Analytical approaches to gravitational wave modelling

Laura BERNARD

"Théorie, Univers et Gravitation" meeting – IV

Annecy-Le-Vieux, Nov. 5-7 2024

The current gravitational wave universe

The current gravitational wave universe

LIGO/Virgo/KAGRA Public Alerts

- · More details about public alerts are provided in the LIGO/Virgo/KAGRA Alerts User Guide.
- · Retractions are marked in red. Retraction means that the candidate was manually vetted and is no longer considered a candidate of interest.
- . Less-significant events are marked in grey, and are not manually vetted. Consult the LVK Alerts User Guide for more information on significance in O4.
- . Less-significant events are not shown by default. Press "Show All Public Events" to show significant and less-significant events.

O4 Significant Detection Candidates: 142 (158 Total - 16 Retracted)

O4 Low Significance Detection Candidates: 2484 (Total)

Show All Public Events

Page 1 of 11. next last »

SORT: EVENT	ID (A-Z)					•••	•••••
Event ID	Possible Source (Probability)	Significant	UTC	GCN	Location	FAR	Comments
S240930du	BBH (67%), Terrestrial (33%)	Yes	Sept. 30, 2024 23:46:14 UTC	GCN Circular Query Notices VOE		1 per 2.4747 years	
S240930aa	BBH (>99%)	Yes	Sept. 30, 2024 03:59:59 UTC	GCN Circular Query Notices VOE		1 per 1.0344e+11 years	
S240925n	BBH (>99%)	Yes	Sept. 25, 2024 00:58:09 UTC	GCN Circular Query Notices VDE		1 per 7.9146e+11 years	
S240924o	BBH (>99%)	Yes	Sept. 24, 2024 00:03:16 UTC	GCN Circular Query Notices VDE		1 per 12.869 years	
S240923ct	BBH (>99%)	Yes	Sept. 23, 2024 20:40:06 UTC	GCN Circular Query Notices VOE		1 per 4.1462e+07 years	
S240922df	BBH (>99%)	Yes	Sept. 22, 2024 14:21:06 UTC	GCN Circular Query Notices VOE		1 per 2.2729e+16 years	
S240921cw	BBH (>99%)	Yes	Sept. 21, 2024 20:18:35 UTC	GCN Circular Query Notices VDE		1 per 39.517 years	
S240920dw	BBH (>99%)	Yes	Sept. 20, 2024	GCN Circular Query		1 per 3.2668e+43 years	

The future gravitational wave universe

Einstein Telescope science case (2021)

The different methods

Inspiral-Merger-Ringdown (IMR): effective-one-body, phenomenological & surrogate models

The different methods: gravitational self-force

- extreme mass ratio inspiral
- \triangleright expansion in $q = \frac{m_1}{m_2} \ll 1$
- ▷ resonances, par ex. 2:3

Barack & Pound '18

The different methods: numerical relativity

- $\triangleright~$ solving the full Einstein equations
- computationally expensive
- ▷ add spins, eccentricity, etc.

I. Markin, T. Dietrich, H. Pfeiffer, A. Buonanno (Potsdam University and Max

Planck Institute for Gravitational Physics)

The different methods: post-Newtonian

▷ expansion in
$$\epsilon = \frac{v_{12}^2}{c^2} \sim \frac{G(m_1)}{r_{12}c^2} \ll 1$$

 $\,\triangleright\,$ point-particle approximation

▷ add spins, tides, etc.

Mass ratio m2/m1

Full IMR waveform: the EOB class

LISA waveform white paper '23

$$h(f) = \mathcal{A}(f) e^{\psi_n(f)}$$
 $\psi_n = \{\varphi_{0,..7}, \sigma_{0..4}, \beta_{1..3}, \alpha_{0..5}\}$

Kwok et al. '21

$$S = \int \mathrm{d}^4 x \sqrt{-g} \, R \left[g, \partial g, \partial^2 g \right] + S_{\mathsf{m}} \left[y^{\rho}, v^{\rho}; g_{\mu\nu} \right]$$

Einstein field equations: $R^{\mu\nu} - \frac{1}{2} g^{\mu\nu} R = 8\pi T^{\mu\nu}$

defining $h^{\mu\nu}\equiv \sqrt{-g}\,g^{\mu\nu}-\eta^{\mu\nu},$ we rewrite it as

$$S = \int \mathrm{d}^4 x \sqrt{-g} \, R \left[g, \partial g, \partial^2 g \right] + S_{\mathsf{m}} \left[y^{\rho}, v^{\rho}; g_{\mu\nu} \right]$$

Einstein field equations: $R^{\mu\nu} - \frac{1}{2} g^{\mu\nu} R = 8\pi T^{\mu\nu}$

defining $h^{\mu\nu}\equiv \sqrt{-g}\,g^{\mu\nu}-\eta^{\mu\nu},$ we rewrite it as

$$S = \int \mathrm{d}^4 x \sqrt{-g} \, R \left[g, \partial g, \partial^2 g \right] + S_{\mathsf{m}} \left[y^{\rho}, v^{\rho}; g_{\mu\nu} \right]$$

Einstein field equations: $R^{\mu\nu} - \frac{1}{2} g^{\mu\nu} R = 8\pi T^{\mu\nu}$

defining $h^{\mu\nu}\equiv \sqrt{-g}\,g^{\mu\nu}-\eta^{\mu\nu},$ we rewrite it as

$$S = \int \mathrm{d}^4 x \sqrt{-g} \, R \left[g, \partial g, \partial^2 g \right] + S_{\mathsf{m}} \left[y^{\rho}, v^{\rho}; g_{\mu\nu} \right]$$

Einstein field equations: $R^{\mu\nu} - \frac{1}{2} g^{\mu\nu} R = 8\pi T^{\mu\nu}$

defining $h^{\mu\nu}\equiv \sqrt{-g}\,g^{\mu\nu}-\eta^{\mu\nu},$ we rewrite it as

 $\nabla_{\nu}T^{\mu\nu} = 0 \qquad \Longleftrightarrow \qquad \partial_{\nu}\tau^{\mu\nu} = 0$

Internal zone $r \leq r_s$

> point-particle approximation

$$S_{\rm m} = -\sum_a m_a \int \mathrm{d}\tau_a$$

▷ finite-size effects: tides, spins

$$S_{\text{tid.}} = \int d\tau \left[\mu^{(l)} G_L G^L + \nu^{(l)} H_L H^L \right], \quad G_L = -\nabla_{L-2} C_{\mu_{l-1}\rho\nu_l\sigma} u^{\rho} u^{\sigma}$$

$$S_{\text{spin}} = \int d\tau \left[p_{\mu} u^{\mu} + \frac{1}{2} S_{\mu\nu} \Omega^{\mu\nu} \right], \quad S^{\mu\nu} p_{\nu} = 0 \quad \text{(Spin Sup. Cond.)}$$

▷ integrating out the internal dofs: one-particle EFT

Solving the wave equation: the retarded solution

$$h^{\mu\nu}(\mathbf{x},t) = \frac{16\pi G}{c^4} \left(\Box_{\rm ret}^{-1} \tau^{\mu\nu} \right) (\mathbf{x},t)$$

Flat-space retarded propagator

$$\left(\Box_{\rm ret}^{-1}\tau\right)(\mathbf{x},t) \equiv -\frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{\mathrm{d}^3 \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|} \tau\left(\mathbf{x}', t - \frac{|\mathbf{x} - \mathbf{x}'|}{c}\right)$$

 $\triangleright~$ This is an integral over the past light cone of the point $({\bf x},t)$

The hierarchy of scales

Internal zone $r \leq r_s$

- point-particle approximation
- ▷ finite-size effects: tides, spins
- ▷ integrating out the internal dofs: one-particle EFT

Near zone $r_s < r < R$

$$\frac{\tau\left(\mathbf{x}',t-\frac{|\mathbf{x}-\mathbf{x}'|}{c}\right)}{|\mathbf{x}-\mathbf{x}'|} = \frac{\tau\left(\mathbf{x}',t\right)}{|\mathbf{x}-\mathbf{x}'|} - \frac{\dot{\tau}\left(\mathbf{x}',t\right)}{c} + \frac{|\mathbf{x}-\mathbf{x}'|}{2c^2}\ddot{\tau}\left(\mathbf{x}',t\right) + \cdots$$

 $\triangleright~$ generates a PN expansion: $\bar{h}^{\mu\nu}=\sum_{m=2}^\infty \frac{1}{c^m}\bar{h}_m^{\mu\nu}$ with

$$\Box \bar{h}_m^{\mu\nu} = 16\pi G \left(\underbrace{T^{\mu\nu}}_{\text{source}} + \underbrace{\Lambda^{\mu\nu}}_{\text{nonlinearities}} \right) , \quad \partial_\nu \bar{h}_m^{\mu\nu} = 0$$

- \circ divergences when $r \gg \lambda_{
 m GW}$ and ${f x} o {f y}_{1,2}$: dimensional regularization
- conservative orbital dynamics
- integrating out the potential modes: binding potential

The hierarchy of scales

Internal zone $r \leq r_s$

- point-particle approximation
- ▷ finite-size effects: tides, spins
- integrating out the internal dofs: one-particle EFT

Near zone $r_s < r < R$

- conservative orbital dynamics
- > integrating out the potential modes: binding potential

Wave zone $r \gg \lambda$

$$\frac{\tau\left(\mathbf{x}',t-\frac{|\mathbf{x}-\mathbf{x}'|}{c}\right)}{|\mathbf{x}-\mathbf{x}'|} = \frac{\tau\left(\mathbf{x}',t-\frac{r}{c}\right)}{r} - x'^{j}\partial_{j}\left(\frac{\tau\left(\mathbf{x}',t-\frac{r}{c}\right)}{r}\right) + \cdots$$

1. PM expansion: $h_{\text{ext}}^{\alpha\beta} = \sum_{n=1}^{\infty} G^n h_{(n)}^{\alpha\beta}$

$$\Box h_{(n)}^{\alpha\beta} = \Lambda_n^{\alpha\beta} \left[h_{(1)}, ..., h_{(n-1)} \right] \,, \qquad \partial_\beta h_{(n)}^{\alpha\beta} = 0$$

gauge

- 2. most general solution: $h_{(n)}^{\alpha\beta}[\underline{I_L}, J_L; \underline{W_L}, X_L, Y_L, Z_L]$
- radiative power loss and gravitational waveform
- $\triangleright\,$ integrating out the radiation modes: EFT of dynamical multipoles

source

The hierarchy of scales

Internal zone $r \leq r_s$

- ▶ point-particle approximation
- ▷ finite-size effects: tides, spins
- ▷ integrating out the internal dofs: one-particle EFT

Near zone $r_s < r < R$

- conservative orbital dynamics
- ▷ integrating out the potential modes: binding potential

Wave zone $r \gg \lambda$

- radiative power loss and gravitational waveform
- ▷ integrating out the radiation modes: EFT of dynamical multipoles

Interplay between near and wave zone

- hereditary effects: tails, memory
- radiation-reaction forces

Gravitational wave field

$$H_{ij}^{TT} = \frac{2G}{c^4 R} P_{ijkl}(\mathbf{N}) \left\{ \ddot{U}_{kl} \left(T - \frac{R}{C} \right) + \mathcal{O}\left(\frac{1}{c} \right) \right\} + \mathcal{O}\left(\frac{1}{R^2} \right)$$

Energy balance equation

$$\langle \frac{\mathrm{d}E}{\mathrm{d}t} \rangle = -\langle \mathcal{F} \rangle \qquad \text{with} \qquad \mathcal{F} \equiv \left(\frac{\mathrm{d}E}{\mathrm{d}t} \right)^{\mathrm{GW}} = \frac{G}{c^5} \left[\overleftrightarrow{U}_{ij} \, \overleftrightarrow{U}_{ij} + \mathcal{O}\left(\frac{1}{c^2} \right) \right]$$

Dynamics period decay $\frac{\mathrm{d}P}{\mathrm{d}t}$, eccentricity $\frac{\mathrm{d}e}{\mathrm{d}t}$

GW modes amplitude $a(t) \propto (t_c-t)^{1/4}$, phase $\phi(t) \propto (t_c-t)^{5/8}$

State-of-the-art in GR - dynamics

PN order	non-spinning		sp	tides	
		SO	SS		
0	\checkmark	-	-	-	-
1	\checkmark	-	-	-	-
1.5	-	\checkmark	-	-	-
2	\checkmark	-	\checkmark	-	-
2.5	\checkmark	\checkmark	-	-	-
3	\checkmark	-	\checkmark	-	-
3.5	\checkmark	\checkmark	-	$\sqrt{(S^3)}$	-
4	\checkmark	-	\checkmark	$\sqrt{(S^4)}$	-
4.5	\checkmark	\checkmark	-	$\sqrt{(S^3)}$	-
5	*	-	\checkmark	$\sqrt{(S^4)}$	\checkmark
5.5	*			$\sqrt{(S^5)}$	-
6				$\sqrt{(S^6)}$	√ (7PN)

State-of-the-art in GR - flux and GW modes

	Dissipative flux									
PN order	non-spinning	ning spinning								
		SO SS higher spins								
2.5	\checkmark	-	-	-	-					
3	-	-	-	-	-					
3.5	\checkmark	-	-	-	-					
4	\checkmark	\checkmark	-	-	-					
4.5	\checkmark	-		-	-					
5	\checkmark	\checkmark	-	-						
5.5	\checkmark	\checkmark		-	-					
6	\checkmark	\checkmark	\checkmark	$\sqrt{(S^3)}$	\checkmark					
6.5	\checkmark			-						
7										

▷ Small eccentricity waveforms up to 4PN

Post-Newtonian and post-Minkowskian formalisms

Traditional PN: direct iteration and integration in the direct space

Effective Field Theory: diagramatic and integration in Fourier space

Scattering amplitudes: PM expansion, diagrammatic and integration in Fourier space

	0PN		1PN		2PN		3PN		4PN		5PN		6PN		7PN			
1PM	(1	+	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	v^{14}	+)	G^1
2PM			(1	+	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+)	G^2
3PM					(1	+	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+)	G^3
4PM							(1	+	v^2	+	v^4	+	v^6	+	v^8	+)	G^4
5PM									(1	+	v^2	+	v^4	+	v^6	+)	G^5
6PM											(1	+	v^2	+	v^4	+)	G^6
Compa	Comparison table of powers used for PN and PM approximations in the case of two non-rotating bodies.																	

Synergies between different techniques

NRGR – EFT techniques

 gravitational potential, 5PN hereditary terms on-going

Scattering amplitudes

- $\circ~$ QFT 2-body interaction as an EFT
- extract classical part
- $\circ~$ map to bound systems
- \circ 3-loops complete \longrightarrow 4PM

Self force $: \mathcal{O}(\nu)$

 $\circ~$ 5PN and 6PN partial

$$S_{\rm ST} = \frac{c^3}{16\pi G} \int d^4x \sqrt{-g} \left[R - \frac{1}{2} g^{\alpha\beta} \partial_\alpha \varphi \,\partial_\beta \varphi \right] + S_m \left[\mathfrak{m}, A(\varphi) \,g_{\alpha\beta} \right]$$

Field equations in Einstein frame

$$\begin{cases} \Box h^{\mu\nu} = 16\pi G \,\tau^{\mu\nu} \text{ with } \tau^{\mu\nu} = \underbrace{T^{\mu\nu}}_{\text{source}} + \underbrace{\Lambda^{\mu\nu}}_{\nabla h \cdot \nabla h} + \underbrace{\Lambda^{\mu\nu}}_{\nabla \nabla \varphi \cdot \nabla \varphi} \\ \Box \varphi = 16\pi G \,\tau_{\text{s}} \text{ with } \tau_{\text{s}} = \underbrace{T_{\text{S}}}_{\text{source}} + \underbrace{\Sigma_{\text{S}}}_{\sim h\partial^{2}\varphi + \partial h\partial\varphi + \nabla \varphi \cdot \nabla \varphi} \end{cases}$$

a good starting point for more complicated theories

o Einstein-scalar-Gauss-Bonnet, Einstein-Maxwell-dilaton

$$\triangleright$$
 PN expansion for $\varphi \sim h^{00}$

▷ no hair theorem but scalarized neutron stars

Internal zone: point-particles and beyond

Point-like sources

$$S_{\rm pp} = -\int \mathrm{d} au_a \, m_a(\phi)$$

- o minimal coupling, non-spinning massive objects
- \triangleright potentially scalarized objects: $m_a(\phi)$ [Eardley '75]

NSs Tolman–Oppenheimer–Volkoff equations

BHs matching to known (analytical) solutions [Julié 2017, Julié-Berti 2019]

Internal zone: point-particles and beyond

Point-like sources

$$S_{\rm pp} = -\int \mathrm{d} au_a \, m_a(\phi)$$

- o minimal coupling, non-spinning massive objects
- \triangleright potentially scalarized objects: $m_a(\phi)$ [Eardley '75]

NSs Tolman–Oppenheimer–Volkoff equations

BHs matching to known (analytical) solutions [Julié 2017, Julié-Berti 2019]

Spinning particles

▷ beyond the mass monopole: coupling to dipole and higher multipoles

$$S_{\rm pp} = -\int \mathrm{d}\tau_a \left[P_\mu \left(\phi, \dots \right) u^\mu - \frac{1}{2} S_{\mu\nu} \left(\phi, \dots \right) \Omega^{\mu\nu} + \cdots \right]$$

 \triangleright spin supplementary condition: $S^{\mu\nu}P_{\nu}=0$ [Tulczyjew '59]

Reminder in GR

- electric and magnetic type Love numbers
- \triangleright effacement principle: start at $5PN \sim \left(\frac{v}{c}\right)^{10}$

In scalar-tensor

 \triangleright scalar dipole moment $\mathcal{E}_i \propto \partial_i \phi \Rightarrow$ scalar-induced tidal deformability

 \triangleright enhanced effect wrt GR: 3PN

Creci et al. '23

Beyond point particles: scalar tides

In scalar-tensor

 \triangleright scalar dipole moment $\mathcal{E}_i \propto \partial_i \phi \Rightarrow$ scalar-induced tidal deformability

 \triangleright enhanced effect wrt GR: 3PN

▷ more important at low frequency (LISA) or highly scalarized objects

Different types of tidal effects

$$S_{\text{tidal}} = -\frac{c}{2} \sum_{a=1,2} \int d\tau_a \left\{ \lambda_a \left(\phi \right) \left(\nabla_{\alpha}^{\perp} \varphi \right)_a \left(\nabla_{\perp}^{\alpha} \varphi \right)_a + \frac{1}{2} \mu_a \left(\phi \right) \left(\nabla_{\alpha\beta}^{\perp} \varphi \right)_a \left(\nabla_{\perp}^{\alpha\beta} \varphi \right)_a \right. \\ \left. + \nu_a \left(\phi \right) \left(\nabla_{\alpha\beta}^{\perp} \varphi \right)_a \left(G^{\alpha\beta} \right)_a - \frac{1}{2c^2} c_a(\phi) \left(G_{\alpha\beta} \right)^a \left(G^{\alpha\beta} \right)_a \right\}$$

with $(G_{\mu\nu})_a = -c^2 \left(C_{\mu\rho\nu\sigma} \right)_a u^{\rho}_a u^{\sigma}_a$ an $\nabla^{\perp}_{\mu} \equiv \left(\delta^{\nu}_{\mu} + u_{\mu} u^{\nu} \right) \nabla_{\nu}$

Scalar LO (3PN), NLO (4PN), NNLO (5PN)

 $\triangleright \text{ dimensionless scalar tidal deformability: } k_s \equiv \frac{G \lambda_s}{c^2 R^3} \xrightarrow[]{Gm} 3PN$

▷ leading order in the eoms

$$\Delta \mathbf{a}_{(fs)} \propto \ \mathbf{a}_{(N)} \cdot \left[\frac{m_2}{m_1} \,\overline{\delta}_2 \, k_1^{(s)} + \frac{m_1}{m_2} \,\overline{\delta}_1 \, k_2^{(s)} \right] \frac{R^3}{r^3} \tag{IB 2018}$$

Gravito-scalar LO (5PN)

Gravitational (electric and magnetic type) LO (5PN)

[LB, Dones & Mougiakakos, 2023]

The ST equations of motion

Differences w.r.t. GR

- Dissipative effects start at 1.5PN (v.s. 2.5PN in GR)
- Tidal effects start at 3PN (v.s. 5PN in GR)
- A conservative scalar tail term at 3PN : $\mathbf{A}_{3PN}^{\text{tail}} \propto M \int_{-\infty}^{+\infty} \frac{\mathrm{d}t'}{|t-t'|} I_s {}^{(4)}_i(t')$

$$\mathcal{F} = \frac{32c^5\nu^2 x^5}{5G_{\text{eff}}} \left[1 + \frac{\mathcal{F}_{1\text{PN}}^{\text{grav}}}{c^2} + \frac{\mathcal{F}_{1.5\text{PN}}^{\text{grav}}}{c^4} + \frac{\mathcal{F}_{2\text{PN}}^{\text{grav}}}{3G_{\text{eff}}} \right] + \frac{4c^5\nu^2 x^4}{3G_{\text{eff}}} \zeta S_-^2 \cdot \frac{\mathcal{F}_{2\text{PN}}^{\text{scal}}}{c^4} + \frac{4c^5\nu^2 x^5}{3G_{\text{eff}}} \zeta S_-^2 \left[x^{-1} + \frac{\mathcal{F}_{0\text{PN}}^{\text{scal}}}{c^0} + \frac{\mathcal{F}_{0.5\text{PN}}^{\text{scal}}}{c^1} + \frac{\mathcal{F}_{1\text{PN}}^{\text{scal}}}{c^2} + \frac{\mathcal{F}_{1.5\text{PN}}^{\text{scal}}}{c^3} + \frac{\mathcal{F}_{2\text{PN}}^{\text{scal}}}{c^4} \right]$$
$$x \equiv \left(\frac{G_{\text{eff}} m \omega}{c^3} \right)^{2/3}, \ \nu \equiv \frac{m_1 m_2}{m^2}$$
Differences w.r.t. GR

- Scalar flux starts at -1PN, known at 1.5PN: 2PN in progress
- Scalar tidal contribution at 2PN
- Scalar memory term at 1.5PN: $\delta U_{ij} \propto \frac{1}{c^3} \int \frac{\mathrm{d}t'}{|t-t'|} I_s{}_i^{(2)}(t') I_s{}_j^{(2)}(t')$
- Scalar tail term at 0.5PN: $\delta U_i^s \propto \frac{M}{c^3} \int \mathrm{d}\tau \, \ln\left(\frac{\tau}{\tau_0}\right) \, I_s{}^{(3)}_i(t-\tau)$

Concluding remarks

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left[R - \frac{1}{2} \nabla_a \varphi \nabla^a \varphi + \alpha f(\varphi) \mathcal{G} \right] + S_m[\psi_{\mathsf{m}}; g]$$

Some examples with hairy BH solutions

- \circ Einstein-scalar-Gauss-Bonnet: $\mathcal{G} = R_{abcd}R^{abcd} 4R_{ab}R^{ab} + R^2$
 - $ho [\alpha] = [length]^2 \implies$ 3PN effect [Julié & Berti 2018, 2019, van Gemeren et al. 2023, LB, Dones & Mougiakakos 2023]
- Chern-Simmons gravity (parity-violating): $\mathcal{G} = \frac{1}{2} \epsilon^{\rho\sigma\alpha\beta} R_{\nu\mu\rho\sigma} R^{\mu\nu}_{\ \alpha\beta}$

 $\triangleright \ [lpha] = [ext{length}]^2 \Longrightarrow 4 \mathsf{PN} ext{ effect (spins only)} \ [ext{Loutrel, Tanaka, Yagi & Yunes 2012, 2018}]$

• Cubic gravity: $\varphi = 1$, $\mathcal{G} = C_{\mu\nu\rho\sigma} C^{\rho\sigma}_{\ \alpha\beta} C^{\mu\nu\alpha\beta}$

 $\triangleright \ [\alpha] = [\text{length}]^4 \Longrightarrow 5\text{PN effect}$

- ▷ Many recent progresses in the simplest theories:
 - ▷ scattering angle [Jain 2023, LB, Jain & Mougiakakos in prep.]
 - ▷ higher order gravity [LB, Giri & Lehner in prep.]
- ▷ Synergies with numerical relativity results: full IMR models
- Important for the future: non-perturbative effects (scalarization), spins, dynamical tides
- Missing theories or very preliminary: Lorentz-violating, DHOST, massive gravity, etc.

- $\triangleright\,$ Many recent progresses in the simplest theories:
 - ▷ scattering angle [Jain 2023, LB, Jain & Mougiakakos in prep.]
 - ▷ higher order gravity [LB, Giri & Lehner in prep.]
- ▷ Synergies with numerical relativity results: full IMR models
- Important for the future: non-perturbative effects (scalarization), spins, dynamical tides
- Missing theories or very preliminary: Lorentz-violating, DHOST, massive gravity, etc.

Thank you!

Supplementary

Detector	LIGO/	Virgo	E	Т	LISA			
Masses (M_{\odot})	1.4×1.4 10×10		1.4×1.4	500×500	$10^{5} \times 10^{5}$	$10^{7} \times 10^{7}$		
PN order		(cumulative number of cycles					
Newtonian	2562.599	95.502	744401.36	37.90	28095.39	9.534		
1PN	143.453	17.879	4433.85	9.60	618.31	3.386		
1.5PN	-94.817	-20.797	-1005.78	-12.63	-265.70	-5.181		
2PN	5.811	2.124	23.94	1.44	11.35	0.677		
2.5PN	-8.105	-4.604	-17.01	-3.42	-12.47	-1.821		
3PN	1.858	1.731	2.69	1.43	2.59	0.876		
3.5PN	-0.627	-0.689	-0.93	-0.59	-0.91	-0.383		
4PN	-0.107	-0.064	-0.12	-0.04	-0.12	-0.013		
4.5PN	0.098	0.118	0.14	0.10	0.14	0.065		

D. Trestini, PhD thesis (2023)

The basics of EOB

Credits: Buonanno & Sathyaprakash

 $\succ \text{ Canonical transformation: } (r, \phi, p_r, p_\phi) \longrightarrow (R, \Phi, P_R, P_\Phi)$ $H_{2\text{body}} \longrightarrow H_{\text{eff}} \longrightarrow H_{EOB} = M\sqrt{1 + 2\nu \left(H_{\text{eff}} - 1\right)}$

Current status

EOB Hamiltonian

- ▷ 2PN in simple ST theories [Julié 2017]
- ▷ 3PN [Julié et al. 2022; Jain et al. 2022]
 - includes non-local in time tail terms
 - extended to include LO contribution in EsGB

Spins

Effective field theory description (as for GR)

$$S_{\rm mat} = \int \mathrm{d}\tau_A \left[p_\mu u^\mu + \frac{1}{2} S_{\mu\nu} \Omega^{\mu\nu} + \frac{1}{m^2} \mathcal{C}_{\varphi}^* S_{\nu}^{\,\alpha} u^\nu \nabla_\mu \varphi \underbrace{-\frac{1}{6} J^{\gamma\nu\sigma\alpha} R_{\gamma\nu\sigma\alpha}}_{\text{quadrupole corr.}} \right]_A$$

 \triangleright obtained by doing $p_{\mu} \longrightarrow \mathcal{P}_{\mu}\left(u^{\mu}, \Omega^{\mu\nu}, g_{\mu\nu}, R_{\mu\nu\rho\sigma}, \varphi, \partial\varphi, \ldots\right)$

 \triangleright modified spin supplementary condition $S^{\mu\nu}\mathcal{P}_{\nu}=0$

- LO (2PN) dynamics: SS, monopole-quadrupole, scalar-dipole [Loutrel et al. 2018]
- Corrections to the phase at 1.5PN (SO, SS) and 2PN (scalar dipole) [Loutrel et al. 2022]

- $\triangleright\,$ PN results can apply to already (adiabatically) scalarized objects
 - $\circ\,$ scalar charges computed by matching to known solutions
- b dynamical scalarization
 - effective description: [Khalil et al;, 2022]