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| General Idea

Create a pipeline:

Weak lensing
catalogue

Cosmological

Pipeline
parameters

e Use it to investigate the impact of mass mapping algorithms on cosmology constraints.
e Use it on UNIONS/CFIS data to get observational constraints on cosmology.
e Use it to test novel mass mapping methods
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| Introduction - Weak Lensing
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| Introduction - Weak Lensing

o WL = Observational technique in cosmology for
studying the matter distribution in the universe

 Principle: deflection of light from distant galaxies (3 Pl weak
by gravitational fields — causes image distortion . . : . lensing

: : _ detected

o Weak — subtle & coherent distortions of v only via
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background galaxy shapes analysis
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| Introduction - Weak Lensing

o WL = Observational technique in cosmology for
studying the matter distribution in the universe

 Principle: deflection of light from distant galaxies (3 Pl weak
by gravitational fields — causes image distortion . . : . lensing

: : _ detected

o Weak — subtle & coherent distortions of v only via

statistical
background galaxy shapes analysis

I \ - \ - . \ distorted linht-rave \

= WL provides a direct measurement of the gravitational distortion.

= WL enables us to probe the cosmic structure, investigate the nature of dark matter, and constrain
cosmological parameters.
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| Shear & Convergence

Convergence x Shear y

1 1 1
K= 5(010, +0y0)p = SV 71 = 50101 = 000y, 73 = 0,0,y

— can be measured by statistical analysis of
galaxy shapes




- /| ‘Shear estimation
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(pixelated)

Propagation through the Earth's
—haumosphere and telescope optics

Reatisation on detector

Galaxias

Propagation through the Universe

Galaxy shapes as estimators for gravitational shear

e=yte; with e; ~ N(0, )

« We are trying the measure the ellipticity e of galaxies as an estimator for the gravitational shear
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Direct physical interpretation — x: dimensionless measure of the'surface mass
density along LOS '

x=map shows the LSS of the Universe — allows comparisons with other tracers of
matter distribution

g
Probes dark matter and its properties directly

Easier to work with than shear: scalar quantity instead of spin-2 field
Allows higher order statistics in a convenient way

Cosmological parameter estimations — can be used'to constrain cosmological
parameters .
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| Relation between x and y

Shear map Lensing Mass map
e potential T s B

« From convergence to shear: y, = Px

« From shear to convergence: x = Py, + P,y,
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| Kaiser-Squires inversion

Advantages:

o Simple linear operator
 Very easy to implement in Fourier space
e Optimal, in theory




| Kaiser-Squires inversion

Advantages:

o Simple linear operator
 Very easy to implement in Fourier space
e Optimal, in theory

Practical difficulties:

o Shear measurements are discrete, noisy,
and irregularly sampled

o We actually measure the reduced shear:
g=y/(1-x)

« Masks and integration over a subset of R?
lead to border errors = missing data
problem

« Convergence is recoverable up to a constant
= mass-sheet degeneracy problem
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| Bayesian reconstruction

o Mass mapping problem — statistical inference problem
e Goal: infer most probable value of x-field given observed shear data
p | 3, M) & p(y | &, M) p(x | M)

Posterior likelihood prior

M: cosmological model




| Bayesian reconstruction

o Mass mapping problem — statistical inference problem
e Goal: infer most probable value of x-field given observed shear data
p | 3, M) & p(y | &, M) p(x | M)

Posterior likelihood prior

M: cosmological model

= Likelihood distribution: prob. of observing y data given true x = encodes the forward process of the
model — contains the physics

= Prior distribution: encodes the knowledge about the signal before observing data

= Log-likelihood (when the noise is white Gaussian)

1 .
logp(y | k) = — E(y - F *PFK) 1 z 1(3} - F *PFK) + constant

= Maximum A Posteriori solution

x = arg max logp(y|x) + logp(x)

X




| Wiener filter

e Assumes prior on — Gaussian random field

K
o Likelihood (assuming uncorrelated, Gaussian ng?sae S—(> E)ilSO G/ﬂii

exp ( 1grs! 1%)

(r1x) LO (y — Ax)'N™!
» The Gaussian prior encodes the assumption that the fluctuations in %)hg'-ﬁeld aré 1Yjescrl egl bK/ a

Gaussian random field, with power spectrum given by the cosmological model

Convergence power spectrum

(R(k)&*(K')) = 2n)*6p(k — k') P (k)

Stat. measure of the spatial distribution of the convergence field = quantifies the amplitude of the
fluctuations in k as function of their spatial scale




| Wiener filter

Wiener solution of the inverse problem

’ewiener = arg mKin ”2_1/2 (7 — F*PFK> ”z + lOg DPGaussian (

o This solution corresponds to the maximum a posteriori (MAP) solution under the assumption of a
Gaussian prior on, and it matches the mean of the Gaussian posterior.
K

Wiener reconstruction

Ruiener = SPT[PSPT +N|'7




| Sparse recovery

« Decomposes the signal into another domain (dictionary), where it is sparse

« Implement the wavelet transform — decomposes the signal into wavelet functions (waveforms of limited
duration with an average value of zero)

0.0010

0.0008

o Use starlet wavelets — represent well structures resembling the of a DM halo (positive & isotropic)
K
« The application of sparsity prior enforces a cosmological model where the matter field is a combination of
spherically symmetric DM halos




| MCALens

e Models -field as a sum of a Gaussian and non-Gaussian component
K

K= KNG + KG
—— — N— —

Standard Wlener filter approacil Modlﬁed wavelet approach
main 1l A (- 7] A

JUSEDUY ” / LR \I\U 1 IX!VU/ ”L | \./U \ILU} | \./lVU \lxj\
KG,KNG

¢ MCA (morphological Component Analysis) performs an alternating minimization scheme:

= Estimate assuming is known:
KG KNG

- 2
. . min [|(y — Axne) — Axglls, + Ca (kG)
» Estimate assuming is known: kG

KNG KG

min ||(y — Axg) — Axna |2 + Cng (KnG)
KNG
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| Overview of mass mapping methods

Wiener filter: Prior on « = Gaussian random field, Likelihood — Gaussian, Solution — corresponds to MAP
for gaussian «

Sparse recovery: Prior on x — sparse in wavelet basis, Enforces model where matter field is a combination
of DM halos

MCALens: Models x-field as sum of a Gaussian and a non-Gaussian component, Uses Morphological
Component Analysis

Deep Learning Methods:
= DeepMass: CNN with a U-Net-based architecture, prior from simulations
= DeepPosterior: Probabilistic mass mapping with deep generative models, Prior from 2pt statistics
modelling at large scales & Deep Learning on simulations for small scales, Sampling with Annealed HMC




| Mass mapping methods:

True K-map Kaiser-Squires ; [terative Kaiscr—Sircs
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| Higher Order Statistics: Peak Counts

Second Order Higher Order

Peak Counts

« Peaks: local maxima of the SNR field W # k) (Oker)

) o filt , )
« Peaks trace regions where the value of is high 3nthey are associated to massive structures
K
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o We consider a multi-scale analysis compared to a single-scale analysis
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| Wavelet peaks

o We consider a multi-scale analysis compared to a single-scale analysis
o Apply (instead of Gaussian filter) a starlet transform — allows us to represent an image 7 as a sum of
wavelet coefficient images and a coarse resolution image

o A R SIS I
A A A R Lt N Vel N

« Allows for the simultaneous processing of data at different scales — efficiency
« Each wavelet band covers a different frequency range, which leads to an almost diagonal peak count
covariance matrix




What happens if we consider all pixels instead of
selecting multi-scale minima and maxima?




| starlet -norm

Z1




Starlet £,-norm

e New higher order summary statistic for weak lensing observables
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» New higher order summary statistic for weak lensing observables
e Provides a fast multi-scale calculation of the full void and peak distribution
 ¢,-norm = sum of absolute values of the starlet decomposition coefficients of a weak lensing map

\# coef(Sl-J)

gi- Y ‘Sj,i[u]‘:”Sj,i“],Sj,i:{wj,k/Bin,kBi+1}

u=1




Starlet £,-norm

e New higher order summary statistic for weak lensing observables
e Provides a fast multi-scale calculation of the full void and peak distribution
 ¢,-norm = sum of absolute values of the starlet decomposition coefficients of a weak lensing map

g »

\# coef(Sl-,/.)

S

j,i[u]‘ =S. | Sj,i = {Wj,k/Bin,kBiH}

j,il>

u=1

Information encoded in all pixels
Automatically includes peaks and voids

Multi-scale approach
Avoids the problem of defining peaks and voids
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| Inference with HOS

Use cosmoSLICS simulations: suite designed for the analysis of WL data beyond the standard 2pt cosmic
shear

cosmoSLICS cover a wide parameter space in [Qm, Og, Wo h].

For Bayesian inference — use a Gaussian likelihood for a cosmology independent covariance, and a flat
prior.

To have a prediction of each HOS given a new set of parameters— employ an interpolation with
Gaussian Process Regressor (GPR)




| Noise & Covariance

« We consider Gaussian, but non-white noise — the noise depends on the number of galaxies in each
pixel

e We incorporate masks
e Calculate covariance:

Covariance Matrix of Peak Counts

Starlet filter tends to make the covariance matrix more diagonal




| From data to contours

Constraints on parameters

— Power Spectrum
Peaks Gaussian
Peaks Starlet

log £(6) = —; [d— pu(0)]" 71 [d — pu(8)]

MCMC

o : expected theoretical prediction, : data array (mean over realizations of a HOS), : covariance matrix
J7; d C




So does the choice of the mass mapping algorithm
matter for the final constraints?




| The (standard) mono-scale peak counts

e KS
I Wiener
B MCALens




| Wavelet multi-scale peak counts

e KS
I Wiener
I MCALens
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There is still no optimal mass mapping method for the analysis of large surveys. We need a method that is:
Accurate (small MSE and error bars)

Fast and efficient — point estimates instead of sampling from posterior
Uncertainty bounds

Does not need retraining for each new mask or noise level

Flexible and adaptable to different cosmologies




| New mass mapping method

There is still no optimal mass mapping method for the analysis of large surveys. We need a method that is:
Accurate (small MSE and error bars)

Fast and efficient — point estimates instead of sampling from posterior
Uncertainty bounds

Does not need retraining for each new mask or noise level
Flexible and adaptable to different cosmologies

Our proposal

« Create new method, based on Plug-and-Play algorithms

« Framework for solving image recovery problems by combining physical models and learned
models

« Use regularized optimization techniques + (deep) image denoiser, which is used to impose a prior
on the solution.
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| Conclusions

e Mass mapping is a challenging problem in weak lensing

« Several methods have been developed, each with its advantages and limitations

« HOS provide complementary information to the standard 2pt statistics, and can help extract
more information from the data & break degeneracies

Results

o Created pipeline for HOS analysis of weak lensing catalogs
o Implemented it to show that the choice of the mass mapping algorithm has a significant
impact on the cosmological constraints

Future work

e Add DL methods to the pipeline
e Use the pipeline for a HOS analysis of UNIONS data
» Develop PnP mass mapping method




