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o Non-linear gravity [Christodoulou '91] [Blanchet, Damour '92]

Relation between memory and the symmetries of spacetime
@ Associated to the degeneracy of the vacuum in any gauge theory
@ Gravitational memory effects <+ flux-balance laws <+ symmetries of open systems

Q=7F (1)

@ Reveal the fine structure of the infrared regime of asymptotically flat gravity

Memory effects tells us about the explicit and hidden symmetries of spacetime and vice-versa

@ New memories recently identified: Spin memory, centered-of-masse memory, gyroscope
[Pasterski, Strominger, Zhiboedov '16] [Nichols "18][Seraj, Oblak 23]

@ Higher memories not always related to symmetries [Flanagan, Grant, Harte, Nichols '19]
[Grant, Nichols '22]

How can we relate memory effects to explicit or hidden symmetries of spacetimes?
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Symmetries of the geodesic deviation equation
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Geodesic deviation
o Consider two nearby curves X*(1) := X*(1,0 = 0) and X*(T, o)

@ Their relative distance expands as folllows
AXH(T,0) = XH(T,0) — XH(T,0) = o NH¥(T) (2)
o2 (B“ - F“aﬁlva/vﬁ) (1) + O(c®) 3)
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AXH(T,0) = XH(T,0) — XH(T,0) = o NH¥(T) (2)
o2 (B“ - Fuaﬁlva/vﬁ) (1) + O(c®) 3)

o First order deviation vector satisfies the following dynamics

D2NH _
ar2 = :‘?"Lc¢[3ryLIO(L7'6N'Y (4)
@ Lagrangian formulation
1 1.
LIN = EguVUaUﬁVO‘NMVBN” - ERuuaBEuL_IQN”Nﬁ (5)

o Admit a hidden symmetry given by
SN = R¥ay . ap@®..0% = 8L =Va (NGB V0N") (6)

where R“al....a,, is a rank-p (conformal) Killing tensor (similar to higher spin generators for
the Laplacian) : V(,Kuq,...ap) = &ulva...ap) [Caviglia, Zordan, and Salmistraro '82][BA '24]
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@ Rank-2 Killing tensor — exact solution of the GDE

9

Suppose we have killing vectors and rank-2 KT, then the solution space reads

N = {&* K", 0"} (10)

@ For radiative spacetime, relate memory effects to explicit and hidden symmetries of spacetime
[Caviglia, Zordan, and Salmistraro '82][BA '24]
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@ Interplay between memory in pp-waves and gravitational scattering observables in the eikonal
approximation [Shore '18][Di Vecchia, Heissenberg, Russo, Veneziano '23 |

@ Around any null geodesic, the leading tidal effects can be described by a pp-wave geometry:
Penrose limit — universal behavior [Penrose '76]

@ Applications to black holes perturbations : Penrose limit at the photon ring — QNM [Riotto,
Kehagias '23]
Useful toy model for studying memory effects outside the asymptotically flat framework
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Generalities

o A pp-wave is defined as the type N spacetime with a covariantly constant null vector
VolNp =0
@ Metric in Baldwin-Jeffrey-Rosen coordinates:
ds? = 2dudv + Aj;(u)dx'dx (11)
with
Ay = ( Pl ) | (12)

Covariantly constant null vector: N%8, = 8,

Minkowski recovered for A;; = §;;

o Einstein equations reduces to the Raychaudhuri equation: only R, # 0

] 1 ., .
ay (A'lauA,-e) + SALAKD A0y Ak = BT T (13)

@ In the following, we focus on i) vacuum configurations and ii) polarized waves such that
Tuuw=0 A =0 (14)
What are the explicit and hidden symmetries of this vacuum gravitational plane wave ?
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Symmetries of vacuum gravitational plane wave
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Conformal isometries of pp-waves

@ Isometries of pp-waves have been studied long time ago: 5d isometry group
[Souriau '73] [Sippel '86][Maartens '91][Horvathy '17]
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If we look for a CKV for any Aj;, only one solution: HKV for 2 =2

7%y = 2vB, + X'6; . (15)

Does the pp-wave admit more symmetries ? Hidden symmetries 7

o Admit a rank-2 Killing tensor : Koutras theorem

Kuvdxtdx¥ = 2vdu? — u(2dudv + Ajdx'dx!) + Ajx dudx’ . (16)

@ Symmetries holding fro any wave profile A;;
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Integrating the geodesic motion from the symmetries
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Algebraic integration of the geodesic flow
@ Phase space for geodesic motion:
. . 1 .. €
{vipv} ={u.ps} =1, ' p}=19';. H=pupv+§A”p/pj= 5 e={0,-1}
(17)
@ Conserved charges
€99y — O = £%pqy Kudx*dx” — K = K* pupy (18)

@ Translations: Since the Hamiltonian does not depend on neither v nor x', p, and p; are
automatically conserved. We denote them as

N =py, P+ = px, P-=py, (19)
@ Carrolian boost: The conserved charges generating the boosts are given by
By = H*(u)px + HY (u)py — pux(u), (20)
B = H¥(u)py + H(u)px — pvy(u). (21)
@ Hidden Killing tensor charge: charge coming from the Killing tensor reads
K=K"pup, =p,Z—2uH  with  Z=2p,v+px, (22)
@ Charge algebra
{Ps, B} =N (23)
{Ps, K} =NPs, {B+,K} =NByg, {N, K} =2N?, (24)

o Geodesic motion integrable since (A, B+, H) are in involution

o Fully algebraic integration: Killing tensor charge enters in the longitudinal motion 1235



Constructing the Fermi coordinates
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Adapted Fermi normal coordinates

@ Pick up a null geodesic ¥ with tangent vector
a*o, = 8y Oudx* =dv. (25)

o Introduce a set of adapted Fermi coordinates, X/, with / € {0, ..., 3} related to the initial
coordinates x* via

ax!
Elu= . 26
b= A (26)
o Choose the "time-leg" such that the coordinate X° coincides with the affine parameter of the
geodesic
E®,dx* = Gudxt . (27)

Impose that i) the remaining legs be parallel transported along the null geodesic, and ii) the
orthogonality relations
TV /u =0 uvly = EluEJU"?/J (28)
@ In our case, one obtains
» 1 ., . )
Elp= —EA’kAkjEJA (29)
@ Analyzing the effects in the Fermi coordinates requires to analytically solve this PT equation

@ Constructing the Fermi coordinates is closely related to the so called Penrose limit :
exact for pp-wave
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@ Fermi coordinates : X% = U, X! =V and X* = {X,Y}
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with the wave-profile
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Hag = EEIA By (AUEJB) . (35)
@ Einstein equation translates into
H H
A _ + X
HA—O — HAB—( H>< —H+ ) (36)
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@ Fermi coordinates : X% = U, X! =V and X* = {X,Y}
@ Then, the Taylor expansion of the BJR coordinates x*(U, V, XA) up to second order reads

xH(U, V, XA) = xH(U) 4+ E*,(U) X7 — %E%(U)Eﬁb(u)r“aﬁ(u)xf’x" . (30)
o It follows that the Fermi and BJR coordinates are related by
u=U, (31)
v=V+ %A’UE'"AE‘JBXAXB , (32)
x' = EaXA. (33)

@ The vacuum GPW metric becomes in the Fermi coordinates

ds? = 2dUdV + 8a45dXAdXE + Hag(U)XAXEAU?, (34)
with the wave-profile
1. o
Hag = EEIA By (AUEJB) . (35)
@ Einstein equation translates into
H H
A _ + X
HA—O — HAB—( H>< —H+ ) (36)

@ Known as the Brinkmann coordinates which are the one use to analyze the physical effects
o Classify the memory effects via the symmetries
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Classification of memory effects

The three different types of memory effects

o Consider situations for which asymptotically, i.e. for u < up and u > uf, one has
¢ #£0 and f=o. (37)

@ Velocity Memory (VM):
When the relative velocity in the two asymptotic regions satisfies

A ={¢r—C¢o#0 (38)

— constant shift on the asymptotic value of the relative velocity.

@ Vanishing Velocity Memory (VMO0): Subcase corresponding to

)

— no velocity memory but still interesting effects on the couple of test particles.

o Displacement Memory (DM): subcase such that

(=0 and <G| (40)

— the relative velocity vanishes in the asymptotic future
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Classification of memory e

A brief look at the conclusions so far

@ First work to analyze the memory effects in vacuum gravitational plane wave
[Zhang, Duval, Gibbons, Horvathy '17 '18]

@ Only exhibits velocity memory effects / displacement memory effect can never occur

The Memory Effect for Plane Gravitational Waves

P.-M. Zhang'*, C. Duval®!, G. W. Gibbons®*?!, P. A. Horvathy',
LInstitute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
2 Aiz Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
3D.A.M.T.P., Cambridge University, U.K.
4 Laboratoire de Mathématiques et de Physique Théorique, Université de Tours, France
SLE STUDIUM, Loire Valley Institute for Advanced Studies, Tours and Orleans France
(Dated: August 28, 2017)

Abstract

We give an account of the gravitational memory effect in the presence of the exact plane wave
solution of Einstein’s vacuum equations. This allows an elementary but exact description of the
soft gravitons and how their presence may be detected by observing the motion of freely falling
particles. The theorem of Bondi and Pirani on caustics (for which we present a new proof) implies
that the asymptotic relative velocity is constant but not zero, in contradiction with the permanent
displacement claimed by Zel’dovich and Polnarev. A non-vanishing asymptotic relative velocity
might be used to detect gravitational waves through the “velocity memory effect”, considered by

Braginsky, Thorne, Grishchuk, and Polnarev.
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A brief look at the conclusions so far
@ Very recently, two numerical examples where a displacement occurs have been presented in
[Zhang, Horvathy '24]

@ No analytic conditions were provided leaving the question of the classification of the

Displacement within velocity effect
in
gravitational wave memory

P-M. Zhang'*, P. A. Horvathy>*!,
! School of Physics and Astronomy,
Sun Yat-sen University, Zhuhai, China
2 Laboratoire de Mathématiques et de Physique Théorique,
Université de Tours, (France)
3 Brwin Schridinger Institute,

Vienna (Austria)

(Dated: May 29, 2024)
Abstract
Sandwich gravitational waves exhibit the velocity memory effect (VM) which however ean be:

‘and Polaarev. Fixing such a “miraculous” value, the particle trajectory is an (approximate) stand-
ing wave characterized by a unique integer m, for which the particle does not absorb any energy
from the passing wave. Our statements are illustrated by a simple Gaussian and by the Poschl-

Teller potential as profiles.

conditions to have a velocity versus a displacement memory open
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Memory effects for pulse profiles
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Memory effects for pulse profiles

Focus on the polarized case: Ajp» =0 / Introduce A; = A;;

@ Past and future asymptotic behavior of the pulse profile:

Hy(u) = j—i = —j—z =0 for u < ug u > ur (41)

@ To analyze the memory, we need the dynamics of the geodesic deviation vector

Ai(u) pi

¢'(u) = A,-(u)c (u) + 20 (42)

i _ AI(U) i
Cw = Z ¢, (43)

@ Asymptotic behavior of the relative acceleration
Ai=0 — ¢u)y=0 for u<ug u> ur (44)

o Compute the asymptotic form of the relative distance and velocity ((r, r, Co, Co) in terms of
the initial conditions (p;, B;) and the asymptotic wave form (A, Af).
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Memory effects for pulse profiles

@ Asymptotic past: for u < up, one has

A(u) = Ao(u — o) + Ao, (45)
H(u, uo) = /uo A%(u) — XOTAE’S) such that  A(u)H(u, uo) = “;lo“" (46)
C(u) = Co(u — wo) + o (47)
o Asymptotic future: for u > uf, one has

A(u) = Ar(u — uf) + Ar, (48)

_ ur1 v -~ u—uf
o= [ o+ [ e =t Aty (49)
C(u) = Cr(u— ur) + r - (50)

@ Results: relations between (¢r, ¢, Co, Co) the different asymptotic quantities in terms of the
initial conditions (p;, B') and the asymptotic properties of the wave profile (Ao, Af, Hor)

(o= —-BA, Co= .Ai - BAo (51)
0
Cf = Af(HOfp — B) cf = Aif + Af(HOfp - B) ' (52)
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Memory effects for pulse profiles

Classification of memories for pulse profiles
@ A VM occurs under the condition ¢r # (o.
Since pulses profiles implies a constant asymptotic velocities

A A

Hy(u) = A =0 — E(u)y=0 for u < ug u> ur (53)

A

they generically lead to a constant VM for any (o, (o) and (p;, B, Ao, Ar, Hor) except for
special cases.

@ A VMO occurs in the special case in which ¢ = ¢y which implies:

. . Af — AO . :|
— B=—-p|—F— — ArH . 54
(Ar — Ao) p [ A A AgrHor (54)
o A DM occurs when ¢f = 0 implying additionally that
. 1 .
AfB=—p (7 + AfHof> . (55)
Ar

o Lead to a finer classification depending on Af = Ag or Ar # Ay.

@ Let us see some examples.
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Memory effects for pulse profiles

[543
<4

- -2 o 2 4 -4 -2 2 4 -4 -2 o 2 4
u u u

@ Profiles of the relative displacement (¢1, (2) (upper line) and relative velocity (¢1, ¢2) (lower
line) for Hy = e~ with initial conditions that ensures Ar — Ag # 0.
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@ Profiles of the relative displacement (¢1, (2) (upper line) and relative velocity (¢1, ¢2) (lower
line) for Hy = e~ with initial conditions that ensures Ar — Ag # 0.

o Left panel: assume p; = (1,1) and B; = (=1, —1) — clear non vanishing VM, so that
¢ # (o. Projected motion. Longitudinal position can be different so no colliding trajectories.
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@ Profiles of the relative displacement (¢1, (2) (upper line) and relative velocity (¢1, ¢2) (lower
line) for Hy = e~ with initial conditions that ensures Ar — Ag # 0.

o Left panel: assume p; = (1,1) and B; = (=1, —1) — clear non vanishing VM, so that
¢ # (o. Projected motion. Longitudinal position can be different so no colliding trajectories.

o Middle: p; # (0,0) and B; is tuned to get a VMO — a vanishing VM for which ¢f = (o.
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Memory effects for pulse profiles
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@ Profiles of the relative displacement (¢1, (2) (upper line) and relative velocity (¢1, ¢2) (lower
line) for Hy = e~ with initial conditions that ensures Ar — Ag # 0.

o Left panel: assume p; = (1,1) and B; = (=1, —1) — clear non vanishing VM, so that
¢ # (o. Projected motion. Longitudinal position can be different so no colliding trajectories.

o Middle: p; # (0,0) and B; is tuned to get a VMO — a vanishing VM for which ¢f = (o.

@ Right: p; =1 (Solid), pj = 1.5 (Dahed) and p; = —0.5 (Dotted) and B; is tuned to
¢o = p/ Ao — BAg — pure constant DM
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Memory effects for pulse profiles

. ¢
<4

- 2 o 2 4 4 2 2 0 ) 2
u u u

2 «

@ Profiles of the relative displacement (¢1, (2) (upper line) and relative velocity (¢1, ¢2) (lower
line) for Hy = e~ with initial conditions that ensures Ar — Ag # 0.
o Left panel: assume p; = (1,1) and B; = (=1, —1) — clear non vanishing VM, so that
¢ # (o. Projected motion. Longitudinal position can be different so no colliding trajectories.
o Middle: p; # (0,0) and B; is tuned to get a VMO — a vanishing VM for which ¢f = (o.
@ Right: p; =1 (Solid), pj = 1.5 (Dahed) and p; = —0.5 (Dotted) and B; is tuned to
¢o = p/ Ao — BAg — pure constant DM
New type of memory (middle column) simply switches the projected position of the two
particles !
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Conclusion and perspectives

@ Hidden symmetries (i.e. conformal Killing tensor) generate solutions of the GDE
— link between hidden symmetries and memories for radiative spacetime [BA '24]

@ Complete classification for the conditions relating both the wave-profile and initial conditions
of relative motion to exhibit a velocity or a displacement memory effects in a vacuum
gravitational plane wave [BA, Uzan '24]
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@ Hidden symmetries (i.e. conformal Killing tensor) generate solutions of the GDE
— link between hidden symmetries and memories for radiative spacetime [BA '24]

@ Complete classification for the conditions relating both the wave-profile and initial conditions
of relative motion to exhibit a velocity or a displacement memory effects in a vacuum
gravitational plane wave [BA, Uzan '24]

@ Classification presented for both pulse wave-profile and step wave-profile
(much more subtle for the later)

@ Reveal new subtle memories: intermediated between velocity and displacement memories

Next goals
@ Application to more complicated radiative systems: Robinson-Trautman geometries

@ Revisit the memories in asymptotically flat spacetime : what are their hidden symmetries 7
can we find asymptotic Killing tensors for asymptotically flat spacetime 7 Work in progress

@ Study the memories of extended quadrupolar bodies described by Dixon’s theory

DpH 1 1

- = —ER“,,QB wseps _ 6Jaﬁ"ﬂ‘vw?am,s (56)
DSlu 4

- _ 2p[“v”] + gR[MQﬁ’yJV]aﬁ’Y (57)

— quasi-conserved charges and Killing-Yano symmetries [Compere, Druart '23]:
are there new memories to identify ?
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Thank you
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Hidden symmetry of pp-waves

o Koutras theorem:
if a spacetime admits both a gradient Killing vector and a HKV then it also admits a
non-trivial rank-2 Killing tensor (KT) which generates an additional symmetry.
With the gradient KV and the HKV given by

€adx® = (8o P)dx* Zadx® (58)
the KT is explicitely given by

Kuvdxtdx¥ = [Z(,€,) — Pgpuy] dxtdx”. (59)
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Killing tensor for pp-waves

@ For the pp-wave, we have a gradient KV and a HKV given by
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Penrose limit

@ Concretely, pick up a null geodesic v and construct null Fermi coordinates X# = (U, V, X')
with i € (1,2) adapted to the region around the geodesic

XA = Efx? + E[THpx7x” + O((x)?) (62)
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with i € (1,2) adapted to the region around the geodesic

XA = Efx? + EJTH 5x7x” + O((x%)?) (62)
@ In the region around the geodesic 7y, the gravitational field can be described as
ds? = 2dUdV + §;;dX dXI — Ry (U)X XIdU?
4 _ . 1 . .
- gRM,-k(U)XJXkdUdX’ - gR,-jke(u)ka‘dx'dXJ
+0(X3) (63)
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with
Ajj(U) = Rujuj(U) = Ruvpo EfEY EJEY (66)
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Penrose limit

@ Concretely, pick up a null geodesic v and construct null Fermi coordinates X# = (U, V, X')
with i € (1,2) adapted to the region around the geodesic

XA = Efx? + EJTH 5x7x” + O((x%)?) (62)
@ In the region around the geodesic 7y, the gravitational field can be described as
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+0(X3) (63)

@ Organize this expansion in x? using conformal transformation of the transverse space:
(U, V, X'y = (U, N2V, A X")
@ Peeling behavior of the Weyl scalars

v, =0 for i€ (0,...,4) (64)
@ Penrose limit amounts at selecting the leading contribution: coincides with a pp-wave
ds? = 2dUdV + A (U)X XIdN2 + §;;d X dX! (65)
with
Ajj(U) = Rujuj(U) = Ruvpo EfEY EJEY (66)

[Penrose '76][Blau '19]
o Read the polarizations from the matrix A;;(U)
Full non-perturbative approach: we never ask that A;(U) be "small"
o Also powerful to compute the memory effects explicitly
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A new symmetry of vacuum gravitational plane wave
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Symmetries of Einstein equation

@ Metric

ds? = 2dudv + Aj;(u)dx'dx
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Symmetries of Einstein equation

o Metric
ds? = 2dudv + Aj;(u)dx'dx

@ Non-linear field equation for relating the components of the polarized waves

ﬂ_l(@) +@_1(@) —0
All 2 A11 A22 2 A22 )
@ Most of the investigations remain numerical

o Introducing Aji(u) = A?(u), one gets

Ay A
1422 .
a4 A

— much simpler to deal with later on

@ First point: the Raychaudhuri equation admits a SL(2, R) symmetry
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Conformal symmetry of the Raychaudhuri equation
@ Non-linear field equation

- A ; A
1 /A
@,l(@> ¥ @,,(£> =0. (67)
A1]_ 2 A11 A22 2 A22
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Conformal symmetry of the Raychaudhuri equation
@ Non-linear field equation

N ) > N ) >
A 1 /A A 1 /A
A,,(A) n ﬁ,,(ﬁ) —o. (67)
A1]_ 2 A11 A22 2 A22

@ Introduce the new fields

1 1
A== Ap=—. 68
n=z 2=z (68)
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| Sch[F] + Sch[G] = 0| (69)
wehre Sch([f] denotes the Schwarzian derivative of the function f
f3f2
Schifl]= = —=-—=. 70
chlf] = =~ > (70)

@ Invariant under M&bius reparametrization : new solution generating map [JBA, Uzan '24]
au+b

Sch[M o f] = Sch[f] where M(u) = i+ d

ad — bc #0, (71)
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o For polarized vacuum GPW, the Raychaudhuri equation recasts into a balance equation
between the Schwarzian derivatives of the two field (F, G) related to the components of the
wave-profile
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o For polarized vacuum GPW, the Raychaudhuri equation recasts into a balance equation
between the Schwarzian derivatives of the two field (F, G) related to the components of the
wave-profile

@ Provide a solution generating map for the wave profiles
@ Large freedom in the choice of wave-profile solving the Einstein equation

@ Symmetry reduced version of a more general structure found later for any null hypersurfaces
[Ciambelli, Leigh, Freidel '24]
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Algebraic integration of the geodesic flow
@ Trivial equation for u:
u=p,T=NT (74)

@ Transverse motion: Carrolian boosts allows to write the x and y trajectories as

) 1 y )
1 — 1 . 1
X(u) = 2 [ (o, uyp, — B (75)
@ Longitudinal motion: Combining the HKV and the KT charge give v-trajectory
1 . )
v(u) = N2 [eu — HY(uo, u)pip; + piB' + IC] . (76)
@ Relations between initial conditions and conserved charges
_ _ 1 N + I P _ B
vo = v(up) = N2 [euo —Npixy + ] . xp = x'(uo) = N (77)
@ 4-velocity
du ; dx! y dv 1 .
U—__ = = = AYp; Ve = _ Alp.p.
u I u I AYp; u ar = N (e A p,pj) . (78)

@ We can compute the invariant quantities: expansion, shear and rotation
o 2 | )
O =V, =Nop o =0t = —N?|AVA; + 59(9 + Aip'p) — 592(P/P')2] (79)
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Geodesic deviation vector
@ Fermi coordinates X? = U, X! =V and X# = {X, Y} at hand — analyze the GDE
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Geodesic deviation vector
@ Fermi coordinates X? = U, X! =V and X# = {X, Y} at hand — analyze the GDE

o Consider the null reference geodesic with trajectory X* and a second arbitrary test particle X*

A=xA - XA, (80)
@ Its dynamics satisfies the GDE
¢a = RavusC® (81)
= RiuyE'aE'5¢8 (82)
= % (A’,-j - %Ak”’Ak,Amj) ISV = (83)

Classify the solutions and the memory effects using the symmetries of spacetime

Identify all the explicit and hidden symmetries of a vacuum gravitational plane wave
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