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INTRODUCTION



OVERVIEW

• Galaxies sampled as discrete points in the Fourier domain

•
V(u, v,w) =

∫ 1
n I(l,m) exp[−2πi(ul+ vm+ w(n− 1))] dldm (1)

u,v are Fourier domain coordinates, l,m are image domain coordinates, w
corresponds to the non-coplanarity of antenna pairs, and n =

√
1− l2 −m2

• General radio-interferometric approach for image reconstruction is an iterative
process: Minor and Major cycles

• Such a process is computationally expensive and can introduce non-linear biases
[Patel et al., 2014]
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EXAMPLE

(a) x
ϵ = [0.022,−0.154]

(b) h (c) xD
ϵ = [0.026,−0.099]

(d) x̂
ϵ = [0.021,−0.144]

Figure 1: Example of a simulated galaxy with ellipticity ϵ = [0.024,−0.152].

The images plotted from
left to right are the true image x, PSF h, dirty image xD, and reconstructed image x̂.
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METHODOLOGY



IMAGE FEATURE EXTRACTION

• We used an E(2) equivariant convolutional neural network (CNN)
[Weiler and Cesa, 2019] for our feature extraction layer

• Equivariance is enforced in the structure by using convolution kernels expressed in a
steerable basis of the E(2) group:

k(x|w) =
8∑

ℓ=1
wℓ(r)Yℓ(α) (2)

where x = (r, α), Yℓ(α) = eiℓα are the basis vectors and the kernel weights wℓ(r) have
a radial symmetry.

• Produces a vector feature map that is equivariant to the actions of the E(2) group:

CE(2)[G(x̂)] = G[CE(2)(x̂)] (3)
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SIMULATING GALAXY IMAGES

• Population Model: Star-Forming Galaxies (SFGs) catalogue from the Tiered-Radio
Extragalactic Continuum Simulation (T- RECS) [Bonaldi et al., 2018]

• Isolated galaxies with galaxy center at antenna pointing: 128× 128 pixels

• Visibilities based on SKA-MID configuration: 197 antennas, 936144 unique visibility
positions

• Perturb the visibilities with noise sampled from N (0, (σ/20)2)
• Visibilities are gridded followed by Inverse FFT to get dirty image xD

• PSF h is then deconvolved from the dirty image using MS-Clean to get reconstructed
image x̂
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FIXED PSF
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• 20,000 galaxies with varying size and intrinsic ellipticity

θ̂eq = argmin
θeq

E(x̂,ϵtrue)[∥Nθeq(x̂)− ϵtrue∥2] (4)

6/17



12
8×
12
8

x̂
32

12
8

ConvE(2)

32

32

AvgPool

64

28

ConvE(2)

64
14

AvgPool
32

12

ConvE(2)

1

46
08

Flatten

1

4

Dense

1
2

Dense

ϵ

(ϵ1, ϵ2)

• 20,000 galaxies with varying size and intrinsic ellipticity

θ̂eq = argmin
θeq

E(x̂,ϵtrue)[∥Nθeq(x̂)− ϵtrue∥2] (4)

6/17



NORMAL VS EQUIVARIANT NETWORK

(a) Traditional Network

(b) Equivariant Network

Figure 2: Comparison of ∆ϵ vs ϵtrue. The two components ∆ϵ1 and ∆ϵ2 are plotted in blue and
orange respectively. The legend indicates the linear bias in ellipticity measurement:
∆ϵi = miϵ

true
i + ci
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VARIABLE PSF



PSF ENCODING

• PSF can be computed using the uv sampling pattern and galaxy position

• The reconstructed images contain artifacts from the corresponding PSFs
• We first train an autoencoder to encode the PSFs to a latent space
•

{θ̂E, θ̂D} = argmin
{θE,θD}

Eh[∥h− ĥθD [zθE(h)]∥2] (5)

where ĥθD is the output from the decoder, zθE is the output from the encoder and
{θE,θD} the encoder-decoder architecture parameters.
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Eh[∥h− ĥθD [zθE(h)]∥2] (5)
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NETWORK STRUCTURE
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20,000 galaxies/PSF pairs with varying size and intrinsic ellipticity
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FULL MODEL

(a) Reconstructed Images: 1000
MS-Clean cycles

(b) Reconstructed Images: 500
MS-Clean cycles

(c) Dirty Images

Figure 3
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MODEL BIAS

(a) Reconstructed Images (b) Dirty Images

Figure 4: Galaxies following a Sérsic brightness profile: I(r) = I0 exp[−( r
r0
)
1
n ] with index n drawn

from U(1, 4)
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COMPARISON WITH OTHER WORKS



SHAPENET DECONVOLUTION [NAMMOUR ET AL., 2022]

• Tikhonov solution: x̃ = (HTH+ λΓTΓ)−1HTxD where H corresponds to the PSF operator,
Γ corresponds to Tikhonov linear filter and λ is the regularisation weight.

• A UNET architecture is then trained to learn the mapping b/w the Tikhonov output
and the true image.

• The network is trained to minimize the following loss function: l(x̂) = ∥x̂− x∥2+γM(x̂)

• M(x̂) =
6∑
i=1

ωi⟨x̂− x,ui⟩ is a shape constraint with {ωi} and {ui} are constant scalar

weights and images respectively
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COMPARISON WITH SHAPENET

(a) xD = x ∗ h+ n

(b) XD = f(x, h,w,D/G, vis) (c) Same as b with ∼ 25% objects
removed

Figure 5
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SUPERCLASS CALIBRATION [HARRISON ET AL., 2020]

• Reconstruct image by deconvolving the PSF from the dirty image and estimate
ellipticity ϵcalck

• In the residual image, inject model sources with the same size and flux properties,
but known ellipticity ϵinpi = {0, ± 0.2375, ± 0.475, ± 0.7125, ± 0.95}

• Simulate visibilities⇒ Dirty Image⇒ Reconstructed Image⇒ Measure ellipticity ϵobs

• Fit second order 2D polynomial bk(ϵinp1 , ϵinp2 ) = ϵobs1 − ϵinp1

• Calibrate observed ellipticities using ϵSC1,k = ϵcalc1,k − bk(ϵcalc1,k , ϵcalc2,k )

• Repeat for ϵ2

14/17



COMPARISON WITH SUPERCLASS
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SUMMARY



RESULTS

Table 1: Linear Bias in Ellipticity estimates (at the order of 10−3)

m1 c1 m2 c2

Fixed PSF Trad Net 2.9± 0.6 1.1± 0.2 7.1± 0.5 −1.7± 0.1
Eq Net 3.7± 0.3 −0.4± 0.1 −0.3± 0.2 0.1± 0.1

Variable PSF

Recon 500 1.0± 0.4 −1.1± 0.1 −0.3± 0.4 0.2± 0.1
Recon 1000 −3.4± 0.5 −1.6± 0.1 −1.2± 0.4 −0.8± 0.1

Dirty −0.6± 0.4 −0.7± 0.1 −0.4± 0.4 −0.1± 0.1
Shapenet Decon 76.1± 2.0 −11.3± 0.1 57.3± 2.1 −11.1± 0.0
SuperCLASS Calib 1.9± 1.9 13.8± 0.5 22.2± 3.0 −0.7± 0.7

Sersic Gal Recon 1.0± 0.3 −1.2± 0.1 −3.8± 0.3 −0.4± 0.1
Dirty −1.0± 0.4 0.2± 0.1 −0.8± 0.3 −0.3± 0.1
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CONCLUSION

• Equivariant convolutions are better than traditional convolutions for our problem

• PSF can be encoded into the network
• The specifics of the image reconstruction process are not that important and the
network can be trained directly with the dirty images

• The network can recover ellipticities with similar/better linear biases as other
popular methods

• Can work with galaxies with different intensity profiles
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REPORTED STATISTICS

Table 2: Comparison of MAE: 1
Nobj

Nobj∑
n=1

|∆ϵni |

MAE
ϵ1 (ϵ2) Nobj

ShapeNet Paper 7.34 (7.70)× 10−2 3000
Case I 2.37 (2.69)× 10−2 3810
Case II 7.11 (7.02)× 10−2 3247

Fiducial Network (Recon Images) 3.82 (2.74)× 10−3 3993
Fiducial Network (Dirty Images) 4.16 (3.59)× 10−3 3993



RADIOLENSFIT [RIVI ET AL., 2016]

• Works using visibilities
• Galaxy brightness profile: I(r) = I0 exp(−r/α),
• Transformation matrix A with ellipticity parameters e = (e1, e2) such that:(

lr
mr

)
= Ax =

(
1− e1 −e2
−e2 1+ e1

)
×

(
l
m

)
• Observed visibility due to a galaxy at point k = (u, v) can be given by:

Vs(u, v) =
2πα2I0

|A|(1+ 4π2α2|A−⊺k|)3/2
× exp 2πik⊺x0 (6)

• Perform a Bayesian marginalization of the likelihood over I0, α and source centroid
position x0 = (l0,m0) ⇒ P(A|D)



UNET ARCHITECTURE
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