

Numerical Relativity in effective field theories of gravity

Aaron Held

Philippe Meyer Junior Research Chair École Normale Supérieure

November 05 2024: Théorie, Univers et Gravitation – TUG, LAPTh – Annecy, November 05 – November 07 2024

Numerical Relativity in effective field theories of gravity

Aaron Held

Philippe Meyer Junior Research Chair École Normale Supérieure

November 05 2024: Théorie, Univers et Gravitation – TUG, LAPTh – Annecy, November 05 – November 07 2024

Part I: Gravitational Effective Field Theories

The Effective Field Theory Framework ...

Assuming a given

- (i) IR field content
- (ii) IR symmetries
- (iii) expansion scale/scheme

we expand the effective action in all possible operators.

metric * Lorentz invariance

derivative / curvature

The Effective Field Theory Framework ...

Assuming a given

- (i) IR field content
- (ii) IR symmetries
- (iii) expansion scale/scheme

metric *

Lorentz invariance

derivative / curvature

we expand the effective action in all possible operators.

Within the **regime of validity** of the EFT, and assuming **naturalness** the unknown UV physics is captured in the values of the EFT coefficients.

The Effective Field Theory Framework ...

Assuming a given

- (i) IR field content
- (ii) IR symmetries
- (iii) expansion scale/scheme

we expand the effective action in all possible operators.

metric *

Lorentz invariance

derivative / curvature

Within the **regime of validity** of the EFT, and assuming **naturalness** the unknown UV physics is captured in the values of the EFT coefficients.

... introduces rules to modified gravity.

 $\mathcal{L}_{\mathsf{EFT}}^{(1)} = \mathsf{M}_{\mathsf{PI}}^2\,\mathsf{R}$

$$\mathcal{L}_{\mathsf{EFT}}^{(2)} = \left[\alpha_0 \mathsf{R}_{\mathsf{ab}} \mathsf{R}^{\mathsf{ab}} - \beta_0 \, \mathsf{R}^2 \right]$$

$$\mathcal{L}_{\mathsf{EFT}}^{(1)} = \mathsf{M}_{\mathsf{PI}}^2\,\mathsf{R}$$

$$\mathcal{L}_{\mathsf{EFT}}^{(2)} = \left[\alpha_0 \mathsf{R}_{\mathsf{ab}} \mathsf{R}^{\mathsf{ab}} - \beta_0 \, \mathsf{R}^2 \right]$$

After reduction via (i) index symmetries (ii) geometric identities (iii) 4D-specific identities (e.g. Gauss-Bonnet) see Fulling CQG 9 (1992); Martin-Garcia, Yllanes, Portugal, CPC 179 (2008)

 $\mathcal{L}_{\mathsf{EFT}}^{(1)} = \mathsf{M}_{\mathsf{PI}}^2 \, \mathsf{R}$

 $\mathcal{L}_{\mathsf{EFT}}^{(2)} = \left[\alpha_0 \mathsf{R}_{\mathsf{ab}} \mathsf{R}^{\mathsf{ab}} - \beta_0 \, \mathsf{R}^2 \right]$

After reduction via (i) index symmetries (ii) geometric identities (iii) 4D-specific identities (e.g. Gauss-Bonnet) see Fulling CQG 9 (1992); Martin-Garcia, Yllanes, Portugal, CPC 179 (2008)

$$\begin{aligned} \mathcal{L}_{\mathsf{EFT}}^{(3)} &= \frac{1}{\mathsf{M}_{\mathsf{PI}}^2} \Big[\alpha_1 \, \mathsf{R}^{\mathsf{ab}} \Box \, \mathsf{R}_{\mathsf{ab}} - \beta_1 \, \mathsf{R} \Box \, \mathsf{R} + \gamma_3 \, \mathsf{C}_{\mathsf{ab}}{}^{\mathsf{cd}} \mathsf{C}_{\mathsf{cd}}{}^{\mathsf{ef}} \mathsf{C}_{\mathsf{ef}}{}^{\mathsf{ab}} \\ &+ \delta_{3,1} \, \mathsf{C}_{\mathsf{abcd}} \mathsf{C}^{\mathsf{abcd}} \mathsf{R} + \delta_{3,2} \, \mathsf{C}_{\mathsf{abcd}} \mathsf{R}^{\mathsf{ac}} \mathsf{R}^{\mathsf{bd}} + \delta_{3,3} \, \mathsf{R}_{\mathsf{a}}^{\mathsf{b}} \, \mathsf{R}_{\mathsf{c}}^{\mathsf{c}} + \delta_{3,4} \, \mathsf{R}_{\mathsf{ab}} \mathsf{R}^{\mathsf{ab}} \mathsf{R} + \delta_{3,5} \, \mathsf{R}^3 \Big] \end{aligned}$$

 $\mathcal{L}_{\mathsf{EFT}}^{(1)} = \mathsf{M}_{\mathsf{PI}}^2 \, \mathsf{R}$

 $\mathcal{L}_{\mathsf{EFT}}^{(2)} = \left[\alpha_0 \mathsf{R}_{\mathsf{ab}} \mathsf{R}^{\mathsf{ab}} - \beta_0 \, \mathsf{R}^2 \right]$

After reduction via (i) index symmetries (ii) geometric identities (iii) 4D-specific identities (e.g. Gauss-Bonnet) see Fulling CQG 9 (1992); Martin-Garcia, Yllanes, Portugal, CPC 179 (2008)

$$\begin{aligned} \mathcal{L}_{\mathsf{EFT}}^{(3)} &= \frac{1}{\mathsf{M}_{\mathsf{PI}}^2} \Big[\alpha_1 \, \mathsf{R}^{\mathsf{ab}} \Box \, \mathsf{R}_{\mathsf{ab}} - \beta_1 \, \mathsf{R} \Box \, \mathsf{R} + \gamma_3 \, \mathsf{C}_{\mathsf{ab}}{}^{\mathsf{cd}} \mathsf{C}_{\mathsf{cd}}{}^{\mathsf{ef}} \mathsf{C}_{\mathsf{ef}}{}^{\mathsf{ab}} \\ &+ \delta_{3,1} \, \mathsf{C}_{\mathsf{abcd}} \mathsf{C}^{\mathsf{abcd}} \mathsf{R} + \delta_{3,2} \, \mathsf{C}_{\mathsf{abcd}} \mathsf{R}^{\mathsf{ac}} \mathsf{R}^{\mathsf{bd}} + \delta_{3,3} \, \mathsf{R}_{\mathsf{a}}^{\mathsf{b}} \, \mathsf{R}_{\mathsf{c}}^{\mathsf{c}} + \delta_{3,4} \, \mathsf{R}_{\mathsf{ab}} \mathsf{R}^{\mathsf{ab}} \mathsf{R} + \delta_{3,5} \, \mathsf{R}^3 \Big] \end{aligned}$$

$$\mathcal{L}_{\mathsf{EFT}}^{(4)} = \frac{1}{\mathsf{M}_{\mathsf{PI}}^4} \Big[\alpha_2 \, \mathsf{R}^{\mathsf{ab}} \, \Box^2 \, \mathsf{R}_{\mathsf{ab}} - \beta_2 \, \mathsf{R} \, \Box^2 \, \mathsf{R} + \gamma_{4,1} \, (\mathsf{C}_{\mathsf{abcd}} \, \mathsf{C}^{\mathsf{abcd}})^2 + \gamma_{4,2} (\mathsf{C}_{\mathsf{abcd}} \, {}^*\!\mathsf{C}^{\mathsf{abcd}})^2 + \dots \Big]$$

 $\mathcal{L}_{\mathsf{EFT}}^{(1)} = \mathsf{M}_{\mathsf{PI}}^2 \, \mathsf{R}$

 $\mathcal{L}_{\mathsf{EFT}}^{(2)} = \left[\alpha_0 \mathsf{R}_{\mathsf{ab}} \mathsf{R}^{\mathsf{ab}} - \beta_0 \, \mathsf{R}^2 \right]$

After reduction via (i) index symmetries (ii) geometric identities (iii) 4D-specific identities (e.g. Gauss-Bonnet) see Fulling CQG 9 (1992); Martin-Garcia, Yllanes, Portugal, CPC 179 (2008)

$$\begin{aligned} \mathcal{L}_{\mathsf{EFT}}^{(3)} &= \frac{1}{\mathsf{M}_{\mathsf{PI}}^2} \Big[\alpha_1 \, \mathsf{R}^{\mathsf{ab}} \Box \, \mathsf{R}_{\mathsf{ab}} - \beta_1 \, \mathsf{R} \Box \, \mathsf{R} + \gamma_3 \, \mathsf{C}_{\mathsf{ab}}{}^{\mathsf{cd}} \mathsf{C}_{\mathsf{cd}}{}^{\mathsf{ef}} \mathsf{C}_{\mathsf{ef}}{}^{\mathsf{ab}} \\ &+ \delta_{3,1} \, \mathsf{C}_{\mathsf{abcd}} \mathsf{C}^{\mathsf{abcd}} \mathsf{R} + \delta_{3,2} \, \mathsf{C}_{\mathsf{abcd}} \mathsf{R}^{\mathsf{ac}} \mathsf{R}^{\mathsf{bd}} + \delta_{3,3} \, \mathsf{R}_{\mathsf{a}}^{\mathsf{b}} \, \mathsf{R}_{\mathsf{c}}^{\mathsf{c}} + \delta_{3,4} \, \mathsf{R}_{\mathsf{ab}} \mathsf{R}^{\mathsf{ab}} \mathsf{R} + \delta_{3,5} \, \mathsf{R}^3 \Big] \end{aligned}$$

$$\mathcal{L}_{\mathsf{EFT}}^{(4)} = \frac{1}{\mathsf{M}_{\mathsf{PI}}^4} \Big[\alpha_2 \, \mathsf{R}^{\mathsf{ab}} \, \Box^2 \, \mathsf{R}_{\mathsf{ab}} - \beta_2 \, \mathsf{R} \, \Box^2 \, \mathsf{R} + \gamma_{4,1} \, (\mathsf{C}_{\mathsf{abcd}} \, \mathsf{C}^{\mathsf{abcd}})^2 + \gamma_{4,2} (\mathsf{C}_{\mathsf{abcd}} \, {}^*\!\mathsf{C}^{\mathsf{abcd}})^2 + \dots \Big]$$

.. before field redefinitions.

 $\mathcal{L}_{\mathsf{EFT}}^{(1)} = \mathsf{M}_{\mathsf{PI}}^2\,\mathsf{R}$

 $\mathcal{L}_{\mathsf{EFT}}^{(2)} = \left[\alpha_0 \mathsf{R}_{\mathsf{ab}} \mathsf{R}^{\mathsf{ab}} - \beta_0 \, \mathsf{R}^2 \right]$

order-by-order field redefinitions of the form $g_{ab} \rightarrow g_{ab} + c_1 g_{ab} X + c_2 X_{ab}$ can remove any term containing Ricci variables

$$\mathcal{L}_{\mathsf{EFT}}^{(3)} = \frac{1}{\mathsf{M}_{\mathsf{PI}}^2} \Big[\alpha_1 \,\mathsf{R}^{\mathsf{ab}} \Box \,\mathsf{R}_{\mathsf{ab}} - \beta_1 \,\mathsf{R} \Box \,\mathsf{R} + \gamma_3 \,\mathsf{C}_{\mathsf{ab}}{}^{\mathsf{cd}} \mathsf{C}_{\mathsf{cd}}{}^{\mathsf{ef}} \mathsf{C}_{\mathsf{ef}}{}^{\mathsf{ab}} + \delta_{3,1} \,\mathsf{C}_{\mathsf{abcd}} \mathsf{C}^{\mathsf{abcd}} \mathsf{R} + \delta_{3,2} \,\mathsf{C}_{\mathsf{abcd}} \mathsf{R}^{\mathsf{ac}} \mathsf{R}^{\mathsf{bd}} + \delta_{3,3} \,\mathsf{R}_{\mathsf{a}}^{\mathsf{b}} \,\mathsf{R}_{\mathsf{c}}^{\mathsf{c}} + \delta_{3,4} \,\mathsf{R}_{\mathsf{ab}} \mathsf{R}^{\mathsf{ab}} \mathsf{R} + \delta_{3,5} \,\mathsf{R}^3 \Big]$$

$$\mathcal{L}_{\mathsf{EFT}}^{(4)} = \frac{1}{\mathsf{M}_{\mathsf{PI}}^4} \Big[\alpha_2 \, \mathsf{R}^{\mathsf{ab}} \, \Box^2 \, \mathsf{R}_{\mathsf{ab}} - \beta_2 \, \mathsf{R} \, \Box^2 \, \mathsf{R} + \gamma_{4,1} \, (\mathsf{C}_{\mathsf{abcd}} \, \mathsf{C}^{\mathsf{abcd}})^2 + \gamma_{4,2} (\mathsf{C}_{\mathsf{abcd}} \, {}^*\!\mathsf{C}^{\mathsf{abcd}})^2 + \dots \Big]$$

 $\mathcal{L}_{\mathsf{FFT}}^{(1)} = \mathsf{M}_{\mathsf{PI}}^2 \mathsf{R}$

 $\mathcal{L}_{\mathsf{EFT}}^{(2)} = \left| \alpha_0 \mathsf{R}_{\mathsf{ab}} \mathsf{R}^{\mathsf{ab}} - \beta_0 \mathsf{R}^2 \right|$

M⁴_{PI} L

order-by-order field redefinitions of the form $g_{ab} \rightarrow g_{ab} + c_1 g_{ab} X + c_2 X_{ab}$ can remove any term containing Ricci variables

$$\mathcal{L}_{EFT}^{(3)} = \frac{1}{\mathsf{M}_{\mathsf{PI}}^2} \Big[\alpha_1 \,\mathsf{R}^{\mathsf{ab}} \Box \,\mathsf{R}_{\mathsf{ab}} - \beta_1 \,\mathsf{R} \Box \,\mathsf{R} + \gamma_3 \,\mathsf{C}_{\mathsf{ab}}^{\ \mathsf{cd}} \mathsf{C}_{\mathsf{cd}}^{\ \mathsf{ef}} \mathsf{C}_{\mathsf{ef}}^{\ \mathsf{ab}} \Big] \overset{\text{Goroff, Sagnotti, Nucl. Phys. B 266 (1986)}}{\overset{\text{Bueno, Cano, PRD 94 (2016) 10}}_{\overset{\text{Bueno, Cano, PRD 94 (2016) 10}}_{\overset{\text{Bu$$

Endlich, Gorbenko, Huang, Senatore, JHEP 09, 122 (2017)

 $\mathcal{L}_{\mathsf{EFT}}^{(1)} = \mathsf{M}_{\mathsf{PI}}^2\,\mathsf{R}$

 $\mathcal{L}_{\mathsf{EFT}}^{(2)} = \left[\alpha_0 \mathsf{R}_{\mathsf{ab}} \mathsf{R}^{\mathsf{ab}} - \beta_0 \, \mathsf{R}^2 \right]$

order-by-order field redefinitions of the form $g_{ab} \rightarrow g_{ab} + c_1 g_{ab} X + c_2 X_{ab}$ can remove any term containing Ricci variables

$$\mathcal{L}_{\mathsf{EFT}}^{(3)} = \frac{1}{\mathsf{M}_{\mathsf{PI}}^2} \begin{bmatrix} \alpha_1 \, \mathsf{R}^{\mathsf{ab}} \square \, \mathsf{R}_{\mathsf{ab}} - \beta_1 \, \mathsf{R} \square \, \mathsf{R} + \gamma_3 \, \mathsf{C}_{\mathsf{ab}}^{\ \mathsf{cd}} \mathsf{C}_{\mathsf{cd}}^{\ \mathsf{ef}} \mathsf{C}_{\mathsf{ef}}^{\ \mathsf{ab}} \end{bmatrix} \overset{\text{Goroff, Sagnotti, Nucl.Phys.B 266 (1986)}}{\underset{\mathsf{bueno, Cano, PRD 94 (2016) 10}}{\underset{\mathsf{bueno, Cano, PRD 94 (2016) 10}}} \\ + \delta_{3,1} \, \mathsf{C}_{\mathsf{abcd}} \, \mathsf{C}^{\mathsf{abcd}} \, \mathsf{R} + \delta_{3,2} \, \mathsf{C}_{\mathsf{abcd}} \, \mathsf{R}^{\mathsf{ac}} \, \mathsf{R}^{\mathsf{bd}} + \delta_{3,3} \, \mathsf{R}^{\mathsf{b}}_{\mathsf{a}} \, \mathsf{R}^{\mathsf{c}}_{\mathsf{c}} + \delta_{3,4} \, \mathsf{R}_{\mathsf{ab}} \, \mathsf{R}^{\mathsf{ab}} \, \mathsf{R} + \delta_{3,5} \, \mathsf{R}^{3} \end{bmatrix}$$

$$\mathcal{L}_{\mathsf{EFT}}^{(4)} = \frac{1}{\mathsf{M}_{\mathsf{PI}}^4} \left[\alpha_2 \, \mathsf{R}^{\mathsf{ab}} \, \Box^2 \, \mathsf{R}_{\mathsf{ab}} - \beta_2 \, \mathsf{R} \, \Box^2 \, \mathsf{R} + \frac{\gamma_{4,1} \, (\mathsf{C}_{\mathsf{abcd}} \, \mathsf{C}^{\mathsf{abcd}})^2 + \gamma_{4,2} (\mathsf{C}_{\mathsf{abcd}} \, {}^*\!\mathsf{C}^{\mathsf{abcd}})^2 + \dots \right]$$

Endlich, Gorbenko, Huang, Senatore, JHEP 09, 122 (2017)

... after field redefinitions.

 $\mathcal{L}_{\text{EFT}}^{(1)} = M_{\text{PI}}^2 \, R$

 $\mathcal{L}_{\mathsf{EFT}}^{(2)} = \left[\alpha_0 \mathsf{R}_{\mathsf{ab}} \mathsf{R}^{\mathsf{ab}} - \beta_0 \, \mathsf{R}^2 \right]$

order-by-order field redefinitions of the form

$$g_{ab} \rightarrow g_{ab} + c_1 g_{ab} X + c_2 X_{ab}$$

can remove any term containing Ricci variables

$$\mathcal{L}_{\mathsf{EFT}}^{(3)} = \frac{1}{\mathsf{M}_{\mathsf{PI}}^2} \begin{bmatrix} \alpha_1 \, \mathsf{R}^{\mathsf{ab}} \Box \, \mathsf{R}_{\mathsf{ab}} - \beta_1 \, \mathsf{R} \Box \, \mathsf{R} \\ + \gamma_3 \, \mathsf{C}_{\mathsf{ab}}^{\ \mathsf{cd}} \mathsf{C}_{\mathsf{cd}}^{\ \mathsf{ef}} \mathsf{C}_{\mathsf{ef}}^{\ \mathsf{ab}} \end{bmatrix} \overset{\mathsf{Goroff, Sagnotti, Nucl. Phys. B 266 (1986)}{\underset{\mathsf{Bueno, Cano, PRD 94 (2016) 10}{\underset{\mathsf{de Rham, Francfort, Zhang, PRD 102 (2020)}{\underset{\mathsf{de Rham, Francfort, Zhang, PRD 102$$

$$\mathcal{L}_{\mathsf{EFT}}^{(4)} = \frac{1}{\mathsf{M}_{\mathsf{PI}}^4} \left[\alpha_2 \, \mathsf{R}^{\mathsf{ab}} \, \Box^2 \, \mathsf{R}_{\mathsf{ab}} - \beta_2 \, \mathsf{R} \, \Box^2 \, \mathsf{R} \right] + \frac{\gamma_{4,1} \, (\mathsf{C}_{\mathsf{abcd}} \, \mathsf{C}^{\mathsf{abcd}})^2 + \gamma_{4,2} (\mathsf{C}_{\mathsf{abcd}} \, {}^*\!\mathsf{C}^{\mathsf{abcd}})^2 + \dots \right]$$

Endlich, Gorbenko, Huang, Senatore, JHEP 09, 122 (2017)

... after field redefinitions.

Part II: Well-posedness

Noakes, JMP 24, 1846 (1983); Figueras, Held, Kovacs, 2407.08775

- General Relativity (Leray weights)
- Quadratic Gravity
- Cubic Gravity, Quartic Gravity, and beyond ...

Noakes, JMP 24, 1846 (1983);

Figueras, Held, Kovacs, 2407.08775

Part II: Well-posedness

Noakes, JMP 24, 1846 (1983); Figueras, Held, Kovacs, 2407.08775

((An initial value problem is well-posed if a solution

- exists for all future time
- is unique
- and depends continuously on the initial data

((An initial value problem is well-posed if a solution

- exists for all future time
- is unique
- and depends continuously on the initial data

... for General Relativity

Formal proof of existence and uniqueness Yvonne Choquet-Bruhat '52

(3+1) numerical evolution Pretorius '05; BSSN '87-'99; Sarbach et.Al '02-'04

((An initial value problem is well-posed if a solution

- exists for all future time
- is unique
- and depends continuously on the initial data

... for General Relativity

Formal proof of existence and uniqueness Yvonne Choquet-Bruhat '52 (3+1) numerical evolution Pretorius '05; BSSN '87-'99; Sarbach et.Al '02-'04

... and for Quadratic Gravity

Noakes, JMP 24, 1846 (1983)

Held, Lim '21, '23, '24; Cayuso '23; East, Siemonsen '23

((An initial value problem is well-posed if a solution

- exists for all future time
- is unique
- and depends continuously on the initial data

... for General Relativity

Formal proof of existence and uniqueness Yvonne Choquet-Bruhat '52 (3+1) numerical evolution Pretorius '05; BSSN '87-'99; Sarbach et.Al '02-'04

... and for Quadratic Gravity

Noakes, JMP 24, 1846 (1983)

Held, Lim '21, '23, '24; Cayuso '23; East, Siemonsen '23

... and for the EFT (at fixed order)

Figueras, Held, Kovacs, 2407.08775

 For all i, the combination (s_i – t_i) is equal to the derivative order with which v_i contributes to its own evolution equation E_i.

- For all i, the combination (s_i t_i) is equal to the derivative order with which v_i contributes to its own evolution equation E_i.
- For all i and all $j \neq i$, the combinations $(s_i t_j)$ is large than the derivative order with which v_i contributes to the evolution equation E_i .

- For all i, the combination (s_i t_i) is equal to the derivative order with which v_i contributes to its own evolution equation E_i.
- For all i and all $j \neq i$, the combinations $(s_i t_j)$ is large than the derivative order with which v_i contributes to the evolution equation E_i .

... give a prescription to diagonalise the principal part.

• System of PDEs:

• System of PDEs: $\label{eq:v} \Box u = v$ $\label{eq:v} \Box v = \partial_t^2 u$ • Leray weights: $s_i = (2,3)$ $t_i = (0,1)$

• System of PDEs: $\Box u = v$ $\Box v = \partial_t^2 u$ • Leray weights: $s_i = (2, 3)$ $t_i = (0, 1)$ $\Box \dot{u} = \partial_t v$ • Explicit diagonalisation: $(\partial_t u \equiv \dot{u})$ $\Box v = \partial_t \dot{u}$

• System of PDEs: $\Box u = v$ $\Box v = \partial_t^2 u$ $s_i = (2, 3)$ • Leray weights: $t_i = (0, 1)$ $\Box \dot{u} = \partial_{t} v$ • Explicit diagonalisation: $(\partial_t u \equiv \dot{u})$ $\Box v = \partial_t \dot{u}$

... that can be diagonalised.

20 • System of PDEs: $\Box \mathbf{u} = \mathbf{v}$ $\Box v = \partial_t^2 u$ $s_i = (2, 3)$ • Leray weights: $t_i = (0, 1)$ $\Box \dot{u} = \partial_{t} v$ • Explicit diagonalisation: $(\partial_t u \equiv \dot{u})$ $\Box v = \partial_t \dot{u}$

... that can be diagonalised.

General Relativity (in harmonic gauge) ...

- Gauge potential: $F^a \equiv -g^{cd}\Gamma^a_{cd}$
- Ricci curvature: $R_{ab} = \Box g_{ab} + g_{c(a} \nabla_{b)} F^{c} + O(g, \partial g)$

General Relativity (in harmonic gauge) ...

- Gauge potential: $F^a \equiv -g^{cd}\Gamma^a_{cd}$
- Ricci curvature: $R_{ab} = \Box g_{ab} + g_{c(a} \nabla_{b)} F^{c} + O(g, \partial g)$
- In harmonic gauge, i.e., $F^a = 0$ the vacuum Einstein equations, i.e., $R_{ab} = 0$ are of wave-like form.

For constraint propagation see Choquet-Bruhat '52 Choquet-Bruhat (textbooks)

General Relativity (in harmonic gauge) ...

- Gauge potential: $F^a \equiv -g^{cd}\Gamma^a_{cd}$
- Ricci curvature: $R_{ab} = \Box g_{ab} + g_{c(a} \nabla_{b)} F^{c} + O(g, \partial g)$
- In harmonic gauge, i.e., $F^a = 0$ the vacuum Einstein equations, i.e., $R_{ab} = 0$ are of wave-like form.

For constraint propagation see Choquet-Bruhat '52 Choquet-Bruhat (textbooks)

... is already in wave-like form.

Quadratic Gravity ...

• recall
$$\mathcal{L} = M_{PI}^2 \left[R + \frac{1}{12m_0^2} R^2 + \frac{1}{4m_2^2} C_{abcd} C^{abcd} \right]$$

Quadratic Gravity ...

• recall
$$\mathcal{L} = M_{Pl}^2 \begin{bmatrix} R + \frac{1}{12m_0^2}R^2 + \frac{1}{4m_2^2}C_{abcd}C^{abcd} \end{bmatrix}$$

Stelle, PRD 16 (1977) 953-969
Noakes, JMP 24, 1846 (1983)
Provided $\Box g_{ab} \sim R_{ab} \equiv S_{ab} + \frac{1}{4}g_{ab}R$
 $\Box R = m_0^2 R$
 $\Box S_{ab} = -\frac{1}{3}\left(\frac{m_2^2}{m_0^2} - 1\right)(\nabla_a \nabla_b R) - 2S^{cd}C_{acbd} + \mathcal{O}_{lower order}$
 $massive spin-2$
(graviton)
 $massive spin-2$
(graviton)
 $massive spin-2$
(graviton)

Quadratic Gravity ...

• recall
$$\mathcal{L} = M_{Pl}^2 \left[R + \frac{1}{12m_0^2} R^2 + \frac{1}{4m_2^2} C_{abcd} C^{abcd} \right]$$

Stelle, PRD 16 (1977) 953-969
Noakes, JMP 24, 1846 (1983)
2nd
order
variables
 $\square g_{ab} \sim R_{ab} \equiv S_{ab} + \frac{1}{4} g_{ab} R$
 $\square R = m_0^2 R$
 $\square R = m_0^2 R$
 $\square S_{ab} = -\frac{1}{3} \left(\frac{m_2^2}{m_0^2} - 1 \right) (\nabla_a \nabla_b R) - 2 \operatorname{Stelle} + \mathcal{O}_{lower order}$
massive spin-2
(graviton)
massive spin-2
(graviton)
massive spin-2
(graviton)

• For equal masses, the 2nd-order field equations of Quadratic Gravity are of wave-like form.
Quadratic Gravity ...

• recall
$$\mathcal{L} = M_{Pl}^2 \left[R + \frac{1}{12m_0^2} R^2 + \frac{1}{4m_2^2} C_{abcd} C^{abcd} \right]$$

Stelle, PRD 16 (1977) 953-969
Noakes, JMP 24, 1846 (1983)
2nd
order
variables
 $\square g_{ab} \sim R_{ab}^2 \square S_{ab} + \frac{1}{4} g_{ab} R$
 $\square R^2 \square m_0^2 R$
 $\square S_{ab}^{2|0} \square R^2$
 $\square S_{ab}^{2|1} - \frac{1}{3} \left(\frac{m_2^2}{m_0^2} - 1 \right) (\nabla_a \nabla_b R) - 2 \operatorname{Stelle} + \mathcal{O}_{lower order}$
 $\operatorname{massive spin-2}_{(graviton)}$
 $\operatorname{massive spin-2}_{(graviton)}$

• For equal masses, the 2nd-order field equations of Quadratic Gravity are of wave-like form.

Quadratic Gravity ...

• recall
$$\mathcal{L} = M_{Pl}^2 \left[R + \frac{1}{12m_0^2} R^2 + \frac{1}{4m_2^2} C_{abcd} C^{abcd} \right]$$

Stelle, PRD 16 (1977) 953-969
Noakes, JMP 24, 1846 (1983)
2nd-
order
variables
 $\square g_{ab} \sim R_{ab}^2 \equiv S_{ab} + \frac{1}{4} g_{ab} R$
 $\square g_{ab} \sim R_{ab}^2 \equiv S_{ab} + \frac{1}{4} g_{ab} R$
 $\square R^2 \equiv m_0^2 R$
 $\square S_{ab}^{2|0} = -\frac{1}{3} \left(\frac{m_2^2}{m_0^2} - 1 \right) (\nabla_a \nabla_b R) - 2 \operatorname{Stelle} + \mathcal{O}_{lower order}$
massive spin-2
(graviton)
massive spin-2
(graviton)
massive spin-2
(graviton)

- For equal masses, the 2nd-order field equations of Quadratic Gravity are of wave-like form.
- For unequal masses, one can still find suitable Leray weights.

Quadratic Gravity ...

$$\begin{array}{c|c} \mbox{ recall } \mathcal{L} = M_{Pl}^{2} \left[R \ + \ \frac{1}{12m_{0}^{2}}R^{2} \ + \ \frac{1}{4m_{2}^{2}}C_{abcd}C^{abcd} \right] & \\ \mbox{Stelle, PRD 16 (1977) 953-969}\\ \mbox{Noakes, JMP 24, 1846 (1983)} \\ \mbox{Noakes, JMP 24, 1846 (1983)}$$

- For equal masses, the 2nd-order field equations of Quadratic Gravity are of wave-like form.
- For unequal masses, one can still find suitable Leray weights.

... admits Leray weights for its 2nd order field equations.

• recall
$$\mathcal{L}_{\mathsf{EFT}}^{(3)} = \frac{1}{\mathsf{M}_{\mathsf{Pl}}^2} \Big[\alpha_1 \, \mathsf{R}^{\mathsf{ab}} \Box \, \mathsf{R}_{\mathsf{ab}} - \beta_1 \, \mathsf{R} \Box \, \mathsf{R} + \gamma_3 \, \mathsf{C}_{\mathsf{ab}}^{\mathsf{cd}} \mathsf{C}_{\mathsf{cd}}^{\mathsf{ef}} \mathsf{C}_{\mathsf{ef}}^{\mathsf{ab}} \Big]$$

• recall
$$\mathcal{L}_{\mathsf{EFT}}^{(3)} = \frac{1}{\mathsf{M}_{\mathsf{Pl}}^2} \Big[\alpha_1 \, \mathsf{R}^{\mathsf{ab}} \Box \, \mathsf{R}_{\mathsf{ab}} - \beta_1 \, \mathsf{R} \Box \, \mathsf{R} + \gamma_3 \, \mathsf{C}_{\mathsf{ab}}^{\mathsf{cd}} \mathsf{C}_{\mathsf{cd}}^{\mathsf{ef}} \mathsf{C}_{\mathsf{ef}}^{\mathsf{ab}} \Big]$$

$$\begin{array}{l} \mbox{order}\\ \mbox{reduced}\\ \mbox{2}^{nd}\mbox{-order}\\ \mbox{field}\\ \mbox{equations} \end{array} & \square g_{ab} \sim R_{ab} \equiv S_{ab} + \frac{1}{4} g_{ab} R \\ \square G_{abde} \equiv \mathcal{O}^{C}_{abde} (\partial C, \ \partial \partial S, \ \partial \partial R) \\ \square R \equiv R^{(1)} \\ \square S_{ab} \equiv S^{(1)}_{ab} \\ \square R^{(1)} \equiv \mathcal{O}^{R} (\partial C, \ \partial \partial S, \ \partial \partial R) \\ \square R^{(1)} \equiv \mathcal{O}^{R} (\partial C, \ \partial \partial S, \ \partial \partial R) \\ \square S^{(1)}_{ab} \equiv \left(1 - \frac{2\beta_{1}}{\alpha_{1}}\right) \left(\frac{1}{4} g_{ab} \square - \nabla_{a} \nabla_{b}\right) R^{(1)} + \mathcal{O}^{S}_{ab} (\partial C, \ \partial \partial S, \ \partial \partial R) \\ \end{array}$$

• recall
$$\mathcal{L}_{EFT}^{(3)} = \frac{1}{M_{Pl}^2} \left[\alpha_1 R^{ab} \Box R_{ab} - \beta_1 R \Box R + \gamma_3 C_{ab}^{\ \ cd} C_{cd}^{\ \ ef} C_{ef}^{\ \ ab} \right]$$

order-
reduced
2nd-order
field
equations
$$\Box R \equiv R^{(1)}$$

$$\Box R \equiv R^{(1)}$$

$$\Box S_{ab} \equiv S_{ab}^{(1)}$$

$$\Box R^{(1)} \equiv \mathcal{O}^R(\partial C, \partial \partial S, \partial \partial R)$$

$$\alpha_1 = 2\beta_1$$

$$\Box S_{ab}^{(1)} \equiv \left(1 - \frac{2\beta_1}{\alpha_1}\right) \left(\frac{1}{4} g_{ab} \Box - \nabla_a \nabla_b\right) R^{(1)} + \mathcal{O}_{ab}^S(\partial C, \partial \partial S, \partial \partial R)$$

• recall
$$\mathcal{L}_{EFT}^{(3)} = \frac{1}{M_{Pl}^2} \left[\alpha_1 R^{ab} \Box R_{ab} - \beta_1 R \Box R + \gamma_3 C_{ab}^{\ cd} C_{cd}^{\ ef} C_{ef}^{\ ab} \right]$$

order-
reduced
2nd-order
field
equations
$$\Box_{abb}^{2|0} \sim R_{ab} = \mathcal{O}_{abde}^{2} (\partial C, \partial \partial S, \partial \partial R)$$

$$\Box_{abc}^{2|0} = \mathcal{O}_{abde}^{(1)} (\partial C, \partial \partial S, \partial \partial R)$$

$$\Box_{ab}^{2|0} S_{ab}^{(1)} = S_{ab}^{(1)} S_{ab}^{(1)} = S_{ab}^{(1)} S_{ab}^{(1)} = S_{ab}^{(1)} (\partial C, \partial \partial S, \partial \partial R)$$

$$\Box_{ab}^{(1)} = \int_{abc}^{(1)} \mathcal{O}_{abc}^{R} (\partial C, \partial \partial S, \partial \partial R) = \alpha_1 = 2\beta_1$$

$$\Box_{ab}^{(1)} = \int_{ab}^{(1)} \left(1 - \frac{2\beta_1}{\alpha_1}\right) \left(\frac{1}{4} g_{ab} \Box - \nabla_a \nabla_b\right) R^{(1)} + \mathcal{O}_{ab}^{S} (\partial C, \partial \partial S, \partial \partial R)$$

• recall
$$\mathcal{L}_{EFT}^{(3)} = \frac{1}{M_{Pl}^2} \left[\alpha_1 R^{ab} \Box R_{ab} - \beta_1 R \Box R + \gamma_3 C_{ab}^{\ cd} C_{cd}^{\ ef} C_{ef}^{\ ab} \right]$$

order-
reduced
 2^{nd} -order
field
equations
$$\Box R_{ab}^{2|0} C_{abde} = \mathcal{O}_{abde}^{C} (\partial C, \partial \partial S, \partial \partial R)$$

$$\Box R_{ab}^{2|0} C_{abde}^{C} (\partial C, \partial \partial S, \partial \partial R)$$

$$\Box R_{ab}^{2|0} S_{ab}^{(1)} \qquad \text{vanishes for} \\ equal mass: \\ \Box R_{ab}^{(1)} = \mathcal{O}^{R} (\partial C, \partial \partial S, \partial \partial R) \qquad \alpha_1 = 2\beta_1$$

$$\Box S_{ab}^{(1)} = \left(1 - \frac{2\beta_1}{\alpha_1}\right) \left(\frac{1}{4} g_{ab} \Box - \nabla_a \nabla_b\right) R^{(1)} + \mathcal{O}_{ab}^{S} (\partial C, \partial \partial S, \partial \partial R)$$

... admits wave-like 2nd order field equations.

Figueras, Held, Kovacs, 2407.08775

• Inductively, this extends to $\mathcal{L}_{reg}^{(n)} = \sum_{k=0}^{n} \left[\alpha_k R^{ab} \Box^k R_{ab} - \beta_k R \Box^k R \right]$ with $\alpha_n = 2\beta_n$

• Inductively, this extends to
$$\mathcal{L}_{reg}^{(n)} = \sum_{k=0}^{n} \left[\alpha_k R^{ab} \Box^k R_{ab} - \beta_k R \Box^k R \right]$$
 with $\alpha_n = 2\beta_n$

$$\begin{array}{l} \mbox{order} \\ \mbox{reduced} \\ 2^{nd}\mbox{-order} \\ \mbox{field} \\ \mbox{equations} \end{array} \begin{array}{l} \mbox{\squareg_{ab} \sim R_{ab} \equiv S_{ab} + \frac{1}{4}g_{ab} R$} \\ \mbox{$\square$C_{abde} = \mathcal{O}^C_{abde}(\partial C, \ \partial \partial S, \ \partial \partial R)$} \\ \mbox{$\square$R^{(k)} \equiv R^{(k+1)} \quad \forall 0 \leq k < n$} \\ \mbox{$\square$S^{(k)}_{ab} \equiv S^{(k+1)}_{ab} \quad \forall 0 \leq k < n$} \\ \mbox{$\square$S^{(k)}_{ab} \equiv S^{(k+1)}_{ab} \quad \forall 0 \leq k < n$} \\ \mbox{$\square$R^{(n)} \equiv \mathcal{O}^R(\partial^{n-1}C, \ \partial^{n-k}S^{(k)}, \ \partial^{n-k}R^{(k)}$} \\ \mbox{$\square$S^{(n)}_{ab} \equiv \mathcal{O}^S_{ab}(\partial^{n-1}C, \ \partial^{n-k}S^{(k)}, \ \partial^{n-k}R^{(k)}$} \end{array} \end{array}$$

• Inductively, this extends to
$$\mathcal{L}_{reg}^{(n)} = \sum_{k=0}^{n} \left[\alpha_k R^{ab} \Box^k R_{ab} - \beta_k R \Box^k R \right]$$
 with $\alpha_n = 2\beta_n$

$$\begin{array}{l} \mbox{order}\\ \mbox{reduced}\\ 2^{nd}\mbox{-order}\\ \mbox{field}\\ \mbox{equations} \end{array} \stackrel{\mbox{$\mathbb{Z}_{ab}}}{=} & \mathbb{S}_{ab} + \frac{1}{4} g_{ab} \ \mathbb{R} \\ \hline \mbox{$\mathbb{G}_{abde}} \stackrel{\mbox{$\mathbb{S}_{abde}}}{=} & \mathbb{O}_{abde}^{\mathsf{C}}(\partial \mathsf{C}, \ \partial \partial \mathsf{S}, \ \partial \partial \mathsf{R}) \\ \hline \mbox{$\mathbb{G}_{abde}} \stackrel{\mbox{$\mathbb{K}_{abde}}}{=} & \mathbb{O}_{abde}^{\mathsf{C}}(\partial \mathsf{C}, \ \partial \partial \mathsf{S}, \ \partial \partial \mathsf{R}) \\ \hline \mbox{$\mathbb{G}_{abde}} \stackrel{\mbox{$\mathbb{K}_{abde}}}{=} & \mathbb{O}_{abde}^{\mathsf{C}}(\partial \mathsf{C}, \ \partial \partial \mathsf{S}, \ \partial \partial \mathsf{R}) \\ \hline \mbox{$\mathbb{G}_{abde}} \stackrel{\mbox{$\mathbb{K}_{abde}}}{=} & \mathbb{O}_{abde}^{\mathsf{C}}(\partial \mathsf{C}, \ \partial \partial \mathsf{S}, \ \partial \partial \mathsf{R}) \\ \hline \mbox{$\mathbb{G}_{abde}} \stackrel{\mbox{$\mathbb{K}_{abde}}}{=} & \mathbb{O}_{abde}^{\mathsf{C}}(\partial \mathsf{C}, \ \partial \partial \mathsf{S}, \ \partial \partial \mathsf{R}) \\ \hline \mbox{$\mathbb{S}_{ab}}^{(k)} \stackrel{\mbox{$\mathbb{K}_{abde}}}{=} & \mathbb{O}_{abde}^{\mathsf{C}}(\partial \mathsf{C}, \ \partial \partial \mathsf{S}, \ \partial \partial \mathsf{R}) \\ \hline \mbox{$\mathbb{G}_{abde}} \stackrel{\mbox{$\mathbb{K}_{abde}}}{=} & \mathbb{O}_{abde}^{\mathsf{C}}(\partial \mathsf{R}, \ \partial \mathsf{R}) \\ \hline \mbox{$\mathbb{G}_{abde}} \stackrel{\mbox{$\mathbb{K}_{abde}}}{=} & \mathbb{O}_{abde}^{\mathsf{C}}(\partial \mathsf{R}, \ \partial \mathsf{R}) \\ \hline \mbox{$\mathbb{G}_{abde}} \stackrel{\mbox{$\mathbb{R}_{abde}}}{=} & \mathbb{O}_{abde}^{\mathsf{R}}(\partial \mathsf{R}) \\ \hline \mbox{$\mathbb{C}_{abde}} \stackrel{\mbox{$\mathbb{C}_{abde}}}{=} \\ \hline \mbox{$\mathbb{C}_{abde}} \stackrel{\mbox{$\mathbb{C}_{abde}}}{=} & \mathbb{O}_{abde}^{\mathsf{R}}(\partial \mathsf{R}) \\ \hline \mbox{$\mathbb{C}_{abde}} \stackrel{\mbox{$\mathbb{C}_{abde}}}{=} \\ \hline \mbox{$\mathbb{C}_{abde}} \stackrel{\mbox{$\mathbb{C}_{abde}}}{=}$$

Figueras, Held, Kovacs, 2407.08775

• Inductively, this extends to
$$\mathcal{L}_{reg}^{(n)} = \sum_{k=0}^{n} \left[\alpha_k R^{ab} \Box^k R_{ab} - \beta_k R \Box^k R \right]$$
 with $\alpha_n = 2\beta_n$

$$\begin{array}{l} \mbox{order-reduced} \\ \mbox{reduced} \\ \mbox{2}^{nd}\mbox{-order} \\ \mbox{field} \\ \mbox{equations} \end{array} \label{equations} \begin{array}{l} \mbox{\squareg_{ab}$} \sim \ensuremath{\mathsf{R}}_{ab} \stackrel{\mbox{=}}{\equiv} \ensuremath{\mathsf{S}}_{ab} \stackrel{\mbox{=}}{=} \ensuremath{\mathsf{S}}_{ab} \stackrel{\mbox{-}}{\otimes} \ensuremath{\mathsf{R}}_{ab} \stackrel{\mbox$$

Not altered if supplemented with an action that only adds to the omitted lower-order terms.

> See Figueras, Held, Kovacs, 2407.08775 for a complete proof

Figueras, Held, Kovacs, 2407,08775

• Inductively, this extends to
$$\mathcal{L}_{reg}^{(n)} = \sum_{k=0}^{n} \left[\alpha_k R^{ab} \Box^k R_{ab} - \beta_k R \Box^k R \right]$$
 with $\alpha_n = 2\beta_n$

$$\begin{array}{l} \label{eq:scalar} \mbox{order}\\ \mbox{reduced}\\ 2^{nd}\mbox{-} \mbox{order}\\ \mbox{field}\\ \mbox{equations} \end{array} \stackrel{\mbox{l}}{=} S_{ab} + \frac{1}{4} g_{ab} R \\ \mbox{l}\\ \mbox{l}\\ \mbox{l}\\ \mbox{l}\\ \mbox{l}\\ \mbox{l}\\ \mbox{l}\\ \mbox{l}\\ \mbox{equations} \end{array} \stackrel{\mbox{l}}{=} S_{ab} + \frac{1}{4} g_{ab} R \\ \mbox{l}\\ \mb$$

... admits wave-like 2nd order field equations.

see

Well-posed initial value formulation ...

$$\mathcal{L}_{\mathsf{EFT}}^{(1)} = \mathsf{M}_{\mathsf{PI}}^2 \,\mathsf{R}$$

$$\mathcal{L}_{\mathsf{EFT}}^{(2)} = \left[\alpha_0 \mathsf{R}_{\mathsf{ab}} \mathsf{R}^{\mathsf{ab}} - \beta_0 \, \mathsf{R}^2 \right]$$

order-by-order field redefinitions of the form

$$g_{ab} \rightarrow g_{ab} + c_1 \, g_{ab} \, X + c_2 \, X_{ab}$$

can remove any term containing Ricci variables

$$\mathcal{L}_{\mathsf{EFT}}^{(3)} = \frac{1}{\mathsf{M}_{\mathsf{PI}}^2} \left[\alpha_1 \, \mathsf{R}^{\mathsf{ab}} \square \, \mathsf{R}_{\mathsf{ab}} - \beta_1 \, \mathsf{R} \square \, \mathsf{R} \right] + \gamma_3 \, \mathsf{C}_{\mathsf{ab}}^{\ \mathsf{cd}} \mathsf{C}_{\mathsf{cd}}^{\ \mathsf{ef}} \mathsf{C}_{\mathsf{ef}}^{\ \mathsf{ab}} \right] \overset{\mathsf{Goroff, Sagnotti, Nucl. Phys. B 266 (1986)}{\overset{\mathsf{Bueno, Cano, PRD 94 (2016) 10}} \\ \overset{\mathsf{de}}{\mathsf{Rham, Francfort, Zhang, PRD 102 (2020) 2} \\ + \, \delta_{3,1} \, \mathsf{C}_{\mathsf{abcd}} \, \mathsf{C}^{\mathsf{abcd}} \, \mathsf{R} + \, \delta_{3,2} \, \mathsf{C}_{\mathsf{abcd}} \, \mathsf{R}^{\mathsf{ac}} \, \mathsf{R}^{\mathsf{bd}} + \, \delta_{3,3} \, \mathsf{R}_{\mathsf{a}}^{\mathsf{b}} \, \mathsf{R}_{\mathsf{c}}^{\mathsf{c}} + \, \delta_{3,4} \, \mathsf{R}_{\mathsf{ab}} \, \mathsf{R}^{\mathsf{ab}} \, \mathsf{R} + \, \delta_{3,5} \, \mathsf{R}^{\mathsf{ab}} \right]$$

$$\mathcal{L}_{\mathsf{EFT}}^{(4)} = \frac{1}{\mathsf{M}_{\mathsf{Pl}}^4} \left[\alpha_2 \, \mathsf{R}^{\mathsf{ab}} \, \Box^2 \, \mathsf{R}_{\mathsf{ab}} - \beta_2 \, \mathsf{R} \, \Box^2 \, \mathsf{R} \right] + \frac{\gamma_{4,1} \, (\mathsf{C}_{\mathsf{abcd}} \, \mathsf{C}^{\mathsf{abcd}})^2 + \gamma_{4,2} (\mathsf{C}_{\mathsf{abcd}} \, {}^*\!\mathsf{C}^{\mathsf{abcd}})^2 + \dots \right]$$

Endlich, Gorbenko, Huang, Senatore, JHEP 09, 122 (2017)

Well-posed initial value formulation ...

$$\mathcal{L}_{EFT}^{(1)} = \mathsf{M}_{\mathsf{PI}}^2 \mathsf{R}$$
 order-by-order field redefinitions of the form

$$g_{ab} \to g_{ab} + c_1 g_{ab} X + c_2 X_{ab}$$

$$can remove any term containing Ricci variables$$

$$\mathcal{L}_{\mathsf{EFT}}^{(3)} = \frac{1}{\mathsf{M}_{\mathsf{PI}}^2} \begin{bmatrix} \alpha_1 \, \mathsf{R}^{\mathsf{ab}} \Box \, \mathsf{R}_{\mathsf{ab}} - \beta_1 \, \mathsf{R} \Box \, \mathsf{R} \\ + \gamma_3 \, \mathsf{C}_{\mathsf{ab}}^{\ \mathsf{cd}} \mathsf{C}_{\mathsf{cd}}^{\ \mathsf{ef}} \mathsf{C}_{\mathsf{ef}}^{\ \mathsf{ab}} \end{bmatrix} \stackrel{\text{Goroff, Sagnotti, Nucl.Phys.B 266 (1986)}{Bueno, Cano, PRD 94 (2016) 10} \\ \text{de Rham, Francfort, Zhang, PRD 102 (2020) 2} \end{bmatrix} + \delta_{3,1} \, \mathsf{C}_{\mathsf{abcd}} \, \mathsf{C}^{\mathsf{abcd}} \, \mathsf{R} + \delta_{3,2} \, \mathsf{C}_{\mathsf{abcd}} \, \mathsf{R}^{\mathsf{ac}} \, \mathsf{R}^{\mathsf{bd}} + \delta_{3,3} \, \mathsf{R}_{\mathsf{a}}^{\mathsf{b}} \, \mathsf{R}_{\mathsf{b}}^{\mathsf{c}} \, \mathsf{R}_{\mathsf{c}}^{\mathsf{a}} + \delta_{3,4} \, \mathsf{R}_{\mathsf{ab}} \, \mathsf{R}^{\mathsf{ab}} \, \mathsf{R} + \delta_{3,5} \, \mathsf{R}^{\mathsf{3}} \end{bmatrix}$$

$$\mathcal{L}_{\mathsf{EFT}}^{(4)} = \frac{1}{\mathsf{M}_{\mathsf{PI}}^4} \left[\alpha_2 \, \mathsf{R}^{\mathsf{ab}} \, \Box^2 \, \mathsf{R}_{\mathsf{ab}} - \beta_2 \, \mathsf{R} \, \Box^2 \, \mathsf{R} \right] + \frac{\gamma_{4,1} \, (\mathsf{C}_{\mathsf{abcd}} \, \mathsf{C}^{\mathsf{abcd}})^2 + \gamma_{4,2} (\mathsf{C}_{\mathsf{abcd}} \, {}^*\!\mathsf{C}^{\mathsf{abcd}})^2 + \dots \right] \checkmark$$
Endlich, Gorbenko, Huang, Senatore, JHEP 09, 122 (2017)

Well-posed initial value formulation ...

$$\mathcal{L}_{EFT}^{(1)} = \mathsf{M}_{\mathsf{PI}}^{2} \mathsf{R}$$

$$\mathbf{c}_{\mathsf{EFT}}^{(2)} = \begin{bmatrix} \alpha_{0}\mathsf{R}_{\mathsf{ab}}\mathsf{R}^{\mathsf{ab}} - \beta_{0}\,\mathsf{R}^{2} \end{bmatrix}$$

$$\mathbf{c}_{\mathsf{EFT}}^{(2)} = \begin{bmatrix} \alpha_{0}\mathsf{R}_{\mathsf{ab}}\mathsf{R}^{\mathsf{ab}} - \beta_{0}\,\mathsf{R}^{2} \end{bmatrix}$$

$$\mathbf{c}_{\mathsf{an remove any term containing Ricci variables}$$

$$\mathcal{L}_{\mathsf{EFT}}^{(3)} = \frac{1}{\mathsf{M}_{\mathsf{PI}}^{2}} \begin{bmatrix} \alpha_{1}\,\mathsf{R}^{\mathsf{ab}}\,\Box\,\mathsf{R}_{\mathsf{ab}} - \beta_{1}\,\mathsf{R}\,\Box\,\mathsf{R} + \gamma_{3}\,\mathsf{C}_{\mathsf{ab}}^{\mathsf{cd}}\mathsf{C}_{\mathsf{cd}}^{\mathsf{ef}}\mathsf{C}_{\mathsf{ef}}^{\mathsf{ab}} \end{bmatrix}$$

$$\mathcal{G}_{\mathsf{bueno, Cano, PRD 94}(2016) 10 \\ \mathcal{G}_{\mathsf{eRham, Francfort, Zhang, PRD 102}(2020) 2 \\ \mathcal{G}_{\mathsf{cd}}^{\mathsf{abcd}}\mathsf{R} + \delta_{3,2}\,\mathsf{C}_{\mathsf{abcd}}\mathsf{R}^{\mathsf{ac}}\mathsf{R}^{\mathsf{bd}} + \delta_{3,3}\,\mathsf{R}_{\mathsf{a}}^{\mathsf{b}}\,\mathsf{R}_{\mathsf{b}}^{\mathsf{c}}\,\mathsf{R}_{\mathsf{c}}^{\mathsf{a}} + \delta_{3,4}\,\mathsf{R}_{\mathsf{ab}}\mathsf{R}^{\mathsf{ab}}\mathsf{R} + \delta_{3,5}\,\mathsf{R}^{3} \end{bmatrix}$$

$$\mathcal{L}_{\mathsf{EFT}}^{(4)} = \frac{1}{\mathsf{M}_{\mathsf{PI}}^4} \left[\alpha_2 \, \mathsf{R}^{\mathsf{ab}} \, \Box^2 \, \mathsf{R}_{\mathsf{ab}} - \beta_2 \, \mathsf{R} \, \Box^2 \, \mathsf{R} \right] + \frac{\gamma_{4,1} \, (\mathsf{C}_{\mathsf{abcd}} \, \mathsf{C}^{\mathsf{abcd}})^2 + \gamma_{4,2} (\mathsf{C}_{\mathsf{abcd}} \, {}^*\!\mathsf{C}^{\mathsf{abcd}})^2 + \dots \right] \mathbf{L}_{\mathsf{Endlich, Gorbenko, Huang, Senatore, JHEP 09, 122 (2017)}}$$

... of general effective field theories of gravity.

Part III: Nonlinear evolution (Quadratic Gravity)

Held, Lim, PRD 104 (2021) 8 Held, Lim, PRD 108 (2023) 10 & to appear

as a benchmark model to proceed to cubic/quartic terms

as the leading-order terms before field redefinitions / in non-vacuum situations

as a fundamental theory of gravity

Stelle, PRD 16 (1977) 953-969 Avramidi, Barvinsky, PLB 159 (1985) 269-274 Donoghue, Menezes, PRD 104 (2021) 4

- numerically stable evolution
- isolated black holes: stability & transitions
- black-hole binaries & waveforms

Part III: Nonlinear evolution (Quadratic Gravity)

Held, Lim, PRD 104 (2021) 8 Held, Lim, PRD 108 (2023) 10 & to appear

- numerically stable evolution
- isolated black holes: stability & transitions
- black-hole binaries & waveforms

Part III: Nonlinear evolution (Quadratic Gravity)

Held, Lim, PRD 104 (2021) 8 Held, Lim, PRD 108 (2023) 10 & to appear

Held, Lim, PRD 108 (2023) 10

Dendro-GR [adapted]

- parallelized adaptive mesh refinement
- wavelet adaptive multiresolution
- 4th order finite differencing
- 4th order Runge-Kutta

Fernando et.Al. 2018

Held, Lim, PRD 108 (2023) 10

Hyun Lim Los Alamos

Dendro-GR [adapted]

- parallelized adaptive mesh refinement
- wavelet adaptive multiresolution
- 4th order finite differencing
- 4th order Runge-Kutta

Fernando et.Al. 2018

Dendro-GR (Fernando et.Al. 2018), https://github.com/paralab/Dendro-GR

Held, Lim, PRD 108 (2023) 10

Hyun Lim Los Alamos

Dendro-GR [adapted]

- parallelized adaptive mesh refinement
- wavelet adaptive multiresolution
- 4th order finite differencing
- 4th order Runge-Kutta

Fernando et.Al. 2018

Held, Lim, PRD 108 (2023) 10

Held, Lim, PRD 108 (2023) 10

... is numerically stable.

- numerically stable evolution
- isolated black holes: stability & transitions
- black-hole binaries & waveforms

Part III: Nonlinear evolution (Quadratic Gravity)

Held, Lim, PRD 104 (2021) 8 Held, Lim, PRD 108 (2023) 10 & upcoming

see also Lu, Perkins, , Stelle, PRL 114 (2015) 17 & PRD 92 (2015) 12 Svarc, Pravdova, Miskovsky, PRD 107 (2023) 2

see also Lu, Perkins, , Stelle, PRL 114 (2015) 17 & PRD 92 (2015) 12 Svarc, Pravdova, Miskovsky, PRD 107 (2023) 2

... occur in multiple branches.

... are stable/unstable if sufficiently large/small.

... are stable/unstable if sufficiently large/small.

Nonlinear evolution of the linear instability ...

Nonlinear evolution of the linear instability ...

• Nontrivial crosscheck available: two completely independent setups and evolution codes Held, Lim, PRD 108 (2023) 10 East, Siemonsen PRD 108 (2023) 12
Nonlinear evolution of the linear instability ...

• Nontrivial crosscheck available: two completely independent setups and evolution codes Held, Lim, PRD 108 (2023) 10 East, Siemonsen PRD 108 (2023) 12

Nonlinear evolution of the linear instability ...

• Nontrivial crosscheck available: two completely independent setups and evolution codes Held, Lim, PRD 108 (2023) 10 East, Siemonsen PRD 108 (2023) 12

... can lead to the non-GR branch.

- numerically stable evolution
- isolated black holes: stability & transitions
- black-hole binaries & waveforms

Part III: Nonlinear evolution (Quadratic Gravity)

Held, Lim, PRD 104 (2021) 8 Held, Lim, PRD 108 (2023) 10 & to appear

Waveforms ...

 ${
m GM}~{
m m_2}\gg 1$ ${
m GM}~{
m m_2}\sim 1$ ${
m GM}~{
m m_2}\lesssim 1$

no deviations

quantitative deviations

qualitative deviations

Waveforms ...

		EFT regime of validity
$GMm_2\gg 1$	no deviations	
$GMm_2\sim 1$	quantitative deviations	
$GMm_2 \lesssim 1$	qualitative deviations	

Waveforms for $GM m_2 \gg 1 \dots$

... perfectly mimic those of GR.

Waveforms for $GM\,m_2\sim 0.43$...

QG masses		Binary parameters			
$G m_0 M_2$	Gm_2M_2	$\sqrt{G}M_1$	$q = \frac{M_1}{M_2}$	$a_{z,1}$	a _{z,2}
1	0.4	1	5	-0.696	0

Waveforms for $GM m_2 \sim 0.43$...

QG masses		Binary parameters			
$G m_0 M_2$	Gm_2M_2	$\sqrt{G}M_1$	$q = \frac{M_1}{M_2}$	a _{z,1}	a _{z,2}
1	0.4	1	5	-0.696	0

Waveforms for $GM m_2 \sim 0.43 \dots$

QG masses		Binary parameters			
$G m_0 M_2$	Gm_2M_2	$\sqrt{G}M_1$	$q = \frac{M_1}{M_2}$	a _{z,1}	a _{z,2}
1	0.4	1	5	-0.696	0

... deviate quantitatively.

There is a feasible pathway to obtain strong-field predictions and waveforms in the effective field theory of gravity.

Noakes, JMP 24, 1846 (1983); Figueras, Held, Kovacs, 2407.08775 Held, Lim, PRD 104 (2021) 8 Held, Lim, PRD 108 (2023) 10 & to appear

- thank you -