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Two-Body Problem: Analytical Approximation Methods

e Post-Newtonian (PN): expansion

“for small G and small v" eF
Gm V2 L4
— ~— < 1. B -
GG ST —p
e Post-Minkowskian (PM): expansion F i P y
“for small G” S
Gm <1 % X
— eneric — .
rc? ' 2 c?
e Self-Force: expansion ° . expansion
in the near-probe limit my < my or in the limit of small frequencies
mymy "4
m=m + my, V= 5 < 1. w —.
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General Relativity from Scattering Amplitudes

Key ldea: Extract the PM gravitational dynamics from scattering amplitudes.

e Weak-coupling expansion <+ PM expansion
Weak-coupling:  Ag = O(G) A = O(G?) Ay = O(G3) As = O(G*)

PM: 1PM 2PM 3PM 4PM
State of the art:
[[Driesse et al. '24; Bern et al. '24]

5PM, 1SF from WQFT]
e |orentz invariance <+ generic velocities

e Study scattering events, then export to bound trajectories

(Veﬂ', ana|ytiC Continuation...) [Kalin, Porto '19; Saketh, Steinhoff, Vines, Buonanno '21; Cho, Kalin, Porto '21] 6



Some Recent Progress

AP =0(6) AY =0(6?) AP =0(63) AP =0(6%)
m [Geissler '59] [Westpfahl '85] [Bern et al. '19] [Bern et al. '21]
[Cheung, Rothstein, Solon "18] [Di Vecchia, CH, Russo, [Dlapa et al. '21,'22]
[Collado, Di Vecchia, Russo '19] Veneziano '20, '21] [Jakobsen et al. '22, '23]

V [Damgaard et al. '21] [Damgaard et al. '23]

[Brandhuber et al. "21]
[Jakobsen et al. '22]

3
Al = 0(G2) A = 0(G?)
[Kovacs, Thorne '78]
[Goldberger, Ridgway '16] [Brandhuber et al. 23]
[Luna, Nicholson, O'Connell, White '17] [Herderschee, Roiban, Teng '23]
4 -3 -2 -| T [Jakobsen, Mogull, Plefka, Steinhoff '21] [Elkhidir, O'Connell, Sergola, Vazquez-Holm '23]
[Mougiakakos, Riva, Vernizzi '21] [Georgoudis, CH, Vazquez-Holm '23]
[De Angelis, Gonzo, Novichkov '23] [Caron-Huot, Giroux, Hannesdottir, Mizera '23]
[Brandhuber et al. 23] [Georgoudis, CH, Russo '23, '24]
[Aoude, Haddad, CH, Helset '23] [Bini et al. '24]

Ref. [gini, Damour, Geralico 23] reports mismatches with MPM-PN formalism (?) g



Classical Soft Theorems

e Universal constraints on the soft expansion w — 0 of the gravitational waveform:

3 00
» I o Z .
W — e2/GEw|ogw - (—/w |ng)na#l/ 4.

w n:
n=0

where - -+ ~ w" (logw)™ and 0 < m< n—1, e.g. w0 or wlogw.

e Explicitly,
B (n) p (n)__(n)
uro Pa pa 127 Tab pa o v 72 2 Tab Tac o o v
ay = , a =G 2" , a =G 2~ p n
0 — ps - n 1 Z pa- N pPbPa) 2 Z D1 pP[pPa) Mo P[cPg]
a,b a,b,c
and Ta(z) is a function of the invariants o,, = —1,mpp, - Pp/(Mamp)

(with 1, = + if the hard state is outoing, —1 if it is incoming).

Uab(agb_ %)
(03, — 1)3/2

In general, it is fixed by the IR divergences of the theory.

Tsz):|7la+"7b|7aba Tab = — for GR.



The Elastic Eikonal and the Deflection Angle



Kinematics of Classical Post-Minkowskian (PM) Scattering

i L1
pr =miy = 5(ps —P1)
} 1

Py = maiy = 5(Py = P2)
Q* =pi +py =—p5 — Pk

v v
Vi V2

pr=pt— (2 2 ) Qb
€ 4 <2m1 2m2>Q p?’\

By ==

In this way, vi - by = w - by =0 and iy - be = i - be = 0. Classical PM regime:

Gimz>>1
h c’ b

h
— <K< GmKb
m

> 1 (generic).

1
Vi—vz ™ 10

o =



Kinematics of the Elastic 2 — 2 Amplitude

1
By = =(py — ry)
Py = E(Pg — Py)

q"|=p + Py =—p5 —Ps

Defining velocities by p}' = —myvy', py = —mo vy

1
o)==

with v the speed of either object as measured by the other one.

Dual velocities: v} = oV}’

T Y TR VI O
+V, vy =0V + V; obey V;-v; = —4j.

=q-p

—4q—p2

11



The Elastic Eikonal

e From q to b: Fourier transform [g ~ (9(%)]

,,2((4)(b) _ 1 dD—2q eib,qA(4)( ) 1+ I./Z((4)(b) — 62i5(b)
4Ep | (2m)D-2 9

with 26 = 280 + 26y + 28 + -+ ~ S (log b+ 2 + (S2)* + )

e From b to Q: stationary-phase approximation [Q ~ O(p - G—,;")]

/dD—Zbe—ib.Qei26(b) — Q.= 8;;35

12



Tree-Level Amplitude and 1PM Impulse

e Tree-level amplitude in D = 4 — 2¢ dimensions

—

pL ————— P4 327nGmZm3(o? — 52
Ag‘l) q) = 1 2(2 2—2) .
Tq q
2 1
p2 ———p3 AW () = 46mima(0” — 5=5) T(—e

2Ve? -1 (mh2)™¢

° MatChlng to the e|k0na| eXpOnentiatiOn [Kabat, Ortiz '92; Bjerrum-Bohr et al. '18]

e 14 iAW — 25, = AP

“small G”

e From 2Jp, we obtain the leading-order deflection

P1 p— — P4 Q (9250 4Gm1m2 (0‘2 = %)
1PM — — -
0b Vo2 —
| Qipm G (21 bvos -1
4GE — 5
p2 P3 O1pm = (U 2)

— — b(0-2 _ 1) . 13



Elastic 2 — 2 Amplitude up to One Loop

with

e R

50 -1)

/) /)

Re A = 27 Gm2m3(my + mz) + O(log(q))
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Impulse from the Eikonal Phase up to One Loop

) 20
1+/FT Ne216, 25:260+251+ Qungu
o Tree level: i/io = 2idp, SO
284 = .A'(4) _ 2Gm21/(a2 B 2}26) r(_e) QH _ _4Gm2y(o'2 — %) ig
0= 2 _ 1 (mb2)—¢’ 1PM bvVo2 -1 b~

e One loop: By the exponentiation iA — %(2i60)2 = iRe A; = 2id1, so

B 3rG2mPy (502 — 1) 3rG2mPy (502 — 1) bl

261 = Re AW = , b= Ze
1= 4byo? — 1 Qpr 4202 -1 b

15



The 3PM Eikonal in General Relativity

e Eikonal phase:

3m2m?2 120% — 1002 + 1 1402 +25)  40% — 1202 —
Re252:4G rr;lm2 s (120 o —&-3)70( o+ )7 o i o arccosho
b 2[7’11”72(0’2—1)§ 3vVo?2 -1 oc—1
+ Re 265K
with
G 8 — 502 0(202—3)
Re252RR:§Q12PMI(g), I(o) = 307 1) + (02 1 arccosh o .

e Infrared divergent exponential suppression:

1 1
Im 26, = = —g—Hog(oz—l) Re20RR 4 ...
16



Smoothness and Universality of Re 2/, at High Energy

At high energy, as 0 — oo and s ~ 2mymyo, i.e. in the massless limit:

e The complete eikonal phase is smooth, although the conservative and
radiation-reaction parts separately diverge like log o

e lts expression is the same in AV = 8 supergravity and in GR,

2
0 o 4G5

Re 26, ~ Gs =5
i b

in agreement Wlth [Amati, Ciafaloni, Veneziano '90].

17



The Eikonal Operator and the Waveform
Soft Limit
PN Limit

18



Kinematics of the 2 — 3 Amplitude

Bl = 2(ph — o)

B= 5k~ ) e
@ =P+ Py k

9% |=pPs +pP3 pP3 = G2 — p2

0=q +q5 + K

More invariants, besides g2, g3, also
[0]=—vi-w, :—vl-k, :—v2-k.

We denote by E, w the total energy and the graviton frequency in the CoM frame,
w12

1l 1
E=y/~(p+p)?, w:E(P1+p2)-k=E(m1w1+m2w2), a2 =" g




2 — 3 Amplitude up to One Loop

= Ao+ A+ -

with Ag the tree-level amplitude, and

V«=&+é@+ﬂ+ém+qy

where B1 = Re A; and the unitarity cuts can be depicted as follows,

C1



Inelastic Final State

Eikonal Exponentiation of Graviton Exchanges + Coherent Radiation:
e2i3(b1,b2) _ eiReza(b)eifk[W(k)af(k)JrW*(k)a(k)] _

e Final state, schematically:
lout) = e2/(b1:b2) in)

e Unitarity:
(outfout) = (in|in) =1

e The asymptotic metric fluctuation h,, = g, — 1), sourced by the scattering

(the waveform) is expressed formally as

oo (x) = V327G {out| Al (x)fout) ~ 28 / e~ UVT,, (wn) ;’ﬂ - (ee)
0

KRr ™

where K = v/87G, r is the distance from the observer and U the retarded time.

L ~ - 21
Normalization WHY = x wH¥.



The Waveform Kernel

e Working with “eikonal” variables, we can use the following radiation kernel,
W=A+ [Bi+ 35 (a+ ).

o Tree level: Ag is a relatively simple rational function
e One loop: We isolate the even and odd parts of By under wy » — —wi 2,

By = Bio + Bk,
and B is fixed in terms of the tree-level amplitude,
o (02 )
while R R
Al Ag | mim3
Big = s 12 1 (1e2
1E [ (q +w )7/2 w2q1 qggil ( )

e Here, A)R; are polynomials and Q1 = (g% — ¢3)? — 4q°w? g2



The Waveform Kernel

The imaginary part is determined by the rescattering or Compton cuts, for instance

] ) 1 w?
5 cl = IGml(,cJ]_ (— -+ |Og ) [AO]D » JL ImlmZMmlmZ ,
IR
Mmi)'m% — Alat
9193(02 — 1)wiw3 (g3 + w3)3Q3PQ
+ Aiu S w1 n Afh arccosh o
Tl
Gwi(g5 +wi)3P Ot @ Gui(o? - 1)P2Q% Vo2 —1
I /
4 Ao Og“’i + % |og i
wiwsP2Q2 T w2 ¢2q2Q3P o2
with
P = —w% + 2wiworo — w% , 0= (q%)2w% — Qq%qgwlwza J (q%)zwg

23



Infrared Divergences Revisited

e Infrared divergences exponentiate in momentum space,

W = e—éGEw |:.A0+Bl +;(C1+C2)reg:| —_ e—éGEereg’

where . .
i i
29 73
e This also modifies the finite part by é Gmyw; times the O(e) part of Ap.

i
¢+ - GmuwiAg
€

e After this step, the divergence can be canceled by redefining the origin of retarded
time, arriving at the following well defined expression

4G [ iU dw
o) ~ 52 [ e R ) 52 + (e,

See aISO [Bini, Damour, De Angelis, Geralico, Herderschee, Roiban, Teng '24]
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Universal Terms w™!, logw, w(logw)?

e Leading 1/w soft term (memory effect in time domain) [matches Weinberg '64; Sahoo, Sen '18; '21]

.1 ikQ . . A . - i I
w1 = m(@élUQ € — Goly - €)(2a182be - € + be - n(G1lp - € + Aol - €))
7197,

e Subleading log w soft term [matches Sahoo, Sen '18; 21]

~ 2Gmymyo (202 — 3) wbeY
[logw] __ N2 o x om \2 _wEe
w =K Grdia(0? — 1)372 (Gplp - € — Gpliy - €)° log < = 1>

+2iGEw W logw

e Sub-subleading w(log w)? soft term [matches sahoo, sen '18; "21]
Wlllogw)’l — 2iGE, VT/O[IOgW] log w

23



A Conjecture for w* (logw)* for any ¢ >0

e Considering an elastic 2 — 2 hard process, let us define
no v n v
> p1p pop Do B
E = (p+p2)-n, B"(p1,p2) = (p1+p2)n <11 + 22) —(p{+P5)(PL+p3).
pr-n  p2-n
e Then, the known soft theorems [sahoo, sen 18: 21 for £ = 0,1, 2 reduce to

1
o = £ (~GEN(0))’ [B"(p1, p2) — (~1)'B" (ps. ps)|
e We conjecture that this expression generalizes to any ( > 0.

e Frequency-domain resummation
W = _L w2iGEw [wiGEwh(U) B,uz/(pl P2) o W—iGEwh(U)B;w(p3 P4)] 4.
Ew ) b
e Cross-checks: Newtonian quadrupole as po, — 0 to all orders in G (for generic
GM /bp2.); 2PN approximation up to O(G3) (i Demour, Geralico 241; N€ar-probe limit

vV — 0 [Fucito, Morales, Russo '24].
26



e Non-universal "’ piece of the tree-level result,

Gmympo (202 — 3) 3 2Gmymy(202 — 1)

> 37 log (G162) — =

a162(0?% — 1) PVo? -1

4Gm1m2 [(dlﬂz € — 5[2(71 . 5)2

P

N 202 — 1
2REBTE 15

e For this one, both regions are needed!

VT/O[wO] = K(&lﬁz °g = 542[71 . 8)2 |:

o1
<g3 arccosh o + g» log ~>
Qo

160 P

o i/l
+ Ib2 nwWo .
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o Tree-level w |Og w piece [matches Ghosh, Sahoo '21]
: 2

= [wlogw] 2/Gm1 m20(20 — 3)

Wo TRTE D 3/2
a1dn(02 —1)3/

X [G1é2 be - € + Ga(b1 - n)(d1 - €) — @1(bz - n)(b2 - )] wlogw

(5[1[72'5—542(71‘5)

e Non-universal one-loop wlog w piece. Byip contributes in the obvious way, while
B1e does not contribute. Finally,

] ]- 7 w . T /|lw a7 w w

é(el+52)[w'°gw] — iGE [— + log ‘“20‘1 WL 1 2iGEw log w W 4i A1l o8]
€ Hir

with

20(a tp - € — ap uy - €)2

g lwl :
/M[lw el — i logw G m¥my

(02 —1)3/2P
202 -3 arccosh o 1 o1 fi
= h—log— | — ———— 1+ 2).
8 { (3(02—1)3/2+ ° a2 Ogaz) 042(02—1)]—'_( =2) 28



Comparison with Predictions from MPM Formalism

e The result for the wlogw term was given explicitly in the PN expansion using the
Multipolar post-Minkowskian (MPM) formalism in [gini, Damour, Geralico 23}, Where a
mismatch was found when comparing with the amplitude-based result starting at
25PN (~ 1/c®)

e We find that agreement is restored after performing the following supertranslation

[Veneziano, Vilkovisky 22]
U— U-T(n), T(n) = 2G(myoq log a1 + moa log az)
or more precisely
drhag = —T(n) duhag + r[2DaDp — vagA] T(n)

where only the first term on the RHS (the non-static one) matters.

2

Here, n* = (1,A), ey = dan*, hag = r*ehefhu,, yag = ea- e, Da is the

associated covariant derivative, A = DDA, -



The PN Limit

e The PN expansion is defined by the limit
Poo = V02 —1=0(N), w=0(A) as A — 0

e Each instance of the Newton constant G increases the PN order by one unit.

e Each power of A increases it by half a unit. 1Z
i (_) IN
Reference vectors in the CoM frame:
—€ ¢ S
=(1,0,0,0) - f RO
> Y
= (0, b,0,0) b,
=(0,0,1,0) -
gﬂ—(o 0,0,1) — &
X ¢

30



Multipolar Decomposition

e We define the dimensionless frequency
wb
u=—>,
Poo

which does not scale in the PN limit.

e |t is convenient to express the waveform in terms of “multipoles”, i.e. symmetric
trace-free (STF) tensors U (u), Vi (u),

TT

4G 1 2
TT
h,-j = . ; 7 np_o U,‘J‘L_Q(U) - m Nel—2€cd(i Vj)dL—2(U)

(decomposition into symmetric, traceless tensors with definite A-eigenvalue)
e Order by order in the PN expansion, only the first few U;, V; show up.
e We computed all building blocks of the kernel to NNNLO in the small A

limit and extracted the associated multipoles.
31



Newtonian quadrupole at tree level,

019 = 4 (1) + 301 (0),
U8 = 4™ o) + Ka(w),
UL9 = 436/2':”(2}(0(11) + 3uKy(u)),
Lo = _4Gm2yK0(u)

3pso

1PN correction to the quadrupole due to

BlE;

6w G>m3v .
Ugi1 = —Ugxn = T (1+u)e™,
Poo
imrG2m3y (1
Ug2 = _om&TmTy < +1+ u) e Y,
bpo u

while e.g. one component at 2PN is

no | mGPmPups,

Ugss = — b (2v—-5)(u+1)e™".

32



Comparison with MPM Formalism

e Integer PN terms arise from various corrections to the trajectories.
e Half-odd PN: Tail formula
. 2GE w iT
Uil = iwyiree (Iog — — Ky — )
‘ c MR 2
(similarly for V(u) with )
e Half-odd PN: Nonlinear effects, e.g.

UQQ _ E I: 1(5)1

@, _ 2 ,3),2)
2 = Lo la = 3 1ai lya — 5 12! }

a(i j)a
e Half-odd PN: Radiation-reaction

m 8G2mPpoo

d2
XRR — 5h2r (bZeN _ (r + poot)bg) Ul_j_?R — o <X<- X-'L>?R)

dr2 \"i 7
We checked that C™ completely agrees with the MPM prediction given by
tail4+nonlinear+radiation-reaction up to and including 2.5PN.

83
See a|SO [Bini, Damour, De Angelis, Geralico, Herderschee, Roiban, Teng '24]



Energy and Angular Momentum Losses

34



Emitted Energy-Momentum

e The operator insertion (out|P*|out) = P* leads to leads to

PO‘_/kk“p(k), /k—/zwﬁ(k‘))é(kz) (;:;D

where the spectral emission rate p is given by

~TTx ~TT v A /% v v
p= Wy =W (n""n 7=z np") Woo

Note the equivalence between the two expressions, with

i ,[,,T rllfjpa Wee k, WH (k) = 0.

e We can choose the TT projector to be space—like in the CoM frame, so that
dw 2T TT
k2P0 =k Erad = / Wab *Wab )
. dj 7w2n1V~VTT*~TT
2w

ab Wab
35



Emitted Energy-Momentum

Using the explicit waveforms obtained in the PN limit, we get

Pi/(myzx/l —4v)

Erad/(mv?) _Gm [ 37, 839
G 37 (1357 37\ - b37r[ 307>t ( 1680) }
e [ <840 - 3o> 4 00] G*m* [ 64 (32 1664

G*m* [1568 (18608 1136 \ b* [_3 (3 _175) }

b poc [ 45 < 525 45 ”) “] G*m* 5 [/1491 26757 ,\ bl

Gim* , [3136 (1216 2272 \ ,| | B* [(400 N 5600””‘) b
T [45 <105 T ”) pm] 128 (/64 192\ L\
. +<_3+(3” 75>p>e]

The component along bt of P, is sensitive to C™8 and the €/e!
36

Perfect agreement Wlth [Bini, Damour, Geralico '21; '22; Dlapa, Kilin, Liu, Neef, Porto '22]



Soft spectra from soft theorems

e The resummed waveform in the soft limit gives universal results for the “leading

logs” (LL) of the type (wlogw)” in the energy emission spectrum dE/dw.
e In the CoM frame we find, expanding for small deflections @ — 0,

(Zi) . = [1 — cos (2GEh(o)w log w)] % H(my, my, o)
GQ?
+ cos (2GEh(o)w log w) TI(U) +---
fixing G2"(wlogw)?" for n =1,2,... and G*""3(wlogw)?” for n=0,1,2,...
(see the next slide for the functions H(my, mo2, o) and Z(0)).
e In the ultrarelativistic limit instead

<an0> — % [sin(2G /5w logw)]? s

LL
4G 2
+— cos(4Gy/swlogw) [Qz log <C§2 — 1> —slog <1 = 2)} Looe o



Emitted Angular Momentum

o (out|J,slout) = Jog + o

e Radiative contribution

O T Ty Ow TT*
: _ 1 ~TTx _ ~TTur TT* ~ TT,u
Has = /k [2 ( o e A Y R

or eqU|Va|ent|y [Manohar, Ridgway, Shen '22] [Di Vecchia, CH, Russo '22]

A d

OWpo
/ = upvo 1 uv, po * v

e In particular, for the spatial components in the CoM frame [compere, Oliveri, Seraj 19,

k2JI = G/ C,M%mW:baAVvabw’yABn[i(?an]+2G/ % el
o I 27 0

38



Emitted Mass Dipole

e The emitted mass-dipole or boost charge Jjg is related to the initial position of
the center of mass of the system (times the energy) Z; by

Jio =—Lio = 4.
e The mass-dipole (space/time) components inherit a time-translation ambiguity

from the infrared divergences (“drift") in the waveform.
e We can subtract this off by defining

M;=Jj —/tP,' dt
[ EXpI|C|tIy [Compere, Oliveri, Seraj '19]

Q
k2Jjy = G/ 7{ TT* VT/-ZT — w@ WTT )wn; + K2M;,
0

I€2M,' = G/ - jg - TT*aAW aAWTT*) W’yABaBn,' .
0 17T 47 39



Eikonal Operator in the ZFL

Exponential dressing of the eikonal operator
We can include static/Coulombic modes by letting e2io(b,b2) Ss,r‘eZ"‘S(blvbQ) with

oI5 [P (Kl (k)= F* (K)ay (k)]

5s.r. -
Where [Weinberg '64,"65]
V8 G phpy :
Fro(k) = ; o k—i0 n,F* (k) = inv8rG aezinpf_fé(w) #0

and [ = [, 0(w* — k%), with w* a cutoff (to be sent to zero).

40



Angular Momentum of the Static Gravitational Field 7,3

This leads to
<>
g up, vo 1 uv o po * aFPU =]
e = | (7707 = o 0" Fi ki e T 21 FitaFa,

Angular momentum loss due to static modes

G 02, — 3\ o.parccosho,, 02 — %
TP == E c(oab) (N2 — Ub)PLan] , (o) =— 2 2 -2 242 2
2 Op — 1 /<2 1 OLp — 1

a,b a 9ab a

[ ] Match W|th [Damour '20; Manohar, Ridgway, Shen '22; Bini, Damour '22] Up to O(G3) Upon eXpanding

G
F = ) (p1— p2)*QZ(0) + O(G*), Q" = Qlpy + Qbpy + O(G)

e Easy to include tidal [ci 22 and spin [aiessio, Di vecehia 2] [cH 23] effects, via Q<. 41



Nonlinear memory contribution?

e Take outgoing gravitons into account by
S+ [ o)
a am k

where a,, runs over massive states only.

e This is the operation that gives the nonlinear memory effect,

v v v v kﬂ’ku
ah” — ap” +daf”, dap :/kp(k)k-n'

e For the static contribution to the angular momentum, it gives

[« B] Pa - k
p(k) Y pa* kM log ==

a

Top = T = Top+0Tup+O(GT), 6T = 2G/
k acin

and A is an energy scale introduced to regulate the collinear divergence. It
amounts to a time-translation ambiguity in the mass-dipole components.

e However, §J% = O(G®) in the CoM frame! We do not need it to go to O(G*). 2



Angular momentum loss in the PN expansion

Combining everything, Ji, = Jyy, + Joy + O(G®) with

G?’m3 16 176 8
Jxy = Tpgoy2 [5 + <35 5 V> P+ O(Pgo)]

G3mm* ,[28 739 79 . 4
T Y [5+(84—15V> poo+0(poo):|

G*'m®> ,[176 8144 2984 2 A
g 5 (o~ v) P+ o)

G*m® 448 1184 220256
T [ % [5 + (21 ~ 1575 V) P + O(Pgo)} +0(G°).

e The first two lines reproduce the small-velocity expansion of the O(G?) pamour 0]

_l’_

and O(G3) [Manohar, Ridgway, Shen '22] [Di Vecchia, CH, Russo, Veneziano '22]

e The last two lines are in perfect agreement with the OPN, 1PN, 1.5PN and 2.5PN

Contributions at 0(64) [Bini, Damour, Geralico '21; '22]. 43



Summary and Outlook

e The eikonal approach provides a framework to calculate scattering observables,
including the impulse, the waveform and the emitted energy and angular
momentum.

e The comparison with the PN results is interesting both technically and
conceptually. There is full agreement up to and including 2.5PN once the
amplitudes and the MPM results are written in the same BMS frame

For the future:

e Is the choice of a BMS frame relevant in other comparisons (PN versus NR, PN
versus NRGR-EFT, theory vs experiment)? Is it relevant for bound orbits?
Analytic results beyond soft/PN limit? [grunelio, De Angelis 24]

When does the naive eikonal exponentiation break down? (If it does)

Analytic continuation? [Damour, Deruelle '81; Adamo, Gonzo, liderton 24]

o NNLO waveform? W



ADDITIONAL MATERIAL

45



The Initial State

e We model the initial state by |in) = |1) ® |2), with
1) :/ p1(—p1) 7| = p1)
—p1
2= [ eal-p)e - po)
—p2

and f—p; = [2n6(p? + m?)@(—p?)(‘éifg the LIPS measure.

e Wavepackets ¢;(—p;) peaked around the classical incoming momenta.

e Impact parameter b* = bf' — b4 lies in the transverse plane b-p; =0 = p; - b.
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Elastic and Inelastic Fourier Transforms

e Elastic Fourier transform:

dP ;
FT A(4) = /(27[_)qD 271'5(2[771 vy q) 27T5(2m2V2 . q)e’b'qA(4)(q)

L [ dP2q g i®
- = / Gz & Als, ) = A

e Inelastic Fourier transform:

dPq; dP
FT A®) = / (275% (275% (2m)P5P) (g1 + g2 + k)

X 27‘1’5(2”71 vy q1)27r6(2m2v2 0 qz)eibl'q1+ib2'q2./4(5)(ql, q2, k)
= A®) (k).
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Analytic Continuation to the Bound Case

e The results discussed so far hold for the scattering kinematics, in which the
total center-of-mass energy is

= \/m1—|—2m1m20—|—m2>m1+m2, o>1.

e To analytically continue J(L = pb, a1, 0) to the bound-state kinematics, o < 1,
one can sum the two branch choices Vo2 — 1 — £iv/1 — 02

Jbound(L’ alv O') — J(L’ a]_, U)+ + J(La alv 0-)7
o The O(G3) result JO(G3)(I_73170) is an analytic function of o for Reo > —1, so
JOEbound() a1 0) = 2J)(L, 21, 0).
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From the Deflection Angle to the Precession Angle

We introduce the effective potential V/(r)

J2 G G? G3
2 _ 2 _
p_Pr+r7+V(f), V(r)——<rf1+r2f2+r3fé+"'>

to extract information about the bound system as well.

e Matching to the conservative PM deflection angle, one can fix f, f, f3.
Eg in GR, [Bern et al. '19, Damour '20]

fi :4m%m§(a2— %)/E7 fr = m1—|—m2)m%m§(502—1)/E7

5
e Analytically continuing to 0 < 1 (bound case) and working in the
Post-Newtonian limit voo = v/1 — 02 — 0 for fixed & = Gmymy/(Jvs) matches

the corresponding orders in [gianchet 13]

A ——27r+2J/ §v4cv 2 [2v -5+ 502 (2v — 7)]
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The functions H(my, mp, o) and Z(o) appearing in the low-frequency spectrum

2 %) 2
H(o, my, mp) = [2(5 — mmpo) + m5(2myo + my) o+ m3(2mao + my) 52] |
mivo? —1 mov/o? — 1
with
€1:|Og<X(ran_‘_rn2)>7 62:|Og<x(mgx—|—m1)>7 X =0 — 0_2_1’
mpx + mq mix + mo
while . ( . |
2 8 — 50 o(20° — 3) arccosh o
I - .
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e Since n, F* # 0, the formula used above is in general not equivalent to the one
obtained by using the TT-projected static field f,, = I_IWOCBFW,

o of:
W 0% |24 x
iJag —/k[ (fﬂ”klaakﬂl f klaak/ﬂ) +2M[afﬁ]],

e In the CoM frame, letting o, = 1), pg/ma, we find [cH, Russo 24]

« G o
J 52526(%)(77 — ) PP}, +2GZ CADIN A

a,b b€in

e So, in the CoM frame, J./ T = Jij » but jo-';T = Joi -

)
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e We note that jo-';T admits a smooth high-energy limit,

s
J'TP = —2Glog <Q2 - 1> (P — p2) Q7.
e The TT contribution due to nonlinear memory is cutoff-independent

5T = 2G / p(k) >~ Pk K log %
k a

acin

with k# = w n* as defined in the CoM frame.
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