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Context and objectives
• Convergence map 𝜿 ∈ ℝ𝐾: isotropic dilation of the galaxy image.

• Proportional to the projected mass along the line of sight.
• Used to constrain cosmological parameters ⇒ variable of interest.
• However, 𝜿 cannot be directly measured.

• Shear map 𝜸 ∈ ℂ𝐾: anisotropic stretching of the galaxy image.
• Relationship between shear and convergence maps: 𝜸 = 𝐀𝜿, with 𝐀 ∈ ℝ𝐾×𝐾 (known).

Source galaxy, unlensed Convergence + shear
𝜅 = 1 and 𝛾 = 0.1 − 0.3 𝑖

Convergence only
𝜅 = 1
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Context and objectives
• Convergence map 𝜿 ∈ ℝ𝐾: isotropic dilation of the galaxy image.

• Proportional to the projected mass along the line of sight.
• Used to constrain cosmological parameters ⇒ variable of interest.
• However, 𝜿 cannot be directly measured.

• Shear map 𝜸 ∈ ℂ𝐾: anisotropic stretching of the galaxy image.
• Relationship between shear and convergence maps: 𝜸 = 𝐀𝜿, with 𝐀 ∈ ℝ𝐾×𝐾 (known).

Source galaxy, unlensed Convergence + shear
𝜅 = 1 and 𝛾 = 0.1 − 0.3 𝑖

Convergence only
𝜅 = 1

After mean-centering 
(mass-sheet degeneracy)
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1 K. Osato, J. Liu, and Z. Haiman, “κTNG: effect of baryonic processes on weak lensing with IllustrisTNG simulations,” Monthly Notices of 
the Royal Astronomical Society, vol. 502, no. 4, pp. 5593–5602, Apr. 2021

Context and objectives
Example with the κTNG simulated dataset1

Simulated convergence map Corresponding shear map (real and imaginary parts)

• As for the convergence map 𝜿, the true shear map 𝜸 cannot be directly measured.

• Unbiased estimator of 𝜸, obtained by measuring galaxy ellipticities: 𝜸 ⟵ 𝝐 − 𝝐

• Relation between 𝜸 (observable) and 𝜿 (quantity of interest):

𝜸 = 𝐀𝜿 + 𝒏,

with noise 𝒏 assumed Gaussian, zero-centered and with diagonal covariance matrix 𝚺.

• Noise level (standard deviation per pixel): 𝚺 𝑘, 𝑘 = σ/𝑁𝑘.
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1 K. Osato, J. Liu, and Z. Haiman, “κTNG: effect of baryonic processes on weak lensing with IllustrisTNG simulations,” Monthly Notices of 
the Royal Astronomical Society, vol. 502, no. 4, pp. 5593–5602, Apr. 2021

Context and objectives
Example with the κTNG simulated dataset1

Simulated convergence map Corresponding shear map (real and imaginary parts)

• As for the convergence map 𝜿, the true shear map 𝜸 cannot be directly measured.

• Unbiased estimator of 𝜸, obtained by measuring galaxy ellipticities: 𝜸 ⟵ 𝝐 − 𝝐

• Relation between 𝜸 (observable) and 𝜿 (quantity of interest):

𝜸 = 𝐀𝜿 + 𝒏,

with noise 𝒏 assumed Gaussian, zero-centered and with diagonal covariance matrix 𝚺.

• Noise level (standard deviation per pixel): 𝚺 𝑘, 𝑘 = σ/𝑁𝑘.
Intrinsic ellipticity (std)

Nb measured galaxies
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Context and objectives
Noisy shear maps (noise variance taken from the COSMOS shape catalog1)

Objective: given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

• Over which uncertainties the expected value is calculated?

1 https://astro.uni-bonn.de/en/m/schrabba/research

Simulated convergence map Corresponding shear map with noise (real and imaginary parts)
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Context and objectives
Noisy shear maps (noise variance taken from the COSMOS shape catalog1)

Objective: given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

• Over which uncertainties the expected value is calculated?

1 https://astro.uni-bonn.de/en/m/schrabba/research

Expected miscoverage rate
(% of pixels outside the bounds)

Simulated convergence map Corresponding shear map with noise (real and imaginary parts)
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Context and objectives
Noisy shear maps (noise variance taken from the COSMOS shape catalog1)

Objective: given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

• Over which uncertainties the expected value is calculated?

1 https://astro.uni-bonn.de/en/m/schrabba/research

Confidence level ∈ 0, 1

Simulated convergence map Corresponding shear map with noise (real and imaginary parts)
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Context and objectives
Noisy shear maps (noise variance taken from the COSMOS shape catalog1)

Objective: given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

• Over which uncertainties the expected value is calculated?

1 https://astro.uni-bonn.de/en/m/schrabba/research

May be random

Simulated convergence map Corresponding shear map with noise (real and imaginary parts)
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Context and objectives
Noisy shear maps (noise variance taken from the COSMOS shape catalog1)

Objective: given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

• Over which uncertainties the expected value is calculated?

1 https://astro.uni-bonn.de/en/m/schrabba/research

Depends on 𝜸 = 𝐀𝜿 + 𝒏

Simulated convergence map Corresponding shear map with noise (real and imaginary parts)
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Context and objectives
Noisy shear maps (noise variance taken from the COSMOS shape catalog1)

Objective: given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

• Over which uncertainties the expected value is calculated?

1 https://astro.uni-bonn.de/en/m/schrabba/research

Depends on 𝜸 = 𝐀𝜿 + 𝒏

Two sources of randomness

Simulated convergence map Corresponding shear map with noise (real and imaginary parts)

35

4



Proposed approach

1. Compute a point estimate ෝ𝜿 and a residual ො𝒓 using three mass mapping 
methods:

a. Kaiser-Squires inversion;1

b. iterative Wiener filtering;2

c. MCALens.3

2. Set initial bounds:
ෝ𝜿− ≔ ෝ𝜿 − ො𝒓 and    ෝ𝜿+ ≔ ෝ𝜿 + ො𝒓

3. Post-processing: adjust residual ො𝒓 using a calibration set.

→ Distribution-free UQ, does not assume any prior distribution on 𝜿.

→Works for any blackbox prediction method, including deep learning.

1 N. Kaiser and G. Squires, “Mapping the dark matter with weak gravitational lensing,” Astrophysical Journal, vol. 404, no. 2, pp. 
441–450, 1993
2 J. Bobin, J.-L. Starck, F. Sureau, and J. Fadili, “CMB Map Restoration,” Advances in Astronomy, vol. 2012, p. e703217, Apr. 2012
3 J.-L. Starck, K. E. Themelis, N. Jeffrey, A. Peel, and F. Lanusse, “Weak-lensing mass reconstruction using sparsity and a Gaussian 
random field,” A&A, vol. 649, p. A99, May 2021
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• Reminder: problem to solve: 𝜸 = 𝐀𝜿 + 𝒏, with 𝒏 ~𝒩(𝟎, 𝚺).

• Case 1: linear operator: ෝ𝜿 = 𝐁𝜸.
ෝ𝜿 = 𝐁𝐀𝜿 + 𝐁𝒏

ෝ𝜿 | 𝜿 ∼ 𝒩 𝐁𝐀𝜿,𝐁𝚺𝐁∗

• Hypothesis: ෝ𝜿 unbiased estimator of 𝜿, i.e., 𝐁𝐀𝜿 = 𝜿.

• Then, residual 𝒓 obtained by considering 1D marginal distributions.
𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ | 𝜿 ≤ 𝛼

• What if hypothesis does not hold?
• Kaiser-Squires: 𝐁 = 𝐒𝐀†

• Wiener: wrong if 𝑝 𝜿 is small → assumes Gaussian prior

• Proposed solution: postprocessing step with calibration.

Uncertainty estimation before calibration

37

6



• Reminder: problem to solve: 𝜸 = 𝐀𝜿 + 𝒏, with 𝒏 ~𝒩(𝟎, 𝚺).

• Case 1: linear operator: ෝ𝜿 = 𝐁𝜸.
ෝ𝜿 = 𝐁𝐀𝜿 + 𝐁𝒏

ෝ𝜿 | 𝜿 ∼ 𝒩 𝐁𝐀𝜿,𝐁𝚺𝐁∗

• Hypothesis: ෝ𝜿 unbiased estimator of 𝜿, i.e., 𝐁𝐀𝜿 = 𝜿.

• Then, residual 𝒓 obtained by considering 1D marginal distributions.
𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ | 𝜿 ≤ 𝛼

• What if hypothesis does not hold?
• Kaiser-Squires: 𝐁 = 𝐒𝐀†

• Wiener: wrong if 𝑝 𝜿 is small → assumes Gaussian prior

• Proposed solution: postprocessing step with calibration.

Uncertainty estimation before calibration

Diagonal elements only
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• Reminder: problem to solve: 𝜸 = 𝐀𝜿 + 𝒏, with 𝒏 ~𝒩(𝟎, 𝚺).

• Case 1: linear operator: ෝ𝜿 = 𝐁𝜸.
ෝ𝜿 = 𝐁𝐀𝜿 + 𝐁𝒏

ෝ𝜿 | 𝜿 ∼ 𝒩 𝐁𝐀𝜿,𝐁𝚺𝐁∗

• Hypothesis: ෝ𝜿 unbiased estimator of 𝜿, i.e., 𝐁𝐀𝜿 = 𝜿.

• Then, residual 𝒓 obtained by considering 1D marginal distributions.
𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ | 𝜿 ≤ 𝛼

• What if hypothesis does not hold?
• Kaiser-Squires: 𝐁 = 𝐒𝐀†

• Wiener: wrong if 𝑝 𝜿 is small → assumes Gaussian prior

• Proposed solution: postprocessing step with calibration.

Uncertainty estimation before calibration

Expected value conditionally to 𝜿
→ 𝒏 only source of randomness
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• Reminder: problem to solve: 𝜸 = 𝐀𝜿 + 𝒏, with 𝒏 ~𝒩(𝟎, 𝚺).

• Case 2: nonlinear operator (MCALens): ෝ𝜿 = 𝐁 𝜸 × 𝜸.

• Hypothesis: 𝐁 𝜸 stable to noise realizations 𝒏:
𝐁 𝜸 ≈ 𝐁 𝐀𝜿

→ Back to case 1 with 𝐁 ← 𝐁 𝐀𝜿 (linear operator if 𝜿 is fixed).

Uncertainty estimation before calibration
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Point estimate and uncertainty bounds
Kaiser-Squires

Point estimate Lower bound Upper bound
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Point estimate and uncertainty bounds
Kaiser-Squires

Point estimate Lower bound Upper bound

Mask not properly handled, excluded from results
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Point estimate and uncertainty bounds
Kaiser-Squires

Point estimate Lower bound Upper bound

Undetected features outside 
survey boundaries
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Point estimate and uncertainty bounds
Kaiser-Squires

Point estimate Lower bound Upper bound

Miscoverage for high-density regions: 
ground truth larger than upper bound
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Point estimate and uncertainty bounds
Wiener

Point estimate Lower bound Upper bound
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Point estimate and uncertainty bounds
Wiener

Point estimate Lower bound Upper bound

Miscoverage for high-density regions: 
ground truth larger than upper bound
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Point estimate and uncertainty bounds
MCALens

Point estimate Lower bound Upper bound
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Point estimate and uncertainty bounds
MCALens

Point estimate Lower bound Upper bound

Higher uncertainty near high-density regions
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Point estimate and uncertainty bounds
MCALens

Point estimate Lower bound Upper bound

Ground truth smaller that lower 
bound. Hallucination?
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Results before calibration

• Target: 2𝜎-confidence (𝛼 ≈ 4.6%).

• MSE and rate of ill-predicted pixels 
computed on a test set of 125 images.

Predictions are way above target!

→ Undercoverage

→ Calibration needed

Mean square error

Miscoverage rate
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Calibration methods

Objective (reminder): given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

Two postprocessing calibration methods:

• Conformalized quantile regression (CQR);1

• Risk-controlling prediction sets (RCPS).2

General principles: consider a calibration set 𝜸𝑖 , 𝜿𝑖 𝑖=1
𝑛 .

1. Compute point estimates ෝ𝜿𝑖 and residuals ො𝒓𝑖 for each input;

2. Compute a calibration parameter 𝜆 from ෝ𝜿𝑖 , ො𝒓𝑖 , 𝜿𝑖 𝑖=1
𝑛 and 𝛼;

3. Adjust the residual ො𝒓, using a calibration function 𝑔𝜆.

1 Y. Romano, E. Patterson, and E. Candès, “Conformalized Quantile Regression,” NeurIPS, 2019

2 A. N. Angelopoulos et al., “Image-to-Image Regression with Distribution-Free UQ and Applications in Imaging,” ICML, 2022

Ƹ𝜅

Ƹ𝜅+

Ƹ𝜅−
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Calibration methods

Objective (reminder): given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

Two postprocessing calibration methods:

• Conformalized quantile regression (CQR);1

• Risk-controlling prediction sets (RCPS).2

General principles: consider a calibration set 𝜸𝑖 , 𝜿𝑖 𝑖=1
𝑛 .

1. Compute point estimates ෝ𝜿𝑖 and residuals ො𝒓𝑖 for each input;

2. Compute a calibration parameter 𝜆 from ෝ𝜿𝑖 , ො𝒓𝑖 , 𝜿𝑖 𝑖=1
𝑛 and 𝛼;

3. Adjust the residual ො𝒓, using a calibration function 𝑔𝜆.

1 Y. Romano, E. Patterson, and E. Candès, “Conformalized Quantile Regression,” NeurIPS, 2019

2 A. N. Angelopoulos et al., “Image-to-Image Regression with Distribution-Free UQ and Applications in Imaging,” ICML, 2022

Ƹ𝜅

Ƹ𝜅+

Ƹ𝜅−

Ƹ𝑟
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Calibration methods

Objective (reminder): given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

Two postprocessing calibration methods:

• Conformalized quantile regression (CQR);1

• Risk-controlling prediction sets (RCPS).2

General principles: consider a calibration set 𝜸𝑖 , 𝜿𝑖 𝑖=1
𝑛 .

1. Compute point estimates ෝ𝜿𝑖 and residuals ො𝒓𝑖 for each input;

2. Compute a calibration parameter 𝜆 from ෝ𝜿𝑖 , ො𝒓𝑖 , 𝜿𝑖 𝑖=1
𝑛 and 𝛼;

3. Adjust the residual ො𝒓, using a calibration function 𝑔𝜆.

1 Y. Romano, E. Patterson, and E. Candès, “Conformalized Quantile Regression,” NeurIPS, 2019

2 A. N. Angelopoulos et al., “Image-to-Image Regression with Distribution-Free UQ and Applications in Imaging,” ICML, 2022

Ƹ𝜅

Ƹ𝜅+

Ƹ𝜅−

𝑔𝜆 Ƹ𝑟
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Calibration methods

Objective (reminder): given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

Two postprocessing calibration methods:

• Conformalized quantile regression (CQR);1

• Risk-controlling prediction sets (RCPS).2

General principles: consider a calibration set 𝜸𝑖 , 𝜿𝑖 𝑖=1
𝑛 .

1. Compute point estimates ෝ𝜿𝑖 and residuals ො𝒓𝑖 for each input;

2. Compute a calibration parameter 𝜆 from ෝ𝜿𝑖 , ො𝒓𝑖 , 𝜿𝑖 𝑖=1
𝑛 and 𝛼;

3. Adjust the residual ො𝒓, using a calibration function 𝑔𝜆.

1 Y. Romano, E. Patterson, and E. Candès, “Conformalized Quantile Regression,” NeurIPS, 2019

2 A. N. Angelopoulos et al., “Image-to-Image Regression with Distribution-Free UQ and Applications in Imaging,” ICML, 2022

Ƹ𝜅

Ƹ𝜅+

Ƹ𝜅−

𝑔𝜆 Ƹ𝑟

E.g., 𝑔𝜆 Ƹ𝑟 = Ƹ𝑟 + 𝜆
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Calibration methods

Objective (reminder): given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

Two postprocessing calibration methods:

• Conformalized quantile regression (CQR);1

• Risk-controlling prediction sets (RCPS).2

General principles: consider a calibration set 𝜸𝑖 , 𝜿𝑖 𝑖=1
𝑛 .

1. Compute point estimates ෝ𝜿𝑖 and residuals ො𝒓𝑖 for each input;

2. Compute a calibration parameter 𝜆 from ෝ𝜿𝑖 , ො𝒓𝑖 , 𝜿𝑖 𝑖=1
𝑛 and 𝛼;

3. Adjust the residual ො𝒓, using a calibration function 𝑔𝜆.

1 Y. Romano, E. Patterson, and E. Candès, “Conformalized Quantile Regression,” NeurIPS, 2019

2 A. N. Angelopoulos et al., “Image-to-Image Regression with Distribution-Free UQ and Applications in Imaging,” ICML, 2022

Ƹ𝜅

𝑔𝜆 Ƹ𝑟

Ƹ𝜅𝜆
+

Ƹ𝜅𝜆
−
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Calibration methods

Objective (reminder): given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

Two postprocessing calibration methods:

• Conformalized quantile regression (CQR);1

• Risk-controlling prediction sets (RCPS).2

General principles: consider a calibration set 𝜸𝑖 , 𝜿𝑖 𝑖=1
𝑛 .

1. Compute point estimates ෝ𝜿𝑖 and residuals ො𝒓𝑖 for each input;

2. Compute a calibration parameter 𝜆 from ෝ𝜿𝑖 , ො𝒓𝑖 , 𝜿𝑖 𝑖=1
𝑛 and 𝛼;

3. Adjust the residual ො𝒓, using a calibration function 𝑔𝜆.

1 Y. Romano, E. Patterson, and E. Candès, “Conformalized Quantile Regression,” NeurIPS, 2019

2 A. N. Angelopoulos et al., “Image-to-Image Regression with Distribution-Free UQ and Applications in Imaging,” ICML, 2022

Ƹ𝜅

𝑔𝜆 Ƹ𝑟

Ƹ𝜅𝜆
+

Ƹ𝜅𝜆
−

Works for any blackbox predictor!
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Calibration methods
Comparative table

CQR RCPS

Calibration parameter 𝜆 Different for each pixel Shared over the whole image

Calculated using The (1 − 𝛼) 1 + 1/𝑛 -th quantile of a 
conformity score

Hoeffding’s upper confidence bound

Depends on 𝛼, 𝑛 𝛼, 𝛿, 𝑛

Theoretical guarantees 𝛼 − 1/𝑛 ≤ 𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼 ℙ 𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ | 𝜸𝑖 , 𝜿𝑖 𝑖=1
𝑛 ≤ 𝛼 ≥ 1 − 𝛿
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Calibration methods
Comparative table

CQR RCPS

Calibration parameter 𝜆 Different for each pixel Shared over the whole image

Calculated using The (1 − 𝛼) 1 + 1/𝑛 -th quantile of a 
conformity score

Hoeffding’s upper confidence bound

Depends on 𝛼, 𝑛 𝛼, 𝛿, 𝑛

Theoretical guarantees 𝛼 − 1/𝑛 ≤ 𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼 ℙ 𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ | 𝜸𝑖 , 𝜿𝑖 𝑖=1
𝑛 ≤ 𝛼 ≥ 1 − 𝛿

Additional parameter
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Calibration methods
Comparative table

CQR RCPS

Calibration parameter 𝜆 Different for each pixel Shared over the whole image

Calculated using The (1 − 𝛼) 1 + 1/𝑛 -th quantile of a 
conformity score

Hoeffding’s upper confidence bound

Depends on 𝛼, 𝑛 𝛼, 𝛿, 𝑛

Theoretical guarantees 𝛼 − 1/𝑛 ≤ 𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼 ℙ 𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ | 𝜸𝑖 , 𝜿𝑖 𝑖=1
𝑛 ≤ 𝛼 ≥ 1 − 𝛿

Upper bound: coverage guarantee
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Calibration methods
Comparative table

CQR RCPS

Calibration parameter 𝜆 Different for each pixel Shared over the whole image

Calculated using The (1 − 𝛼) 1 + 1/𝑛 -th quantile of a 
conformity score

Hoeffding’s upper confidence bound

Depends on 𝛼, 𝑛 𝛼, 𝛿, 𝑛

Theoretical guarantees 𝛼 − 1/𝑛 ≤ 𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼 ℙ 𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ | 𝜸𝑖 , 𝜿𝑖 𝑖=1
𝑛 ≤ 𝛼 ≥ 1 − 𝛿

Lower bound: prevents 
overconservative prediction bounds.

Only for CQR!
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Calibration methods
Comparative table

CQR RCPS

Calibration parameter 𝜆 Different for each pixel Shared over the whole image

Calculated using The (1 − 𝛼) 1 + 1/𝑛 -th quantile of a 
conformity score

Hoeffding’s upper confidence bound

Depends on 𝛼, 𝑛 𝛼, 𝛿, 𝑛

Theoretical guarantees 𝛼 − 1/𝑛 ≤ 𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼 ℙ 𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ | 𝜸𝑖 , 𝜿𝑖 𝑖=1
𝑛 ≤ 𝛼 ≥ 1 − 𝛿

Three sources of randomness:
• ground-truth convergence maps 𝜿;
• noise 𝒏, since 𝜸 = 𝐀𝜿 + 𝒏;
• calibration set 𝜸𝑖, 𝜿𝑖 𝑖=1

𝑛 .
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Calibration methods
Comparative table

CQR RCPS

Calibration parameter 𝜆 Different for each pixel Shared over the whole image

Calculated using The (1 − 𝛼) 1 + 1/𝑛 -th quantile of a 
conformity score

Hoeffding’s upper confidence bound

Depends on 𝛼, 𝑛 𝛼, 𝛿, 𝑛

Theoretical guarantees 𝛼 − 1/𝑛 ≤ 𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼 ℙ 𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ | 𝜸𝑖 , 𝜿𝑖 𝑖=1
𝑛 ≤ 𝛼 ≥ 1 − 𝛿

CQR: expected value computed over:
• ground-truth convergence maps 𝜿;
• noise 𝒏, since 𝜸 = 𝐀𝜿 + 𝒏;
• calibration set 𝜸𝑖, 𝜿𝑖 𝑖=1

𝑛 .
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Calibration methods
Comparative table

CQR RCPS

Calibration parameter 𝜆 Different for each pixel Shared over the whole image

Calculated using The (1 − 𝛼) 1 + 1/𝑛 -th quantile of a 
conformity score

Hoeffding’s upper confidence bound

Depends on 𝛼, 𝑛 𝛼, 𝛿, 𝑛

Theoretical guarantees 𝛼 − 1/𝑛 ≤ 𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼 ℙ 𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ | 𝜸𝑖 , 𝜿𝑖 𝑖=1
𝑛 ≤ 𝛼 ≥ 1 − 𝛿

RCPS: expected value computed over:
• ground-truth convergence maps 𝜿;
• noise 𝒏, since 𝜸 = 𝐀𝜿 + 𝒏;
• calibration set 𝜸𝑖, 𝜿𝑖 𝑖=1

𝑛 .

Fixed calibration set
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Calibration methods
Comparative table

CQR RCPS

Calibration parameter 𝜆 Different for each pixel Shared over the whole image

Calculated using The (1 − 𝛼) 1 + 1/𝑛 -th quantile of a 
conformity score

Hoeffding’s upper confidence bound

Depends on 𝛼, 𝑛 𝛼, 𝛿, 𝑛

Theoretical guarantees 𝛼 − 1/𝑛 ≤ 𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼 ℙ 𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ | 𝜸𝑖 , 𝜿𝑖 𝑖=1
𝑛 ≤ 𝛼 ≥ 1 − 𝛿

RCPS: expected value computed over:
• ground-truth convergence maps 𝜿;
• noise 𝒏, since 𝜸 = 𝐀𝜿 + 𝒏;
• calibration set 𝜸𝑖, 𝜿𝑖 𝑖=1

𝑛 .

Controls the risk of 
selecting a statistically 
deviant calibration set
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Calibration methods
Comparative table

CQR RCPS

Calibration parameter 𝜆 Different for each pixel Shared over the whole image

Calculated using The (1 − 𝛼) 1 + 1/𝑛 -th quantile of a 
conformity score

Hoeffding’s upper confidence bound

Depends on 𝛼, 𝑛 𝛼, 𝛿, 𝑛

Theoretical guarantees 𝛼 − 1/𝑛 ≤ 𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼 ℙ 𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ | 𝜸𝑖 , 𝜿𝑖 𝑖=1
𝑛 ≤ 𝛼 ≥ 1 − 𝛿

RCPS: expected value computed over:
• ground-truth convergence maps 𝜿;
• noise 𝒏, since 𝜸 = 𝐀𝜿 + 𝒏;
• calibration set 𝜸𝑖, 𝜿𝑖 𝑖=1

𝑛 .

Controls the risk of 
selecting a statistically 
deviant calibration set

Condition for theoretical guarantees: exchangeability of calibration and test data.
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Results
Miscoverage rate

• Calibration set of 100 images from 𝜅TNG 
simulations

• Test set of 125 images from 𝜅TNG simulations
• Target: 𝛼 ≈ 4,6% (2𝜎-confidence)
• CQR: the minimal size depends on the desired 

confidence level:
2𝜎-confidence → 𝑛min = 21
3𝜎-confidence → 𝑛min = 370
4𝜎-confidence → 𝑛min = 15 787
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Results
Miscoverage rate

• Calibration set of 100 images from 𝜅TNG 
simulations

• Test set of 125 images from 𝜅TNG simulations
• Target: 𝛼 ≈ 4,6% (2𝜎-confidence)
• CQR: the minimal size depends on the desired 

confidence level:
2𝜎-confidence → 𝑛min = 21
3𝜎-confidence → 𝑛min = 370
4𝜎-confidence → 𝑛min = 15 787

C
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Results
Miscoverage rate

• Calibration set of 100 images from 𝜅TNG 
simulations

• Test set of 125 images from 𝜅TNG simulations
• Target: 𝛼 ≈ 4,6% (2𝜎-confidence)
• CQR: the minimal size depends on the desired 

confidence level:
2𝜎-confidence → 𝑛min = 21
3𝜎-confidence → 𝑛min = 370
4𝜎-confidence → 𝑛min = 15 787

C
Q

R

Various calibration 
functions 𝑔𝜆
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Results
Miscoverage rate

• Calibration set of 100 images from 𝜅TNG 
simulations

• Test set of 125 images from 𝜅TNG simulations
• Target: 𝛼 ≈ 4,6% (2𝜎-confidence)
• CQR: the minimal size depends on the desired 

confidence level:
2𝜎-confidence → 𝑛min = 21
3𝜎-confidence → 𝑛min = 370
4𝜎-confidence → 𝑛min = 15 787

C
Q

R

Lower bound 𝛼 − 1/𝑛
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Results
Miscoverage rate

• Calibration set of 100 images from 𝜅TNG 
simulations

• Test set of 125 images from 𝜅TNG simulations
• Target: 𝛼 ≈ 4,6% (2𝜎-confidence)
• CQR: the minimal size depends on the desired 

confidence level:
2𝜎-confidence → 𝑛min = 21
3𝜎-confidence → 𝑛min = 370
4𝜎-confidence → 𝑛min = 15 787

C
Q

R

Upper bound 𝛼
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Results
Miscoverage rate

• Calibration set of 100 images from 𝜅TNG 
simulations

• Test set of 125 images from 𝜅TNG simulations
• Target: 𝛼 ≈ 4,6% (2𝜎-confidence)
• CQR: the minimal size depends on the desired 

confidence level:
2𝜎-confidence → 𝑛min = 21
3𝜎-confidence → 𝑛min = 370
4𝜎-confidence → 𝑛min = 15 787

C
Q

R

Empirical means within the bounds
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Results
Miscoverage rate

• Calibration set of 100 images from 𝜅TNG 
simulations

• Test set of 125 images from 𝜅TNG simulations
• Target: 𝛼 ≈ 4,6% (2𝜎-confidence)
• CQR: the minimal size depends on the desired 

confidence level:
2𝜎-confidence → 𝑛min = 21
3𝜎-confidence → 𝑛min = 370
4𝜎-confidence → 𝑛min = 15 787

C
Q
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Results
Miscoverage rate

• Calibration set of 100 images from 𝜅TNG 
simulations

• Test set of 125 images from 𝜅TNG simulations
• Target: 𝛼 ≈ 4,6% (2𝜎-confidence)
• CQR: the minimal size depends on the desired 

confidence level:
2𝜎-confidence → 𝑛min = 21
3𝜎-confidence → 𝑛min = 370
4𝜎-confidence → 𝑛min = 15 787

C
Q

R
R

C
P

S
Various values of 𝛿
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Results
Miscoverage rate

• Calibration set of 100 images from 𝜅TNG 
simulations

• Test set of 125 images from 𝜅TNG simulations
• Target: 𝛼 ≈ 4,6% (2𝜎-confidence)
• CQR: the minimal size depends on the desired 

confidence level:
2𝜎-confidence → 𝑛min = 21
3𝜎-confidence → 𝑛min = 370
4𝜎-confidence → 𝑛min = 15 787

C
Q

R
R

C
P

S

RCPS overconservative, even 
for large values of 𝛿
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Results
Size of prediction intervals

C
Q

R
R

C
P

S

• Calibration set of 100 images from 𝜅TNG 
simulations

• Test set of 125 images from 𝜅TNG simulations
• Target: 𝛼 ≈ 4,6% (2𝜎-confidence)
• CQR: the minimal size depends on the desired 

confidence level:
2𝜎-confidence → 𝑛min = 21
3𝜎-confidence → 𝑛min = 370
4𝜎-confidence → 𝑛min = 15 787
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Results
Size of prediction intervals

C
Q

R
R

C
P

S

Smallest confidence intervals

• Calibration set of 100 images from 𝜅TNG 
simulations

• Test set of 125 images from 𝜅TNG simulations
• Target: 𝛼 ≈ 4,6% (2𝜎-confidence)
• CQR: the minimal size depends on the desired 

confidence level:
2𝜎-confidence → 𝑛min = 21
3𝜎-confidence → 𝑛min = 370
4𝜎-confidence → 𝑛min = 15 787
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Uncertainty bounds after CQR
Kaiser-Squires

Point estimate Lower bound Upper bound

Miscoverage for high-density regions: 
ground truth larger than upper bound, 

even after calibration
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Uncertainty bounds after CQR
Wiener

Point estimate Lower bound Upper bound
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Uncertainty bounds after CQR
Wiener

Point estimate Lower bound Upper bound

Miscoverage for high-density regions: 
ground truth larger than upper bound,

even after calibration
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Uncertainty bounds after CQR
MCALens

Point estimate Lower bound Upper bound
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Uncertainty bounds after CQR
MCALens

Point estimate Lower bound Upper bound

Higher uncertainty near high-density regions
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Uncertainty bounds after CQR
MCALens

Point estimate Lower bound Upper bound

Still hallucinating
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Discussion
Focus on high-density regions

83

• Theoretical guarantees apply on images 
as a whole. What happens if we focus 
on high density regions?

• Results for pixels where the ground
truth convergence exceeds 0.1 (2.6% of 
total pixels).

Mean square error

Miscoverage rate after calibration

Mean size of prediction intervals after calibration

19



Discussion
Bayesian vs non-parametric UQ

• Bayesian UQ (e.g., Remy et al. 2023,1 Liaudat et al. 20232): aims at 
getting coverage guarantees assuming 𝜿 ∼ 𝜇 for a certain prior 
distribution 𝜇:

𝔼𝜿∼𝜇 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

• In contrast, distribution-free approaches do not assume anything on 
the distribution of 𝜿. We only assume that the simulated convergence 
maps 𝜿𝑖 from the calibration set follow the same oracle distribution 
𝜇∗ as 𝜿 (with exchangeability).

• Bayesian uncertainty bounds could therefore benefit from being 
calibrated using CQR.

1 B. Remy et al., “Probabilistic mass-mapping with neural score estimation,” A&A, vol. 672, p. A51, Apr. 2023
2 T. I. Liaudat et al., “Scalable Bayesian uncertainty quantification with data-driven priors for radio interferometric imaging.” arXiv, Nov. 202384
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Discussion
Inferring cosmological parameters

Cosmological
parameter

Simulated
dataset

Calibration

Reconstructed
mass maps with

uncertainties

• Using simulations from a given 
cosmology may create biases when 
inferring cosmological parameters.

• Idea: each simulated convergence 
map uses its own set of cosmological 
parameters, randomly drawn 
according to a predefined 
distribution.

• Re-introduces distribution 
assumptions, this time over the 
cosmological parameters.
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Conclusion

• Distribution-free UQ for mass mapping: provides coverage guarantees with 
a limited number of calibration examples.

• Works for any mass mapping method, including deep learning → can be 
adapted to more advanced approaches.

• Does not prevent hallucinations, nor undercoverage near high-density 
regions. Possible improvement using conformal prediction masks?1

• Does not assume any prior distribution on the convergence maps, but a 
specific attention is required for the calibration set, especially regarding the 
choice of cosmology from which it is simulated.

• Possible extension: exploit correlation between pixels to get tighter 
confidence regions.2

1 G. Kutiel, R. Cohen, M. Elad, D. Freedman, and E. Rivlin, “Conformal Prediction Masks: Visualizing Uncertainty in Medical Imaging,” presented 
at the ICLR 2023 Workshop on Trustworthy Machine Learning for Healthcare, Apr. 2023

2 O. Belhasin, Y. Romano, D. Freedman, E. Rivlin, and M. Elad, “Principal Uncertainty Quantification with Spatial Correlation for Image 
Restoration Problems.” arXiv, May 17, 2023. 86
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Ευχαριστώ!
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Examples of calibration functions
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