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Context and Motivations
Memory effects
Permanent shifts in relative observables associated to a couple of test particles after the
passage of a gravitational wave:

Displacement memory → relative distance

Effects induced by the non-oscillatory contribution to the gravitational wave

Relevance for gravitational waves astronomy
Stand as one of the last predictions of general relativity yet to be confirmed
Relevant for building accurate waveforms for gravitational wave astronomy

Already existing constraints from the NanoGrav collaboration [Aggarwal and all 19’]
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Context and Motivations
History of memory effects in short:

Linearized gravity: displacement memory [Zel’dovich and Polnarev ’74]

Velocity memory [Braginsky and Grishchuk ’85]

Non-linear gravity [Christodoulou ’91] [Blanchet, Damour ’92]

Relation between memory and the symmetries of spacetime

Associated to the degeneracy of the vacuum in any gauge theory

Gravitational memory effects ↔ flux-balance laws ↔ symmetries of open systems

δQ = F (1)

Reveal the fine structure of the infrared regime of asymptotically flat gravity

Memory effects tells us about the explicit and hidden symmetries of spacetime and vice-versa

New memories recently identified: Spin memory, centered-of-masse memory, gyroscope
[Pasterski, Strominger, Zhiboedov ’16] [Nichols ’18][Seraj, Oblak ’23]

Higher memories not always related to symmetries [Flanagan, Grant, Harte, Nichols ’19]
[Grant, Nichols ’22]

How can we relate memory effects to explicit or hidden symmetries of spacetimes?
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Symmetries of the geodesic deviation equation
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Geodesic deviation

Consider two nearby curves X̄µ(τ) := Xµ(τ, σ = 0) and Xµ(τ, σ)

Their relative distance expands as folllows

∆Xµ(τ, σ) = Xµ(τ, σ)− X̄µ(τ, 0) = σNµ(τ) (2)

+ σ2
(
Bµ − Γ̄µαβN

αNβ
)

(τ) +O(σ3) (3)

First order deviation vector satisfies the following dynamics

D2Nµ

dτ2
= R̄µαβγ ū

αūβNγ (4)

Lagrangian formulation

L[N] =
1

2
ḡµν ū

αūβ∇αNµ∇βNν −
1

2
R̄µναβ ū

µūαNνNβ (5)

Admit a hidden symmetry given by

δNµ = K̄µα1....αp ū
α1 ....ūαp → δL = ∇α

(
Nµū

αūβ∇βδNµ
)

(6)

where K̄µα1....αp is a rank-p (conformal) Killing tensor (similar to higher spin generators for
the Laplacian) : ∇(µKνα1....αp) = ξ(µhνα1....αp) [Caviglia, Zordan, and Salmistraro ’82][BA ’24]
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Integrability of the geodesic deviation equation (GDE)

Consider the GDE associated to a timelike or null reference geodesic

D2Nµ

dτ2
= R̄µαβγ ū

αūβNγ with ūαūα = ε ūα∇αūµ = 0 (7)

Consider any conformal Killing tensor (generalization of familiar Killing vectors):

∇(µKαβ) = ξ(µgαβ) with ∇(µξν) = Ωgµν (8)

Rank-2 Killing tensor → exact solution of the GDE

Nµ = K̄µαū
α (9)

Generalize to any rank-p conformal Killing tensor Nµ = K̄µα1....αp−1 ū
α1 .......ūαp−1

Suppose we have killing vectors and rank-2 KT, then the solution space reads

Nµ = {ξ̄µ, K̄µν ūν} (10)

For radiative spacetime, relate memory effects to explicit and hidden symmetries of spacetime
[Caviglia, Zordan, and Salmistraro ’82][BA ’24]
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α (9)

Generalize to any rank-p conformal Killing tensor Nµ = K̄µα1....αp−1 ū
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Application to the simplest non-linear gravitational wave model
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Application to pp-waves

Going beyond asymptotically flat spacetime:

Memory effects and their relation to symmetries extensively studied for asymptotically flat
spacetimes : flux-balance laws at I+ for asymptotic Killing vectors

Classify memory effects and their relation to symmetry using the previous theorem:
→ applicable to any radiative spacetime

Here, consider pp-waves geometries (plane fronted wave with parallel rays)

Why pp-waves are relevant?

pp-wave geometries → simplest exact non-linear radiative solutions of GR : Petrov type N
[Brinkmann ’1925, Rosen ’37, Robinson ’54, Bondi, Pirani and Robinson ’59]

Described impulsive and gravitational shock waves: boosted black holes
[Adamo, Cristofoli, Tourkine ’23] [He, Raclariu, Zurek ’24]

Interplay between memory in pp-waves and gravitational scattering observables in the eikonal
approximation [Shore ’18][Di Vecchia, Heissenberg, Russo, Veneziano ’23 ]

Around any null geodesic, the leading tidal effects can be described by a pp-wave geometry:
Penrose limit → universal behavior [Penrose ’76]

Applications to black holes perturbations : Penrose limit at the photon ring → QNM [Riotto,
Kehagias ’23]

Useful toy model for studying memory effects outside the asymptotically flat framework
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Generalities

A pp-wave is defined as the type N spacetime with a covariantly constant null vector

∇αNβ = 0

Metric in Baldwin-Jeffrey-Rosen coordinates:

ds2 = 2dudv + Ai j (u)dx idx j (11)

with

Ai j =

(
A11 A12

A12 A22

)
. (12)

Covariantly constant null vector: Nα∂α = ∂v

Minkowski recovered for Ai j = δi j

Einstein equations reduces to the Raychaudhuri equation: only Ruu 6= 0

∂u

(
Ai`∂uAi`

)
+

1

2
Ai`Ajk∂uAj`∂uAik = 8πTuu (13)

In the following, we focus on i) vacuum configurations and ii) polarized waves such that

Tuu = 0 A12 = 0 (14)

What are the explicit and hidden symmetries of this vacuum gravitational plane wave ?

8 / 35



Generalities

A pp-wave is defined as the type N spacetime with a covariantly constant null vector

∇αNβ = 0

Metric in Baldwin-Jeffrey-Rosen coordinates:

ds2 = 2dudv + Ai j (u)dx idx j (11)

with

Ai j =

(
A11 A12

A12 A22

)
. (12)

Covariantly constant null vector: Nα∂α = ∂v

Minkowski recovered for Ai j = δi j

Einstein equations reduces to the Raychaudhuri equation: only Ruu 6= 0

∂u

(
Ai`∂uAi`

)
+

1

2
Ai`Ajk∂uAj`∂uAik = 8πTuu (13)

In the following, we focus on i) vacuum configurations and ii) polarized waves such that

Tuu = 0 A12 = 0 (14)

What are the explicit and hidden symmetries of this vacuum gravitational plane wave ?

8 / 35



Generalities

A pp-wave is defined as the type N spacetime with a covariantly constant null vector

∇αNβ = 0

Metric in Baldwin-Jeffrey-Rosen coordinates:

ds2 = 2dudv + Ai j (u)dx idx j (11)

with

Ai j =

(
A11 A12

A12 A22

)
. (12)

Covariantly constant null vector: Nα∂α = ∂v

Minkowski recovered for Ai j = δi j

Einstein equations reduces to the Raychaudhuri equation: only Ruu 6= 0

∂u

(
Ai`∂uAi`

)
+

1

2
Ai`Ajk∂uAj`∂uAik = 8πTuu (13)

In the following, we focus on i) vacuum configurations and ii) polarized waves such that

Tuu = 0 A12 = 0 (14)

What are the explicit and hidden symmetries of this vacuum gravitational plane wave ?

8 / 35



Generalities

A pp-wave is defined as the type N spacetime with a covariantly constant null vector

∇αNβ = 0

Metric in Baldwin-Jeffrey-Rosen coordinates:

ds2 = 2dudv + Ai j (u)dx idx j (11)

with

Ai j =

(
A11 A12

A12 A22

)
. (12)

Covariantly constant null vector: Nα∂α = ∂v

Minkowski recovered for Ai j = δi j

Einstein equations reduces to the Raychaudhuri equation: only Ruu 6= 0

∂u

(
Ai`∂uAi`

)
+

1

2
Ai`Ajk∂uAj`∂uAik = 8πTuu (13)

In the following, we focus on i) vacuum configurations and ii) polarized waves such that

Tuu = 0 A12 = 0 (14)

What are the explicit and hidden symmetries of this vacuum gravitational plane wave ?

8 / 35



Generalities

A pp-wave is defined as the type N spacetime with a covariantly constant null vector

∇αNβ = 0

Metric in Baldwin-Jeffrey-Rosen coordinates:

ds2 = 2dudv + Ai j (u)dx idx j (11)

with

Ai j =

(
A11 A12

A12 A22

)
. (12)

Covariantly constant null vector: Nα∂α = ∂v

Minkowski recovered for Ai j = δi j

Einstein equations reduces to the Raychaudhuri equation: only Ruu 6= 0

∂u

(
Ai`∂uAi`

)
+

1

2
Ai`Ajk∂uAj`∂uAik = 8πTuu (13)

In the following, we focus on i) vacuum configurations and ii) polarized waves such that

Tuu = 0 A12 = 0 (14)

What are the explicit and hidden symmetries of this vacuum gravitational plane wave ?

8 / 35



Generalities

A pp-wave is defined as the type N spacetime with a covariantly constant null vector

∇αNβ = 0

Metric in Baldwin-Jeffrey-Rosen coordinates:

ds2 = 2dudv + Ai j (u)dx idx j (11)

with

Ai j =

(
A11 A12

A12 A22

)
. (12)

Covariantly constant null vector: Nα∂α = ∂v

Minkowski recovered for Ai j = δi j

Einstein equations reduces to the Raychaudhuri equation: only Ruu 6= 0

∂u

(
Ai`∂uAi`

)
+

1

2
Ai`Ajk∂uAj`∂uAik = 8πTuu (13)

In the following, we focus on i) vacuum configurations and ii) polarized waves such that

Tuu = 0 A12 = 0 (14)

What are the explicit and hidden symmetries of this vacuum gravitational plane wave ?

8 / 35



Symmetries of vacuum gravitational plane wave
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Conformal isometries of pp-waves

Isometries of pp-waves have been studied long time ago: 5d isometry group
[Souriau ’73] [Sippel ’86][Maartens ’91][Horvathy ’17]

Three translations
Nα∂α = ∂v , Pα+∂α = ∂x Pα−∂α = ∂y

Two carrollian boosts

Bα+∂α = Hxx (u0, u)∂x +Hxy (u0, u)∂y − x∂v
Bα−∂α = Hyy (u0, u)∂y +Hyx (u0, u)∂x − y∂v

where we have introduced

Hi j (u0, u) ≡
∫ u

u0

Ai j (w)dw

If we look for a CKV for any Ai j , only one solution: HKV for Ω = 2

Zα∂α = 2v∂v + x i∂i . (15)

Does the pp-wave admit more symmetries ? Hidden symmetries ?

Admit a rank-2 Killing tensor : Koutras theorem

Kµνdxµdxν = 2vdu2 − u(2dudv + Ai jdx idx j ) + Ai jx
jdudx i . (16)

Symmetries holding fro any wave profile Ai j
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Integrating the geodesic motion from the symmetries
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Algebraic integration of the geodesic flow
Phase space for geodesic motion:

{v, pv} = {u, pu} = 1 , {x i , pj} = δi j . H = pupv +
1

2
Ai jpipj =

ε

2
. ε = {0,−1}

(17)

Conserved charges

ξα∂α → O = ξαpα Kµνdxµdxν → K = Kµνpµpν (18)

Translations: Since the Hamiltonian does not depend on neither v nor x i , pv and pi are
automatically conserved. We denote them as

N = pv , P+ = px , P− = py , (19)

Carrolian boost: The conserved charges generating the boosts are given by

B+ = Hxx (u)px +Hxy (u)py − pv x(u) , (20)

B− = Hyy (u)py +Hyx (u)px − pv y(u) . (21)

Hidden Killing tensor charge: charge coming from the Killing tensor reads

K = Kµνpµpν = pvZ − 2uH with Z = 2pv v + pix
i , (22)

Charge algebra

{P±,B±} = N . (23)

{P±,K} = NP± , {B±,K} = NB± , {N ,K} = 2N 2 , (24)

Geodesic motion integrable since (N ,B±, H) are in involution
Fully algebraic integration: Killing tensor charge enters in the longitudinal motion 12 / 35



Constructing the Fermi coordinates
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Adapted Fermi normal coordinates

Pick up a null geodesic γ̄ with tangent vector

ūµ∂µ = ∂u ūµdxµ = dv . (25)

Introduce a set of adapted Fermi coordinates, XI , with I ∈ {0, . . . , 3} related to the initial
coordinates xµ via

EIµ ≡
∂XI

∂xµ
. (26)

Choose the "time-leg" such that the coordinate X0 coincides with the affine parameter of the
geodesic

Ē0
µdxµ = ūµdxµ . (27)

Impose that i) the remaining legs be parallel transported along the null geodesic, and ii) the
orthogonality relations

ūµ∇µEI ν = 0 gµν |γ̄ = ĒIµĒ
J
νηIJ (28)

In our case, one obtains

Ė i A = −
1

2
Aik ȦkjE

j
A (29)

Analyzing the effects in the Fermi coordinates requires to analytically solve this PT equation

Constructing the Fermi coordinates is closely related to the so called Penrose limit :
exact for pp-wave
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Fermi coordinates : X0 = U, X1 = V and XA = {X, Y }

Then, the Taylor expansion of the BJR coordinates xµ(U, V,XA) up to second order reads

xµ(U, V,XA) = xµ(U) + Ēµa(U)Xa −
1

2
Ēαa(U)Ēβb(U)Γµαβ(U)XaXb . (30)

It follows that the Fermi and BJR coordinates are related by

u = U , (31)

v = V +
1

4
Ȧi j Ē

i
AĒ

j
BX

AXB , (32)

x i = Ē i AX
A . (33)

The vacuum GPW metric becomes in the Fermi coordinates

ds2 = 2dUdV + δABdXAdXB +HAB(U)XAXBdU2 , (34)

with the wave-profile

HAB =
1

2
E i A ∂u

(
Ȧi jE

j
B

)
. (35)

Einstein equation translates into

HAA = 0 → HAB =

(
H+ H×
H× −H+

)
(36)

Known as the Brinkmann coordinates which are the one use to analyze the physical effects
Classify the memory effects via the symmetries
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Classification of memory effects
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Classification of memory effects

The three different types of memory effects

Consider situations for which asymptotically, i.e. for u < u0 and u > uf , one has

ζi 6= 0 and ζ̈i = 0 . (37)

Velocity Memory (VM):
When the relative velocity in the two asymptotic regions satisfies

∆ζ̇ = ζ̇f − ζ̇0 6= 0 (38)

→ constant shift on the asymptotic value of the relative velocity.

Vanishing Velocity Memory (VM0): Subcase corresponding to

∆ζ̇ = ζ̇f − ζ̇0 = 0 (39)

→ no velocity memory but still interesting effects on the couple of test particles.

Displacement Memory (DM): subcase such that

ζ̇f = 0 and ζf 6= ζ0 (40)

→ the relative velocity vanishes in the asymptotic future

17 / 35



Classification of memory effects
A brief look at the conclusions so far
First work to analyze the memory effects in vacuum gravitational plane wave
[Zhang, Duval, Gibbons, Horvathy ’17 ’18]
Only exhibits velocity memory effects / displacement memory effect can never occur
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Classification of memory effects

A brief look at the conclusions so far

Very recently, two numerical examples where a displacement occurs have been presented in
[Zhang, Horvathy ’24]

No analytic conditions were provided leaving the question of the classification of the
conditions to have a velocity versus a displacement memory open
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Memory effects for pulse profiles

Memory effects for pulse profiles
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Memory effects for pulse profiles

Focus on the polarized case: A12 = 0 / Introduce Ai = Ai i
Past and future asymptotic behavior of the pulse profile:

H+(u) =
Ä1

A1
= −
Ä2

A2
= 0 for u < u0 u > uf (41)

To analyze the memory, we need the dynamics of the geodesic deviation vector

ζ̇i (u) =
Ȧi (u)

Ai (u)
ζi (u) +

pi

Ai (u)
, (42)

ζ̈i (u) =
Äi (u)

Ai (u)
ζi (u). (43)

Asymptotic behavior of the relative acceleration

Äi = 0 → ζ̈i (u) = 0 for u < u0 u > uf (44)

Compute the asymptotic form of the relative distance and velocity (ζf , ζ̇f , ζ0, ζ̇0) in terms of
the initial conditions (pi ,Bi ) and the asymptotic wave form (A0,Af ).
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Memory effects for pulse profiles

Asymptotic past: for u < u0, one has

A(u) = Ȧ0(u − u0) +A0 , (45)

H(u, u0) =

∫ u

u0

1

A2(u)
=

u − u0

A0A(u)
such that A(u)H(u, u0) =

u − u0

A0
, (46)

ζ(u) = ζ̇0(u − u0) + ζ0 (47)

Asymptotic future: for u > uf , one has

A(u) = Ȧf (u − uf ) +Af , (48)

H(u0, u) =

∫ uf

u0

1

A2(u)
+

∫ u

uf

1

A2(u)
= H0f +

u − uf
AfA(u)

. (49)

ζ(u) = ζ̇f (u − uf ) + ζf . (50)

Results: relations between (ζf , ζ̇f , ζ0, ζ̇0) the different asymptotic quantities in terms of the
initial conditions (pi ,Bi ) and the asymptotic properties of the wave profile (A0,Af , H0f )

ζ0 = −BA0 , ζ̇0 =
p

A0
− BȦ0 (51)

ζf = Af (H0f p − B) ζ̇f =
p

Af
+ Ȧf (H0f p − B) , (52)
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Memory effects for pulse profiles

Classification of memories for pulse profiles

A VM occurs under the condition ζ̇f 6= ζ̇0.
Since pulses profiles implies a constant asymptotic velocities

H+(u) =
Ä1

A1
= −
Ä2

A2
= 0 → ζ̈i (u) = 0 for u < u0 u > uf (53)

they generically lead to a constant VM for any (ζ0, ζ̇0) and (pi ,Bi ,A0,Af , H0f ) except for
special cases.

A VM0 occurs in the special case in which ζ̇f = ζ̇0 which implies:

(Ȧf − Ȧ0)B = −p
[
Af −A0

AfA0
− ȦfH0f

]
. (54)

A DM occurs when ζ̇f = 0 implying additionally that

Ȧf B = −p
(

1

Af
+ ȦfH0f

)
. (55)

Lead to a finer classification depending on Ȧf = Ȧ0 or Ȧf 6= Ȧ0.

Let us see some examples.
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Memory effects for pulse profiles
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Profiles of the relative displacement (ζ1, ζ2) (upper line) and relative velocity (ζ̇1, ζ̇2) (lower
line) for H+ = e−u

2
with initial conditions that ensures Ȧf − Ȧ0 6= 0.

Left panel: assume pi = (1, 1) and Bi = (−1,−1) → clear non vanishing VM, so that
ζ̇f 6= ζ̇0. Projected motion. Longitudinal position can be different so no colliding trajectories.
Middle: pi 6= (0, 0) and Bi is tuned to get a VM0 → a vanishing VM for which ζ̇f = ζ̇0.
Right: pi = 1 (Solid), pi = 1.5 (Dahed) and pi = −0.5 (Dotted) and Bi is tuned to
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Conclusion and perspectives
Hidden symmetries (i.e. conformal Killing tensor) generate solutions of the GDE
→ link between hidden symmetries and memories for radiative spacetime [BA ’24]
Complete classification for the conditions relating both the wave-profile and initial conditions
of relative motion to exhibit a velocity or a displacement memory effects in a vacuum
gravitational plane wave [BA, Uzan ’24]

Classification presented for both pulse wave-profile and step wave-profile
(much more subtle for the later)
Reveal new subtle memories: intermediated between velocity and displacement memories

Next goals

Application to more complicated radiative systems: Robinson-Trautman geometries
Revisit the memories in asymptotically flat spacetime : what are their hidden symmetries ?
can we find asymptotic Killing tensors for asymptotically flat spacetime ? Work in progress
Study the memories of extended quadrupolar bodies described by Dixon’s theory

Dpµ

dτ
= −

1

2
Rµναβv

νSαβ −
1

6
Jαβγδ∇µRαβγδ (56)

DS[µν]

dτ
= 2p[µvν] +

4

3
R[µ

αβγJ
ν]αβγ (57)

→ quasi-conserved charges and Killing-Yano symmetries [Compere, Druart ’23]:
are there new memories to identify ?
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Hidden symmetry of pp-waves

Koutras theorem:
if a spacetime admits both a gradient Killing vector and a HKV then it also admits a
non-trivial rank-2 Killing tensor (KT) which generates an additional symmetry.
With the gradient KV and the HKV given by

ξαdxα = (∂αΦ)dxα Zαdxα (58)

the KT is explicitely given by

Kµνdxµdxν =
[
Z(µξν) −Φgµν

]
dxµdxν . (59)

Killing tensor for pp-waves

For the pp-wave, we have a gradient KV and a HKV given by

Nαdxα = du Zα∂α = 2v∂v + x i∂i (60)

hence a KT

Kµνdxµdxν = 2vdu2 − u(2dudv + Ai jdx idx j ) + Ai jx
jdudx i . (61)

All these symmetries hold for any wave-profile Ai j (u) !
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Penrose limit
Concretely, pick up a null geodesic γ and construct null Fermi coordinates XA = (U, V,X i )

with i ∈ (1, 2) adapted to the region around the geodesic

XA = EAa x
a + EAµ Γ̄µabx

axb +O((xa)3) (62)

In the region around the geodesic γ, the gravitational field can be described as

ds2 = 2dUdV + δi jdX idX j − R̄λiλj (U)X iX jdU2

−
4

3
R̄λjik(U)X jXkdUdX i −

1

3
R̄i jk`(U)XkX`dX idX j

+O(X3) (63)

Organize this expansion in xa using conformal transformation of the transverse space:
(U, V,X i )→ (U, λ2V, λX i )

Peeling behavior of the Weyl scalars

Ψi = O(λ4−i ) for i ∈ (0, ..., 4) (64)

Penrose limit amounts at selecting the leading contribution: coincides with a pp-wave

ds2 = 2dUdV + Ai j (U)X iX jdλ2 + δi jdX idX j (65)

with
Ai j (U) = R̄UiUj (U) = R̄µνρσE

µ
UE

ν
i E

ρ
UE

σ
j (66)

[Penrose ’76][Blau ’19]
Read the polarizations from the matrix Ai j (U)

Full non-perturbative approach: we never ask that Ai j (U) be "small"
Also powerful to compute the memory effects explicitly
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A new symmetry of vacuum gravitational plane wave
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Symmetries of Einstein equation

Metric

ds2 = 2dudv + Ai j (u)dx idx j

Non-linear field equation for relating the components of the polarized waves[
Ä11

A11
−

1

2

(
Ȧ11

A11

)2
]

+

[
Ä22

A22
−

1

2

(
Ȧ22

A22

)2
]

= 0 .

Most of the investigations remain numerical

Introducing Ai i (u) ≡ A2
i (u), one gets

Ä1

A1
+
Ä2

A2
= 0 .

→ much simpler to deal with later on

First point: the Raychaudhuri equation admits a SL(2,R) symmetry
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Ä22

A22
−

1

2

(
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Ä11

A11
−

1

2

(
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Conformal symmetry of the Raychaudhuri equation
Non-linear field equation[

Ä11

A11
−

1

2

(
Ȧ11

A11

)2
]

+

[
Ä22

A22
−

1

2

(
Ȧ22

A22

)2
]

= 0 . (67)

Introduce the new fields
A11 =

1

Ḟ
A22 =

1

Ġ
. (68)

Einstein equation recast into

Sch[F ] + Sch[G] = 0 (69)

wehre Sch[f ] denotes the Schwarzian derivative of the function f

Sch[f ] =

...
f

ḟ
−

3

2

f̈ 2

ḟ 2
. (70)

Invariant under Möbius reparametrization : new solution generating map [JBA, Uzan ’24]

Sch[M ◦ f ] = Sch[f ] where M(u) =
au + b

cu + d
ad − bc 6= 0 , (71)

Simplest solutions:

F (u) =
au + b

cu + d
, G(u) =

ãu + b̃

c̃u + d̃
→ A11(u) = (cu + d)2 , A22(u) = (c̃u + d̃)2 .

(72)

This is just Minkowski after performing

v → v −
1

2
c(cu + d)x2 −

1

2
c̃(c̃u + d̃)y2 x → (cu + d)x y → (c̃u + d̃)y (73)
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Ḟ
A22 =

1

Ġ
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For polarized vacuum GPW, the Raychaudhuri equation recasts into a balance equation
between the Schwarzian derivatives of the two field (F,G) related to the components of the
wave-profile

Provide a solution generating map for the wave profiles

Large freedom in the choice of wave-profile solving the Einstein equation

Symmetry reduced version of a more general structure found later for any null hypersurfaces
[Ciambelli, Leigh, Freidel ’24]
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Algebraic integration of the geodesic flow
Trivial equation for u̇:

u = pvτ = Nτ. (74)

Transverse motion: Carrolian boosts allows to write the x and y trajectories as

x i (u) =
1

N

[
Hi j (u0, u)pj − Bi

]
(75)

Longitudinal motion: Combining the HKV and the KT charge give v -trajectory

v(u) =
1

2N 2

[
εu −Hi j (u0, u)pipj + piBi +K

]
. (76)

Relations between initial conditions and conserved charges

v0 ≡ v(u0) =
1

2N 2

[
εu0 −Npix i0 +K

]
. x i0 ≡ x i (u0) = −

Bi

N
. (77)

4-velocity

uu =
du
dτ

= N ui =
dx i

dτ
= Ai jpj uv =

dv
dτ

=
1

2N

(
ε− Ai jpipj

)
. (78)

We can compute the invariant quantities: expansion, shear and rotation

Θ = ∇µuµ = N% σ = σµνσ
µν = −N 2

[
Ȧi j Ȧi j +

2

3
%(%+ Ȧi jp

ipj )−
1

9
%2(pip

i )2

]
(79)
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Geodesic deviation vector

Fermi coordinates X0 = U, X1 = V and XA = {X, Y } at hand → analyze the GDE

Consider the null reference geodesic with trajectory X̄µ and a second arbitrary test particle Xµ

ζA ≡ XA − X̄A , (80)

Its dynamics satisfies the GDE

ζ̈A = RAUUBζ
B (81)

= RiuujE
i
AE

j
Bζ

B (82)

=
1

2

(
Äi j −

1

2
AkmȦki Ȧmj

)
E i AE

j
Bζ

B . (83)

Classify the solutions and the memory effects using the symmetries of spacetime

Identify all the explicit and hidden symmetries of a vacuum gravitational plane wave
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)
E i AE

j
Bζ

B . (83)

Classify the solutions and the memory effects using the symmetries of spacetime

Identify all the explicit and hidden symmetries of a vacuum gravitational plane wave

35 / 35



Geodesic deviation vector

Fermi coordinates X0 = U, X1 = V and XA = {X, Y } at hand → analyze the GDE

Consider the null reference geodesic with trajectory X̄µ and a second arbitrary test particle Xµ

ζA ≡ XA − X̄A , (80)

Its dynamics satisfies the GDE

ζ̈A = RAUUBζ
B (81)

= RiuujE
i
AE

j
Bζ

B (82)

=
1

2

(
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