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THE POWER SPECTRUM ON SMALL
SCALES
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SCALAR INDUCED GRAVITATIONAL
WAVES

First order scalar perturbations couple and source GWs at second
order in perturbation theory (Tomita, Ananda et al, Baumann et al)

GW equation of motion:
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SCALAR INDUCED GRAVITATIONAL
WAVES

Induced during radiation domination

They are directly ‘sourced’ by inflation and therefore a probe of the
smallest scales and counterpart signal of PBHs

Solution in Fourier space
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Polarization



SCALAR INDUCED GRAVITATIONAL
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Induced during radiation domination
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SCALAR INDUCED GRAVITATIONAL
WAVES

Induced during radiation domination

They are directly ‘sourced’ by inflation and therefore a probe of the
smallest scales and counterpart signal of PBHs

Solution in Fourier space
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Primordial values



POWER SPECTRUM / SPECTRAL DENSITY
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Plug in equation of motion

Q(n, k)~P"™ (n, k)



SCALAR INDUCED GRAVITATIONAL
WAVES

The two-point function of second order tensors is proportional to the
four-point function of scalars

P (n, k)~ <h§2) M, kR (, k’)) x P2




SCALAR INDUCED GRAVITATIONAL
WAVES

What happens for some peaked input power spectra on small scales?
(Dirac delta input peak)
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INCLUSION OF FIRST ORDER TENSORS
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SECOND ORDER GRAVITATIONAL
WAVES

First order scalar and tensor perturbations couple and source GWs
as they re-enter the horizon during radiation domination

GW equation (Zhang et al, Bari et al, Yu et al)
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SECOND ORDER GRAVITATIONAL
WAVES

First order scalar and tensor perturbations couple and source GWs
as they re-enter the horizon during radiation domination

They are directly ‘sourced’ by inflation and therefore give us
information about the scalar and tensor power spectrum on smallest

scales

PP (n, k)~ <h§2) M R (, k’)> « PI+ PL+ P, P,



RESULTS: DIRAC DELTA INPUT
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RESULTS: LOGNORMAL PEAK
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VARYING SIGMA - SIGW
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ENHANCEMENT OF THE ST TERM?
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ARE WE MISSING SOMETHING?

A, k)~P? (n, k)




ARE WE MISSING SOMETHING? YES!

Q(m, k)~PF (m, k) + 22 (, k)




THIRD ORDER PERTURBATION THEORY
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NOT EVERYTHING AT THIRD ORDER
WILL CONTRIBUTE

These were studies in the IR regime previously (Chen et al)

Ultimately, we correlate the third order solution with a first order
tensor.

Since first order scalars and tensors do not correlate, we can drop a
few terms

(3) _ chhh hPy h(2)p h(2 g B@n B2y p(2p p2)y

The difficulty: the kernels of source terms containing second order
perturbations have to be computed numerically.



SO FAR...
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CONCLUSION

Our work can be used to constrain models of inflation that contain a
peak in the power spectrum on small scales for both scalars and
tensors.

Scalar-tensor induced waves (and tensor-tensor) suffer on small scales.
We get an unphysical enhancement of the observable when the
primordial input spectrum is not peaked enough.

Hopefully, we can fix this by also considering the correlations of first
and third order tensors...
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RESULTS: LOGNORMAL PEAK
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EXTRA SLIDES
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EXTRA SLIDES
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