Astrophysical gravitational background in the PTA band: the (theoretical) variance of the Hellings-Downs curve

Giulia Cusin

Institut d'Astrophysique de Paris and University of Geneva

6 November 2024-LAPTh

The "new" era of gravitational wave astronomy

Expected detection of new astrophysical sources, and detection of GW background in various frequency bands

nano Hz band

2023: first evidence of detection!

Possible origin: supermassive black hole binaries in the inspiralling phase

Pulsar timing arrays: we monitor the period of an array of pulsars.

Perturbations in the period is indication that spacetime Earth-pulsar has been deformed

Detection requires measuring **mostly-quadrupolar correlation** signature between pulsars (the Hellings-Downs curve) (see later in this talk)

The PTA network

Milliseconds pulsars

Very old neutron stars, with very stable rotation (millisec)

Often in binaries

The most stable clocks on the long time scale (decades)

Pulsar timing

Each observed **radio pulse profile has a lot micro-structure**. If we average over ~hour the (average) profile is very stable.

We know the spin of the pulsars, so we can **predict the TOA**. The idea is to measure the time-of-arrival (TOA), and compare to the expected TOA.

The difference between measured and expected TOA: residuals

Timing residuals

$$\delta t = t_{\text{TOA}}^{\text{th}} - t_{\text{TOA}}^{\text{obs}} = \delta t_{\text{errors}} + \delta T_{\text{GW}} + \text{noise}$$
Residuals
Errors in fitting Due to GW
the model

Residual due to GW

Fractional time-delay for pulsar "a": fractional deviation in the periodicity of pulse from pulsar "a" due to GW passing

$$z_a(t) \equiv \frac{\Delta T_a(t)}{T_a(t)} = \frac{1}{2} \frac{n_a^i n_a^j}{1 + \mathbf{n} \cdot \mathbf{n}_a} \begin{bmatrix} \text{Earth term} & \text{Pulsar term} \\ h_{ij}(t, \mathbf{0}) - h_{ij}(t - \tau_a, \tau_a \mathbf{n}) \end{bmatrix}$$
distance to the pulsar

For a SGWB this quantity can be written as

$$z_a(t) = \sum_{A=+,\times} \int_{-\infty}^{\infty} \mathrm{d}f \int \mathrm{d}^2 \mathbf{n} \, h_A(f, \mathbf{n}) \frac{F_a^A(\mathbf{n})}{4} e^{-2\pi i f t} \left[1 - e^{2\pi i f \tau_a(1+\mathbf{n}\cdot\mathbf{n}_a)} \right]$$

Antenna pattern function in direction **n** (depends on geometry)

$$F_a^A(\mathbf{n}) = \frac{n_a^i n_a^j e_{ij}^A(\mathbf{n})}{2(1 + \mathbf{n} \cdot \mathbf{n}_a)}$$

Residual due to GW

Fractional time-delay for pulsar "a": fractional deviation in the periodicity of pulse from pulsar "a" due to GW passing

$$z_a(t) \equiv \frac{\Delta T_a(t)}{T_a(t)} = \frac{1}{2} \frac{n_a^i n_a^j}{1 + \mathbf{n} \cdot \mathbf{n}_a} \begin{bmatrix} \text{Earth term} & \text{Pulsar term} \\ h_{ij}(t, \mathbf{0}) - h_{ij}(t - \tau_a, \tau_a \mathbf{n}) \end{bmatrix}$$
distance to the pulsar

For a SGWB this quantity can be written as

$$z_a(t) = \sum_{A=+,\times} \int_{-\infty}^{\infty} \mathrm{d}f \int \mathrm{d}^2 \mathbf{n} \, h_A(f,\mathbf{n}) \frac{F_a^A(\mathbf{n})}{F_a^A(\mathbf{n})} e^{-2\pi i f t} \left[1 - e^{2\pi i f \tau_a(1+\mathbf{n}\cdot\mathbf{n}_a)} \right]$$

Single-arm LIGO-like detector working in the $\log arm$ regime $f\tau_a \gg 1$ (regime opposite to LIGO/Virgo)

$$F_a^A(\mathbf{n}) = \frac{n_a^i n_a^j e_{ij}^A(\mathbf{n})}{2(1 + \mathbf{n} \cdot \mathbf{n}_a)}$$

Resolvable signal vs stochastic background

GW from resolvable event

LVC

quantity directly observable is the strain

stochastic background: incoherent superposition of GW signals

"waveform" similar to noise

typically within instrumental noise threshold

two detectors needed to apply matched filtering techniques

Hellings-Downs curve

To claim a detection, one has to correlate the time delay from two different pulsars

$$z_a(t) \propto \sum_{A=+,\times} \int df \int d^2 \mathbf{n} \, h_A(f, \mathbf{n}) F_a^A(\mathbf{n})$$
 Time delay from pulsar "a"

$$\overline{z_a z_b} \equiv \frac{1}{T} \int_{-T/2}^{T/2} z_a(t) z_b(t) \qquad \text{Correlation}$$

The expectation value is computed using that only waves from same direction and polarisation are correlated

$$\langle h_A(f,\mathbf{n})h_B(f',\mathbf{n}')\rangle \propto S_h(f)\delta_{AB}\delta(f-f')\delta(\mathbf{n},\mathbf{n}')$$

Pulsar separation
$$\overline{\langle z_a z_b \rangle} \propto C(\theta_{ab}) \int df \, S_h(f)$$
 quadratic in strain

Hellings-Downs function

Hellings-Downs curve

Smoking gun to claim that a given observed time delay is due to GW

Evidence for the Hellings-Downs curve

If we had **noise free measurements**: how well do we expect our data to follow the HD curve?

[arXiv:2306.16216]

PTA experiments operate in a regime where the time average over observation time does not allows sampling many realizations of a SGWB

These two variances affect any 2-point function of GW: strain, energy density and HD correlation

I'll present derivation of cosmic variance for the wave 2-point function (computation for HD curve follows)

Cosmic variance on GW strain

Strain square s: time average of wave square

$$s = \overline{h_{ab}h}^{ab} = \frac{1}{T} \int dt \, h_{ab}(t) h^{ab}(t)$$

For any realisation

$$s = \sum_{A} \sum_{A'} \int df \int df' \int d\mathbf{n} \int d\mathbf{n}' \operatorname{sinc} \left(\pi (f - f')T \right) e^A_{ab}(\mathbf{n}) e^{ab}_{A'}(\mathbf{n}') h_A(f, \mathbf{n}) h_{A'}(f', \mathbf{n}')$$

Mean and variance

$$\langle s \rangle = \sum_{A} \int df S_h(f) \int d\mathbf{n} \, e_{ab}^A(\mathbf{n}) e_A^{ab}(\mathbf{n})$$
$$\sigma_s^2 = \langle s^2 \rangle - \langle s \rangle^2 = \int df \int df' \operatorname{sinc}^2\left(\pi (f - f')T\right) S_h(f) S_h(f')$$

High frequency limit (LISA and LVC)

Why is this variance negligible in the LVC and LISA bands?

$$\sigma_s^2 = \langle s^2 \rangle - \langle s \rangle^2 = \int df \int df' \operatorname{sinc}^2 \left(\pi (f - f')T \right) S_h(f) S_h(f')$$

Different regimes

High frequency limit (LISA and LVC)

Why is this variance negligible in the LVC and LISA bands?

 $rac{\sigma_s}{\langle s \rangle}$

 \propto

$$\sigma_s^2 = \langle s^2 \rangle - \langle s \rangle^2 = \int df \int df' \operatorname{sinc}^2 \left(\pi (f - f')T \right) S_h(f) S_h(f')$$

$$\downarrow \\ \frac{\delta (f - f')}{T}$$
Different regimes
$$f \approx \Delta f \quad \text{narrow-band regime: all sources effectively} \\ \stackrel{\wedge}{\underset{\operatorname{reguences}}{}} \text{emit at the same frequency} \\ \stackrel{\wedge}{\underset{\operatorname{reguences}}{}} \text{PTA}$$

$$\frac{\sigma_s}{\langle s \rangle} \propto \frac{1}{\sqrt{fT}} \ll 1 \qquad f \gg \Delta f \quad \text{broad-band regime: sources emit at distinct} \\ \frac{f \approx \Delta f}{\underset{\operatorname{requences}}{}} \text{broad-band regime: sources emit at distinct} \\ \text{LIGO and LISA}$$

Cosmic variance on the HD curve

With same computations, one can estimate the cosmic **variance of the HD curve** (there is just additional complication due to instrument antenna pattern functions)

Hellings-Downs curve found under the assumption that sources are isotropically distributed: however, in fact they will follow the large scale structure distribution

Which is the effect of clustering on the Hellings-Downs curve (mean and variance)?

Effect of clustering on the HD curve

In an inhomogeneous universe, the **galaxy density distribution** can be treated as a random field

$\xi_g(\mathbf{n},z)$	Galaxy density field at a given position
$ ho_g(\mathbf{n},z)$	One specific realisation of this field

So far: special (isotropic) realisation of this field

$$\langle h_A^*(f,\mathbf{n})h_B(f',\mathbf{n}')|\xi_g(\mathbf{n},z) = \bar{\rho}_g(z)\rangle = \frac{1}{2}\delta_{AB}\delta(f-f')S_h(f)\frac{\delta^2(\mathbf{n},\mathbf{n}')}{4\pi}$$

Conditional ensemble average (isotropic galaxy distribution)

Isotropic spectral density

Conditional ensemble average

In an inhomogeneous universe, the **galaxy density distribution** can be treated as a random field

 $\xi_g({f n},z)$ Galaxy density field at a given position $ho_g({f n},z)$ One specific realisation of this field

Generalisation

$$\langle h_A^*(f, \mathbf{n}) h_B(f', \mathbf{n}') | \xi_g(\mathbf{n}, z) = \overline{\rho_g(z)} \rangle = \frac{1}{2} \delta_{AB} \delta(f - f') \underbrace{S_h(f)}_{4\pi} \underbrace{\delta^2(\mathbf{n}, \mathbf{n}')}_{f_{\pi}}$$
Conditional ensemble average (isotropic galaxy distribution) Isotropic realisation Isotropic realisation Isotropic spectral density
$$\int_{S_h(f, \mathbf{n})} \underbrace{S_h(f, \mathbf{n})}_{S_h(f, \mathbf{n})}$$

Anisotropic spectral density

Two layers of stochasticity: GW sources and their distribution Calculations of **HD and its variance** are now done in two steps:

Step 1: we fix a galaxy density realisation of the universe and take the conditional average

$$\langle h_A^*(f,\mathbf{n})h_B(f',\mathbf{n}')|\xi_g(\mathbf{n},z)=\rho_g(z,\mathbf{n})\rangle$$

Step 2: we take ensemble averages over all density realisations

$$\langle\langle h_A^*(f,\mathbf{n})h_B(f',\mathbf{n}')\rangle \equiv \langle\langle h_A^*(f,\mathbf{n})h_B(f',\mathbf{n}')|\xi_g(\mathbf{n},z) = \rho_g(z,\mathbf{n})\rangle\rangle_{\xi_g}$$

Total ensemble average

Conditional average (over GW realisations) Average over all density distributions

Final results

There is **no effect of clustering on the mean** (HD curve) But there is a **contribution to the variance**

Merger rate

• • • •

clustering variance =
$$\int dz \int dz' \mathcal{A}(z, z') \int d\mathbf{n} \int d\mathbf{n}' \zeta_g(\mathbf{n} \cdot \mathbf{n}', z, z') \chi_{ab}(\mathbf{n}) \chi_{ab}(\mathbf{n}')$$
Astro function
$$\begin{array}{c} \text{Galaxy} \\ \text{Galaxy} \\ \text{Correlation} \\ \text{function} \end{array}$$

$$\begin{array}{c} \text{Geometrical functions} \\ \text{Galaxy} \\ \text{Geometrical functions} \\ \text{Galaxy} \\ \text{Geometrical functions} \\ \text{Geometrical$$

Grimm, Pijnenburg, Cusin, Bonvin 2024

Astrophysical model

Different astrophysical scenarios (catalogues Klein et al. 2016)

Heavy seeds following collapse of protogalactic discs at z 10-15 (both with/without delay) Light seeds following collapse of pop III stars at high redshift Irreducible contribution (averaging over infinite number of pulsars per angular separation)

Clustering does not significantly affect HD reconstruction

(cosmic variance due to GW realisations is more relevant) Shot noise due to poissonian distribution fo sources expected to be in between

Numerical results

Averaging over infinite number of pulsars

Clustering does not sign (cosmic variance due to Shot noise due to poiss Clustering does not significantly affect the HD curve: it gives only contribution to the variance, which is very small.

Instead of treating it as source of contamination, it is more interesting to treat it as **source of signal!**

Angular power spectrum due to clustering

Contribution of clustering of sources on the background energy density

 $\Omega_{\rm GW}(f,{f n})=ar{\Omega}_{
m GW}(f)+\delta\Omega_{
m GW}(f,{f n})$ Background energy density

$$\begin{split} \bar{\Omega}_{\rm GW}(f) &= \frac{f}{4\pi\rho_c} \int^{\eta_0} \mathrm{d}\eta \,\mathcal{A}(f,\eta) & \text{Isotropic part} \\ & \text{Astro kernel} \end{split}$$

$$\delta\Omega_{\rm GW}(f,\mathbf{n}) &= \frac{f}{4\pi\rho_c} \int \mathrm{d}\eta \,\mathcal{A}(\eta,f) \left[\delta_G + 4\Psi - 2\mathbf{n} \cdot \nabla v + 6 \int^{\eta_0} \mathrm{d}\eta' \dot{\Psi} \right] \end{split}$$

Anisotropic part

Angular power spectrum due to clustering

Contribution of clustering of sources on the background energy density

 $\Omega_{\rm GW}(f,{f n})=ar{\Omega}_{
m GW}(f)+\delta\Omega_{
m GW}(f,{f n})$ Background energy density

$$\begin{split} \bar{\Omega}_{\rm GW}(f) &= \frac{f}{4\pi\rho_c} \int^{\eta_0} \mathrm{d}\eta \,\mathcal{A}(f,\eta) & \text{Isotropic part} \\ & \text{Astro kernel} \end{split}$$

$$\delta\Omega_{\rm GW}(f,\mathbf{n}) &= \frac{f}{4\pi\rho_c} \int \mathrm{d}\eta \,\mathcal{A}(\eta,f) \left[\delta_G + 4\Psi - 2\mathbf{n} \cdot \nabla v + 6 \int^{\eta_0} \mathrm{d}\eta' \dot{\Psi} \right] \end{split}$$

Anisotropic part

Angular power spectrum: two contributions

due to clustering

Predictions (preliminary)

Expected results for angular power spectrum

Clustering: to be computed (it will decay as $1/\ell$), expected to be independent of frequency **Shot noise** contribution increases as we increase frequency (sources spend less time in band) **Cosmic variance**: we expect it to have opposite trend (to get reduced as we increase frequency)

Cusin, Pitrou et al. in prep

Conclusions

PTA work in regime in which cosmic variance due to GW realisations is relevant

Effect of clustering on HD curve can be evaluated with a **2-step average process**: average over GW realisation at fixed matter (galaxy) realisation, and average over matter realisation

Clustering does not affect HD curve, however it gives small contribution to the variance (a few percent of the mean)

Instead of treating clustering as form of contamination it is interesting to treat it as signal: **angular power spectrum** of background energy density: effect of clustering+ shot noise+cosmic variance

Hierarchy between different contributions is frequency dependent: this signal might be **within the reach of future observations** (—>new astrophysical probe!)

Thank you for the attention