Cosmic Inflation at the Crossroads

0

Ο

 \bigcirc

0

0

Christophe Ringeval Cosmology, Universe and Relativity at Louvain (CURL) Institute of Mathematics and Physics UCLouvain

Annecy, 6/11/2024

1 / 22

Outline

Qualitative Inflation

Quantitative inflation

 \bigcirc

 \mathbf{O}

Predictions in model space

0

Ο

 \bigcirc

Bayesian inference

Conclusion

Qualitative Inflation

Triggering and stopping acceleration Cosmological perturbation

Quantitative inflation

Encyclopædia Inflationaris: Opiparous Edition Primordial power spectra Reheating consistent model predictions

Bayesian inference

Machine-learning an effective likelihood Marginalized posteriors Computing bayesian evidences Bayes factors for all models Information gain on the reheating

Predictions in model space

Running of the spectral index

- Model space vs slow-roll space
- Reheating energy density and equation of state

Conclusion

J. Martin, CR and V. Vennin: arXiv:2404.10647, arXiv:2404.15089, arXiv:1303.3787v4

Qualitative Inflation

Triggering and stopping acceleration
 Cosmological perturbation

Quantitative inflation

Bayesian inference

Predictions in model space O Conclusion

 \bigcirc

0

Qualitative Inflation

Cosmic Inflation

Triggering and stopping acceleration
 Cosmological perturbation

Quantitative inflation

Bayesian inference

Predictions in model space

 $\bigcirc \bigcirc$

Conclusion

0

- A predictive, testable and tested early universe paradigm
 - Accelerated expansion of the universe at $E_{inf} > MeV$ (BBN)
 - Addresses some unexplainable features of the Friedmann-Lemaître model
- For the simplest incarnation of inflation...
 - Historically introduced to dilute monopoles formed at GUT
 - Flatness of the spatial sections ($\Omega_{\rm K} = 0.0009 \pm 0.0018$)
 - Statistical isotropy of the observable universe (horizon problem)
 - Origin of CMB and LSS (quantum fluctuations)
 - Gaussianities of the cosmological perturbations $(f_{\rm NL} < -0.9 \pm 5)$
 - Adiabaticity of the cosmological perturbations (isocurv. < 1%)
 - Almost scale invariance $(n_{\rm s} = 0.9649 \pm 0.004)$

Triggering and stopping acceleration

The simplest way: single-field inflation

$$S = \int dx^4 \sqrt{-g} \left[\frac{1}{2\kappa^2} R + \mathcal{L}(\phi) \right] \quad \text{with} \quad \mathcal{L}(\phi) = -\frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi)$$

Inflation occurs in the plateau and is followed by a reheating era

• The reheating stage: everything after ϕ_{end} till radiation domination

acceleration Cosmological perturbation Quantitative inflation Bayesian inference

Predictions in model space

Qualitative Inflation Triggering and stopping

Conclusion

Cosmological perturbations of quantum origin

Model testing: reheating effects must be included!

Redshift at which inflation ends

Depends on the redshift of reheating

Qualitative Inflation Triggering and stopping

Quantizative inflation

Predictions in model space

┥

Bayesian inference

acceleration
 Cosmological
 perturbation

Conclusion

$$1 + z_{\text{end}} = \frac{a_0}{a_{\text{end}}} = \frac{a_{\text{reh}}}{a_{\text{end}}} (1 + z_{\text{reh}}) = \frac{a_{\text{reh}}}{a_{\text{end}}} \left(\frac{\rho_{\text{reh}}}{\tilde{\rho}_{\gamma}}\right)^{1/4} = \frac{1}{R_{\text{rad}}} \left(\frac{\rho_{\text{end}}}{\tilde{\rho}_{\gamma}}\right)^{1/4}$$

• The reheating parameter
$$R_{\rm rad} \equiv \frac{a_{\rm end}}{a_{\rm reh}} \left(\frac{\rho_{\rm end}}{\rho_{\rm reh}}\right)^{1/4}$$

• Encodes any observable deviations from a radiation-like or instantaneous reheating $R_{rad} = 1$

• $R_{
m rad}$ can be expressed in terms of $(
ho_{
m reh}, \overline{w}_{
m reh})$ or $(\Delta N_{
m reh}, \overline{w}_{
m reh})$

$$\ln R_{\rm rad} = \frac{\Delta N_{\rm reh}}{4} (3\overline{w}_{\rm reh} - 1) = \frac{1 - 3\overline{w}_{\rm reh}}{12(1 + \overline{w}_{\rm reh})} \ln \left(\frac{\rho_{\rm reh}}{\rho_{\rm end}}\right)$$

• Scary Astrophysics (early universe)

$$10^{10} < z_{\rm end} < 10^{28}, \qquad -46 < \ln R_{\rm rad} < 15$$

Qualitative Inflation

Quantitative inflation

Encyclopædia
 Inflationaris: Opiparous
 Edition
 Primordial power

spectra

Reheating consistent model predictions

Bayesian Inference

Predictions in model space

 \bigcirc

()

Conclusion

Quantitative inflation

Encyclopædia Inflationaris: Opiparous Edition

Qualitative Inflation

Quantitative inflation Encyclopædia
Inflationaris: Opiparous
Edition
Primordial power
spectra
Reheating consistent

model predictions

Bayesian inference

Predictions in model space

Conclusion

 \bigcirc

 \bigcirc

New version (published in PDU 10/2024) (arXiv:1303.3787v4)

- Deals with accurate slow-roll predictions for 287 models
- Comes with a public runtime library ASPIC

• Computes the Hubble-flow functions from the model parameters $heta_{ ext{inf}}$

 $(\boldsymbol{\theta}_{\mathrm{inf}}, R_{\mathrm{rad}}) \longrightarrow \mathsf{ASPIC} \longrightarrow \boldsymbol{\epsilon_i}(\boldsymbol{\theta}_{\mathrm{inf}}, R_{\mathrm{rad}}) \equiv \frac{\mathrm{d}\ln|\boldsymbol{\epsilon_{i-1}}|}{\mathrm{d}\ln a}, \quad \boldsymbol{\epsilon_0} \propto \frac{1}{H}$

Primordial power spectra

Uniquely determined from the Hubble-flow functions

$$\begin{aligned} \mathcal{P}_{\zeta} &= \frac{0}{8\pi^2 M_{\rm Pl}^2 \epsilon_{1*}} \left\{ 1 - 2(1+C)\epsilon_{1*} - C\epsilon_{2*} + \left(\frac{\pi^2}{2} - 3 + 2C + 2C^2\right) \epsilon_{1*}^2 \\ &+ \left(\frac{7\pi^2}{12} - 6 - C + C^2\right) \epsilon_{1*} \epsilon_{2*} + \left(\frac{\pi^2}{8} - 1 + \frac{C^2}{2}\right) \epsilon_{2*}^2 + \left(\frac{\pi^2}{24} - \frac{C^2}{2}\right) \epsilon_{2*} \epsilon_{3*} \\ &+ \left[- 2\epsilon_{1*} - \epsilon_{2*} + (2+4C)\epsilon_{1*}^2 + (-1+2C)\epsilon_{1*} \epsilon_{2*} + C\epsilon_{2*}^2 - C\epsilon_{2*} \epsilon_{3*} \right] \ln \left(\frac{k}{k_*}\right) \\ &+ \left[2\epsilon_{1*}^2 + \epsilon_{1*} \epsilon_{2*} + \frac{1}{2}\epsilon_{2*}^2 - \frac{1}{2}\epsilon_{2*} \epsilon_{3*} \right] \ln^2 \left(\frac{k}{k_*}\right) + \cdots \right\}, \end{aligned}$$

$$\mathcal{P}_h &= \frac{2H_*^2}{\pi^2 M_{\rm Pl}^2} \left\{ 1 - 2(1+C)\epsilon_{1*} + \left[-3 + \frac{\pi^2}{2} + 2C + 2C^2 \right] \epsilon_{1*}^2 + \left[-2 + \frac{\pi^2}{12} - 2C - C^2 \right] \epsilon_{1*} \epsilon_{2*} \\ &- \left[-2\epsilon_{1*} + (2+4C)\epsilon_{1*}^2 + (-2-2C)\epsilon_{1*} \epsilon_{2*} \right] \ln \left(\frac{k}{k_*}\right) + \left(2\epsilon_{1*}^2 - \epsilon_{1*} \epsilon_{1*} \right) \ln^2 \left(\frac{k}{k_*}\right) + \cdots \right\}. \end{aligned}$$

• Currently known at third order: arXiv:2205.12608 (involves ϵ_{4*})

Reheating consistent model predictions

Quick check for which reheating history a model is compatible with the data

Qualitative Inflation

Quantitative inflation

Encyclopædia
 Inflationaris: Opiparous
 Edition
 Primordial power

spectra

Reheating consistent model predictions

Bayesian inference

Predictions in model space

Conclusion

11 / 22

Qualitative Inflation

Quantitative inflation

Bayesian inference

Machine-learning an effective likelihood

Marginalized posteriors

Computing bayesian evidences

Bayes factors for all models

Information gain on the reheating

Predictions in model space

 \bigcirc

Conclusion

Bayesian inference

Machine-learning an effective likelihood

To speed-up data analysis for 287 models

$$\mathcal{L}_{\text{eff}}(\boldsymbol{D}|P_*,\varepsilon_1,\varepsilon_2,\varepsilon_3) \propto \int P(\boldsymbol{D}|\boldsymbol{\theta}_{\text{s}},P_*,\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4) \,\pi(\varepsilon_4) \,\pi(\boldsymbol{\theta}_{\text{s}}) \,\mathrm{d}\varepsilon_4 \mathrm{d}\boldsymbol{\theta}_{\text{s}}.$$

The full likelihood has 55 parameters and is built upon

- Planck 2020 post-legacy TT, TE, EE data (PR4/NPIPE maps)
- Large scale EE polarization (lowE)
- BICEP/Keck *B*-mode 2018 (arXiv:2110.00483)
- Small scale TE and EE from SPT-3G (arXiv:2103.13618)
- Baryon Acoustic Oscillations (SDSS collaboration)
- MCMC exploration of the 55 dimensions
 - COSMOMC up to 25 million samples $(R 1 < 10^{-3})$
 - GetDist marginalization in 4D: $P_*, \varepsilon_1, \varepsilon_2, \varepsilon_3$
- Basic machine learning: 1 hidden layer with 300 nodes

Qualitative Inflation

Quantitative inflation

Bayesian inference

 Machine-learning an effective likelihood

Marginalized posteriors

Computing bayesian evidences

Bayes factors for all models

Information gain on the reheating

```
Predictions in model space
```

00

13 / 22

Marginalized posteriors

Qualitative Inflation

Quantitative inflation

Bayesian inference

Machine-learning an effective likelihood

$\boldsymbol{\bigstar}$ Marginalized posteriors

Computing bayesian evidences

Bayes factors for all models

 Information gain on the reheating _____

Predictions in model space

0

0

Conclusion

Marginalized posteriors

Effective likelihood vs exact: 2D

Qualitative Inflation

Quantitative inflation

Bayesian inference

Machine-learning an effective likelihood

Marginalized posteriors

Computing bayesian evidences

Bayes factors for all

Information gain on the
reheating
O

Predictions in model space

Ο

0

Conclusion

Marginalized posteriors

Effective likelihood vs exact: 1D

Qualitative Inflation

Quantitative inflation

Bayesian inference

✤ Machine-learning an effective likelihood

Marginalized posteriors

Computing bayesian evidences

★ Bayes factors for all models

✤ Information gain on the reheating 0

Predictions in model space

Ο

0

Conclusion

 \bigcirc

14 / 22

Computing bayesian evidences

Probability of a model ${\cal M}$ to explain the data $oldsymbol{D}$

$$P(\mathcal{M}|\mathbf{D}) = \frac{\mathcal{E}(\mathbf{D}|\mathcal{M}) P(\mathcal{M})}{P(\mathbf{D})}$$

Qualitative Inflation

Quantitative inflation

Bayesian inference

Machine-learning an effective likelihood

Marginalized posteriors

Computing bayesian evidences

Bayes factors for all models

Information gain on the reheating

Predictions in model space

Conclusion

0

0

Computing bayesian evidences

Qualitative Inflation

Quantitative inflation

Bayesian inference

Machine-learning an effective likelihood

Marginalized posteriors

Computing bayesian evidences

Bayes factors for all models

Information gain on the reheating

Predictions in model space

Conclusion

0

0

Probability of a model ${\mathcal M}$ to explain the data $oldsymbol{D}$

$$P(\mathcal{M}|\mathbf{D}) = \frac{\mathcal{E}(\mathbf{D}|\mathcal{M}) P(\mathcal{M})}{P(\mathbf{D})}$$

Bayesian evidence

$$\mathcal{E}(\boldsymbol{D}|\mathcal{M}) \propto \int \mathcal{L}_{\mathrm{eff}}(\boldsymbol{D}|P_*, \varepsilon_1, \varepsilon_2, \varepsilon_3) \, \pi(\boldsymbol{\theta}_{\mathrm{inf}}, R_{\mathrm{rad}}) \, \mathrm{d}\boldsymbol{\theta}_{\mathrm{inf}} \, \mathrm{d}R_{\mathrm{rad}}$$

Computing bayesian evidences

Qualitative Inflation

Quantitative inflation

Bayesian inference

Machine-learning an effective likelihood

Marginalized posteriors

Computing bayesian evidences

Bayes factors for all models

Information gain on the reheating

Predictions in model space

Conclusion

0

0

Probability of a model ${\mathcal M}$ to explain the data ${old D}$

$$P(\mathcal{M}|\mathbf{D}) = \frac{\mathcal{E}(\mathbf{D}|\mathcal{M}) P(\mathcal{M})}{P(\mathbf{D})}$$

Bayesian evidence

$$\mathcal{E}(\boldsymbol{D}|\mathcal{M}) \propto \int \mathcal{L}_{\mathrm{eff}}(\boldsymbol{D}|P_*, \varepsilon_1, \varepsilon_2, \varepsilon_3) \, \pi(\boldsymbol{ heta}_{\mathrm{inf}}, R_{\mathrm{rad}}) \, \mathrm{d} \boldsymbol{ heta}_{\mathrm{inf}} \, \mathrm{d} R_{\mathrm{rad}}$$

- Computed with BAYASPIC running over 287 models
 - ◆ BAYASPIC \equiv ASPIC + PolyChord + $\mathcal{L}_{ ext{eff}}$
 - A few cpu-hours per model \mathcal{M} (but up to 2 days for some)
- $1 \,\mathrm{TB}$ of data output (nested chains, posteriors, plots,...)

Bayes factors for all models

16 / 22

Information gain on the reheating

Qualitative Inflation

Quantitative inflation

Bayesian inference

Machine-learning an effective likelihood

Marginalized posteriors

Computing bayesian evidences

Bayes factors for all models

Information gain on the reheating

Predictions in model space

Conclusion

0

8

Kullback-Leibler divergence between the prior and posterior

$$D_{\rm KL}^{\rm rad} = \int P(\ln R_{\rm rad} | \boldsymbol{D}) \ln \left[\frac{P(\ln R_{\rm rad} | \boldsymbol{D})}{\pi(\ln R_{\rm rad})} \right] d\ln R_{\rm rad},$$

Information gain on the reheating

Kullback-Leibler divergence between the prior and posterior

$$D_{\rm KL}^{\rm rad} = \int P(\ln R_{\rm rad} | \boldsymbol{D}) \ln \left[\frac{P(\ln R_{\rm rad} | \boldsymbol{D})}{\pi(\ln R_{\rm rad})} \right] d\ln R_{\rm rad},$$

Qualitative Inflation

Quantitative inflation

Bayesian inference

Machine-learning an effective likelihood

Marginalized posteriors

Computing bayesian evidences

Bayes factors for all models

Information gain on the reheating

Predictions in model space

Conclusion

Ο

0

Qualitative Inflation

Quantitative inflation

Bayesian inference

Predictions in model space

Running of the spectral index
Model space vs slow-roll

space

 \bigcirc

0

Reheating energy density and equation of state

Conclusion

Predictions in model space

Running of the spectral index

Qualitative Inflation

Quantitative inflation

Bayesian inference

Predictions in model space Running of the spectral index

Model space vs slow-roll space

✤ Reheating energy density and equation of state

Conclusion

Within the space of the single-field models $\mathcal{I}_{ ext{mod}} \equiv \{\mathcal{M}_i\}$

Posterior probability of the running $\alpha_s \simeq -\epsilon_{2*} \left(2\epsilon_{1*} + \epsilon_{3*} \right)$

$$P(\alpha_{s}|\boldsymbol{D}, \mathcal{I}_{mod}) = \sum_{i} P(\alpha_{s}|\boldsymbol{D}, \mathcal{M}_{i}) P(\mathcal{M}_{i}|\boldsymbol{D})$$

Running of the spectral index

Qualitative Inflation

Quantitative inflation

Bayesian inference

Predictions in model space Running of the spectral index

Model space vs slow-roll space

✤ Reheating energy density and equation of state

Conclusion

Within the space of the single-field models $\mathcal{I}_{mod} \equiv \{\mathcal{M}_i\}$

Posterior probability of the running $\alpha_{s} \simeq -\epsilon_{2*} \left(2\epsilon_{1*} + \epsilon_{3*} \right)$

$$P(\alpha_{s}|\boldsymbol{D}, \mathcal{I}_{mod}) = \sum_{i} P(\alpha_{s}|\boldsymbol{D}, \mathcal{M}_{i}) P(\mathcal{M}_{i}|\boldsymbol{D})$$

Running of the spectral index

Qualitative Inflation

Quantitative inflation

Bayesian inference

Predictions in model space Running of the spectral index

Model space vs slow-roll space

✤ Reheating energy density and equation of state

 \bigcirc

Conclusion

 \bigcirc

 \bigcirc

Within the space of the single-field models $\mathcal{I}_{ ext{mod}} \equiv \{\mathcal{M}_i\}$

Posterior probability of the running $\alpha_{s} \simeq -\epsilon_{2*} \left(2\epsilon_{1*} + \epsilon_{3*} \right)$

$$P(\alpha_{s}|\boldsymbol{D}, \mathcal{I}_{mod}) = \sum_{i} P(\alpha_{s}|\boldsymbol{D}, \mathcal{M}_{i}) P(\mathcal{M}_{i}|\boldsymbol{D})$$

Qualitative Inflation Quantitative inflation Bayesian inference Predictions in model space & Running of the spectral index & Model space vs slow-roll space @Reheating energy density and equation of state Conclusion	•	Non-trivial pred The sign of α_s

- Non-trivial prediction coming from both theoretical prior + data
- The sign of $\alpha_{\rm S}$ remains undetermined otherwise

Qualitative Inflation

Quantitative inflation

Bayesian inference

Predictions in model space

Running of the spectral index
Model space vs slow-roll

space

Conclusion

Reheating energy density and equation of state

 \bigcirc

Non-trivial prediction coming from both theoretical prior + data

- The sign of $\alpha_{
 m s}$ remains undetermined otherwise
 - Posterior by assuming "just slow-roll" (no model) + data

Qualitative Inflation

Quantitative inflation

Bayesian inference

Predictions in model space

Running of the spectral index
Model space vs slow-roll

space

Reheating energy density and equation of state

Conclusion

 \bigcirc

Non-trivial prediction coming from both theoretical prior + data

- The sign of $\alpha_{
 m s}$ remains undetermined otherwise
 - Model space prior (no data input)

Qualitative Inflation

Quantitative inflation

Bayesian inference

Predictions in model space
Running of the spectral
index

✤ Model space vs slow-roll space

 \bigcirc

Reheating energy density and equation of state

Conclusion

Non-trivial prediction coming from both theoretical prior + data

- The sign of $lpha_{
 m s}$ remains undetermined otherwise
- The field evolution in single-field models creates a correlation between the sign of $n_{\rm s} 1$ and the sign of the running $\alpha_{\rm s}!$

← Models with $n_{\rm S} \lesssim 1$ have all an accelerated Hubble radius in the observable window $\implies \alpha_{\rm S} < 0$

Reheating energy density and equation of state

Posterior probability for $(\ln \rho_{\rm reh}, \overline{w}_{\rm reh})$

$$P(\ln \rho_{\rm reh}, \overline{w}_{\rm reh} | \boldsymbol{D}, \mathcal{I}_{\rm mod}) = \sum_{i} P(\ln \rho_{\rm reh}, \overline{w}_{\rm reh} | \boldsymbol{D}, \mathcal{M}_{i}) P(\mathcal{M}_{i} | \boldsymbol{D})$$

Qualitative Inflation

Quantitative inflation $^{\circ}$

Bayesian inference

Predictions in model space

Running of the spectral index

Model space vs slow-roll space

Reheating energy density and equation of state

Conclusion

0

Reheating energy density and equation of state

Posterior probability for $(\ln
ho_{
m reh}, \overline{w}_{
m reh})$

$$P(\ln \rho_{\rm reh}, \overline{w}_{\rm reh} | \boldsymbol{D}, \mathcal{I}_{\rm mod}) = \sum_{i} P(\ln \rho_{\rm reh}, \overline{w}_{\rm reh} | \boldsymbol{D}, \mathcal{M}_{i}) P(\mathcal{M}_{i} | \boldsymbol{D})$$

Quantitative inflation

Bayesian inference

Predictions in model space

Running of the spectral index

Model space vs slow-roll space

Reheating energy density and equation of state

Conclusion

0

Reheating energy density and equation of state

Posterior probability for $(\ln
ho_{\rm reh}, \overline{w}_{\rm reh})$

Qualitative Inflation

Quantitative inflation

Predictions in model spaceRunning of the spectral

♦ Model space vs slow-roll

Bayesian inference

Reheating energy

density and equation of

index

space

state

Ο

Conclusion

$$P(\ln \rho_{\rm reh}, \overline{w}_{\rm reh} | \boldsymbol{D}, \mathcal{I}_{\rm mod}) = \sum_{i} P(\ln \rho_{\rm reh}, \overline{w}_{\rm reh} | \boldsymbol{D}, \mathcal{M}_{i}) P(\mathcal{M}_{i} | \boldsymbol{D})$$

Conclusion

Qualitative Inflation Quantitative inflation

Bayesian inference

Predictions in model space

Conclusion

 \bigcirc

 \bigcirc

Bayesian data analysis in model space \mathcal{I}_{mod}

- Enforces model consistency + new insights on the reheating era
- Predicts: $\langle \alpha_{\rm s} \rangle = -7.3 \times 10^{-4}$
- Data constraining power is winning against theoretical proposals

Looking forward to the Euclid, LSS & CMB-S4 data!