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Component separation with deep learning

Anything you want (fitted mixing
matrix, non linear model.. )

Encoder Decoder

A

X

\
Any loss you want

(a) Blind source separation training procedure.
Webster et al, 2023



Component separation with deep learning

Single channel mixture:
Webster et al, 2023

Single Mixed Image Separation Single Mixed Image Separation

Figure 1: We propose a unified framework for single mixed image separation under an adversarial training paradigm. Our
method can be applied to a variety of real-world tasks, including image deraining, photo reflection removal, image shadow
removal, etc.

(+ regularization term on (non) correlation)



Component separation with deep learning

« Double-DIP »

Image Segmentation
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Figure 1: A unified framework for image decomposition. An image can be viewed as a mixture of “simpler” layers.
Decomposing an image into such layers provides a unified framework for many seemingly unrelated vision tasks (e.g.,
segmentation, dehazing, transparency separation). Such a decomposition can be achieved using “Double-DIP”.

Gandelsman et al, 2018



Component separation with deep learning

« Double-DIP »
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Figure 2: Double-DIP Framework. Two Deep-Image-
Prior netwarks (DIPy & DIPs) jointly decompose an input
image I into its layers (11 & y2). Mixing those layers back
according (o a learned mask m, reconstructs an image I=~I.

Gandelsman et al, 2018



An application to CMB data - CIB removal - SZ extraction

The sky as seen by Planck

e CMB constant weights

e CIB approximated weights
e 1S7 known weights

e Noise Known

e Beam Known

e kSZ constant weights

e Radio freq. > 90GHz

e Foregrounds (CO + dust + radio)

Major issue
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The sky as seen by Planck

e CMB constant weights

e CIB approximated weights
e 1S7 known weights

e Noise Known

e Beam Known

e kSZ constant weights

e Radio freq. > 90GHz

e Foregrounds (CO + dust + radio)

Major issue Not statistically independent

—— {C}} = Bio (1*(CMB+kSZ2) + fi*SZ + CIBi) + Ni
Non linear



An application to CMB data - CIB removal - SZ extraction

— {C} =Bio (1*CMB + fi*SZ + CIBi) + Ni
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An application to CMB data - CIB removal - SZ extraction

Healpix maps from WebSky numerical simulations (Stein et al., 2020):

* 90,100,143, 145, 217, 225, 280, 353, 5345 GHz (Planck and SO)

* Healpix nside=4096
. CMB, CIB (all dust IR emission including Test area (10% of sky)
pOoINt sources), S7.

 NOnNoise no beams

« 100000 patches of 64x64 pixels
(0.8°x0.8°)

Training area




An application to CM.

Results here
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An application to CMB data - CIB removal - SZ extraction
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An application to CMB data - CIB removal - SZ extraction
CIBxSZ:
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An application to CMB data - CIB removal - SZ extraction

Focus on S7 fluxes around clusters:
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Future applications

- CIBremoval tor CO/CII studies (Sias talk)

. Single Channel Mixture for CO/CII separation?

. Foreground removal in radio (SKA) for HI and/or

R




