑥𝑟

𝑗 𝜇𝑗

𝑁 − 1 𝜇𝑖
1
𝑁 ∑

𝑟
𝑥𝑟

𝑖
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From data to contours

Data

Constraints on parameters

MCMC

: expected theoretical prediction, : data array (mean over realizations of a HOS), : covariance matrix
𝜇 𝑑 𝐶 24
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The (standard) mono-scale peak counts
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Wavelet multi-scale peak counts
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New mass mapping method
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New mass mapping method
There is still no optimal mass mapping method for the analysis of large surveys. We need a method that is:

AccurateAccurateAccurateAccurate (small MSE and error bars)
FastFastFastFast and efficientefficientefficientefficient → point point point point estimatesestimatesestimatesestimates instead of sampling from posterior
Uncertainty boundsUncertainty boundsUncertainty boundsUncertainty bounds
Does not need retrainingretrainingretrainingretraining for each new maskmaskmaskmask or noise levelnoise levelnoise levelnoise level
FlexibleFlexibleFlexibleFlexible and adaptableadaptableadaptableadaptable to different cosmologies
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New mass mapping method

Our proposalOur proposalOur proposalOur proposal

Create new method, based on Plug-and-Play algorithmsCreate new method, based on Plug-and-Play algorithmsCreate new method, based on Plug-and-Play algorithmsCreate new method, based on Plug-and-Play algorithms
Framework for solving image recovery problems by combining physical physical physical physical modelsmodelsmodelsmodels and learnedlearnedlearnedlearned
modelsmodelsmodelsmodels
Use regularized optimization techniques +  (deep) image denoiser, which is used to impose a prior
on the solution.

There is still no optimal mass mapping method for the analysis of large surveys. We need a method that is:
AccurateAccurateAccurateAccurate (small MSE and error bars)
FastFastFastFast and efficientefficientefficientefficient → point point point point estimatesestimatesestimatesestimates instead of sampling from posterior
Uncertainty boundsUncertainty boundsUncertainty boundsUncertainty bounds
Does not need retrainingretrainingretrainingretraining for each new maskmaskmaskmask or noise levelnoise levelnoise levelnoise level
FlexibleFlexibleFlexibleFlexible and adaptableadaptableadaptableadaptable to different cosmologies
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ResultsResultsResultsResults

Created pipeline for HOS analysis of weak lensing catalogs
Implemented it to show that the choice of the mass mapping choice of the mass mapping choice of the mass mapping choice of the mass mapping algorithm algorithm algorithm algorithm has a significanthas a significanthas a significanthas a significant
impact on the cosmological constraintsimpact on the cosmological constraintsimpact on the cosmological constraintsimpact on the cosmological constraints

Future workFuture workFuture workFuture work

Add DL methods DL methods DL methods DL methods to the pipeline
Use the pipeline for a HOS analysis of UNIONS dataUNIONS dataUNIONS dataUNIONS data
Develop PnP mass mapping methodPnP mass mapping methodPnP mass mapping methodPnP mass mapping method
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