BREAKING THE "DISTANCE DUALITY RELATION'' TO EXPLAIN THE HUBBLE TENSION

Elsa Teixeira <u>elsa.teixeira@umontpellier.fr</u>

Théorie, Univers et Gravitation – TUG LAPTh, Annecy-le-Vieux

Based on work with: William Giarè, Natalie Hogg, and Vivian Poulin

LABORATOIRE UNIVERS ET PARTICULES DE MONTPELLIER • UNIVERSITÉ DE MONTPELLIER • CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Illustrations: Inês Viegas Oliveira (ivoliveira.com)

The "Hubble Tension"

Unreconcilable values for H_0 from the CMB and from direct local distance ladder measurements

- 4.4σ tension between Planck 2018 and SH₀ES:
 - CMB (Planck): $H_0 = 67.27 \pm 0.60 \text{ km/s/Mpc}$
 - SNe (R22): $H_0 = 73.04 \pm 1.04 \text{ km/s/Mpc}$
- \odot The CMB data assumes the Λ CDM model
- DESI BAO (+BBN+CMB): $H_0 = 68.52 \pm 0.62$ km/s/ **Mpc** [DESI Collaboration 2024]
- Compilation of early vs late time data that disagree
- \bullet But how do we measure H₀ in each case?

The "Hubble Tension"

[Aghanim et al.: Astron.Astrophys. 641 (2020) A6]

The "Hubble Tension"

- Infer H₀ from the cosmological distance ladder
- Based on local distance measurements and astrophysical observables/calibrations

[Aghanim et al.: Astron.Astrophys. 641 (2020) A6]

The "Hubble Tension"

- Infer H₀ from the cosmological distance ladder
- Based on local distance measurements and astrophysical observables/calibrations

D_A from BAO

D_A from BAO

D_A from BAO

Elsa Teixeira · LUPM (CNRS / U. Montpellier) TUG • LAPTh, Annecy • 07/11/2024

D_A from BAO

 $\Delta \theta_1$

 $\Delta \theta_2$

Standard ruler Δx

Angular Diameter Distance

Elsa Teixeira · LUPM (CNRS / U. Montpellier) TUG • LAPTh, Annecy • 07/11/2024

D_A from BAO

 $\Delta \theta_1$

 $\Delta \theta_2$

Standard ruler Δx

Angular Diameter Distance

D_L from SN1a

Luminosity Distance

 F_1

Standard candle L

Elsa Teixeira · LUPM (CNRS / U. Montpellier) **TUG · LAPTh, Annecy · 07/11/2024**

D_A from BAO

 $\Delta \theta_1$

 $\Delta \theta_2$

Standard ruler Δx

Angular Diameter Distance

D_L from SN1a

Luminosity Distance

Standard candle L

 F_1

 F_2

Elsa Teixeira · LUPM (CNRS / U. Montpellier) **TUG · LAPTh, Annecy · 07/11/2024**

D_A from BAO

 $\Delta \theta_1$

 $\Delta \theta_2$

Standard ruler Δx

Angular Diameter Distance

 F_3

 F_2

D_L from SN1a

Luminosity Distance

Standard candle L

 F_1

 F_3

 F_2

Distance Duality Relation (1933)

D_L from SN1a

Luminosity Distance

Standard candle L

 F_1

Distance Duality Relation (DDR)

D_A from BAO

[I. M. H. Etherington (1933)]

D_L from SN1a

[The Pantheon+ Analysis 2022, arxiv:2202.04077]

[[]DESI Collaboration 2024, arxiv:2404.03002]

Hubble Tension or Distance Tension?

 $\Delta 5 \log_{10} D_L(z)$

0.0

-0.2

-0.4 -10^{-2}

From *Planck*: $r_s \sim 147$ Mpc:

[Aghanim et al.: Astron.Astrophys. 641 (2020) A6]

From SHOES: $M_b \sim -19.25$ [Riess et. al: Astrophys. J. Lett. 934 (2022) 1 L7]

Ζ

[Poulin et al.: arXiv: 2407.18292]

[Camarena et al.: arXiv: 2101.08641] [Efstathiou: arXiv: 2103.08723] [Raveri: arXiv: 2309.06795] [Tutusaus et al.: arXiv: 2311.16862]

Hubble Tension or Distance Tension?

- Bring the data sets together:
 - Change calibrators, e.g. change r_s (constant overall shift)
- [Poulin et al.: arXiv: 2407.18292]
- [Camarena et al.: arXiv: 2101.08641] [Efstathiou: arXiv: 2103.08723] [Raveri: arXiv: 2309.06795] [Tutusaus et al.: arXiv: 2311.16862]

- (possible redshift dependance)

But how?

Reconciling the cosmological distances between DESI BAO and Pantheon+SN

- DDR holds for metric theories of gravity assuming photon number conservation
- Violation in e.g. models in which photons interact with BSM particles or astrophysical absorption/opacity
- First approximation: look at effect of breaking DDR for distances in SN and BAO only
- If $\eta(z)$ is just a constant then we are probably dealing with calibration issues [Poulin et al.: arXiv: 2407.18292]
- If there is evidence for more than 1 dof and/or redshift dependence then study possible mechanisms and the physical implications in the whole expansion history

Breaking the DDR

Reconciling the cosmological distances between DESI BAO and Pantheon+SN

- Apply gaussian priors to keep consistency with calibrators: preserve the CMB under ACDM and SH0ES
- The SN high value of H₀ spoils the expansion history and CMB - need early time physics to restore Λ CDM
- Assume BAO distances are correct and give the right cosmology (keep D_A from BAO and change D_L from SN)
- \bullet Having a lower H₀ will ensure that we live in ΛCDM
- Then need to bring H_0 from SN down from ~73 to ~68
- Can the DDR breaking reconcile the SN distances for ΛCDM in agreement with CMB?

Combine the data

Redshift z

ncil ssion

Constant DDR

Constant DDR

 $\Delta 5 \log_{10} D_L(Z)$

- $\hfill {f O}$ Reconcile with low H_0 Universe from CMB
- $\ensuremath{{}_{\text{\tiny C}}}$ Compatible with larger $\Omega_{\text{\tiny m}}$ to preserve $\omega_{\text{\tiny m}}$
- Bestfit of DDR shift: $\alpha_0 = -0.069 \pm 0.014$
- Consistent with same shift in r_s and M from SHOES ($r_s^{\text{CMB}} = 147.09 \pm 0.26$ to $r_s^{\text{SHOES}} = 136.9 \pm 2.1$)

ncil ssion

Linear DDR

Redshift z

Linear DDR

- The z-dependence is not enough to lower H₀ because of the low redshift SN
- ${\scriptstyle \bigodot}$ Need smaller Ω_m to preserve ω_m
- \odot Best-fit of DDR violation $\alpha_1 = -0.041 \pm 0.011$
- Compromise of M between SH0ES and CMB

ncil ssion

Linear DDR

Redshift z

Linear DDR

- The constant dof can reconcile distances at all z and yield a lower H₀ Universe
- Similar constant shift: $\alpha_0 = -0.056 \pm 0.017$
- Plus z-dependant shift: $\alpha_1 = -0.019 \pm 0.013$
- Consistent with M from SH0ES

ncil ssion

Exponent DDR

Redshift z

Exponent DDR

- The z-dependence is not enough to lower H₀ because of the lower redshift SN
- $\ensuremath{{}_{\text{\tiny M}}}$ Need smaller $\Omega_{\text{\tiny m}}$ to preserve $\omega_{\text{\tiny m}}$
- Bestfit of z exponent: $\alpha_0 = -0.064 \pm 0.016$
- Compromise of M between SH0ES and CMB

ncil ssion

erc

What this tells us...

- All parametrisations give significantly better fits than ΛCDM despite the additional 1 or 2 dof
- The constant $\eta(z)$ gives the better fit with only 1 dof for the parametrisations considered
- \odot Need the constant shift to restore the low H₀ Universe for the low redshift
- Parametric analysis not enough to exclude zdependence - possible additional effects in the common z range
- <u>Physical breaking of the DDR</u>: how does it reflect in other observables? Non-conservation of photons by astrophysical effects or exotic physics?

Conclusions

- ACDM model facing challenges with increasing precision in cosmology
- Incompatibility of early- and late-Universe measurements
- Recast the H₀ tension as a tension in distances
- Apparent preference for a constant shift in the calibration of the SN and BAO distances
- All parametrisations give significantly better fits than ΛCDM despite the additional 1 or 2 dof
- Full reconstruction instead of parametrisations
- Check compatibility with CMB data (direct measurements) of T at different z)
- Understand physical mechanisms and/or systematics that can explain the DDR break

Thank you for your attention!

Illustration Credits: Inês Viegas Oliveira (ivoliveira.com)

Constant DDR

- $_{\ensuremath{ullet}}$ We've tested breaking the DDR in the D_A of BAO
- We see that this is inconsistent and ineffective because:
- 1. Enforces higher values of H_0 for the same matter density which will be inconsistent e.g. with CMB
- 2. Modifies only the transverse BAO making it hard to accomodate the same cosmology to each data set resulting in a bad fit
- 3. Easier to justify/search for systematics in D_{L} of SN

ncil ssion

Double Exp. DDR

Redshift z

Bayesian Parameter Inference

$$p(\theta \mid d) = \frac{p(d \mid \theta) p(\theta)}{p(d)} \Leftrightarrow \text{Posterior} = \frac{\text{likeliho}}{\text{evi}}$$

Modified version of Einstein-Boltzmann code CLASS interfaced with the MontePython sampler [Blas, Lesgourgues, Tram: JCAP 1107 (2011) 034; Audren et al.: JCAP 1302 (2013) 001; Brinckmann, Lesgourgues: Phys. Dark Univ. 24 (2019) 100260]

Employ an MCMC sampling method and analyse results in GetDist [Lewis: arXiv:2008.11284]

Given a data set d, we want to sample posteriors on the model parameters θ that maximise the likelihood

 $ood \times prior$

idence

Model Comparison

In summary, the Bayes factor strikes a balance between fit quality and additional model complexity. It rewards highly predictive models whilst penalising models with unnecessary extra parameters. This principle is often referred to as Occam's razor.

$$B_{N;M} = \frac{\int \mathrm{d}\theta_N p(d|\theta_N; N)}{\int \mathrm{d}\theta_M p(d|\theta_M; M)} \frac{(\Delta \theta_1^M ... \Delta \theta_{n_M}^M)}{(\Delta \theta_1^N ... \Delta \theta_{n_N}^N)}$$

$ \ln B_{N;M} $	Fractional Odds	Model's Probability	Evidence
< 1.0	< 3:1	< 0.750	Inconclusive
1.0 to 2.5	< 12 : 1	0.923	Weak to Moderate
2.5 to 5.0	< 150:1	0.993	Moderate to Strong
> 5.0	> 150:1	> 0.993	Very strong or decisive

Table 4.1: Jeffreys scale to evaluate the strength of the evidence of a model N over another model M, in terms of the absolute value of $\ln B_{N;M}$, with a positive (negative) value indicating support for model N (M).

	$\Delta B = -8$
$\left(\right)$	$\Delta B = -3.2$
	$\Delta B = -5.9$
	$\Delta B = -4.8$
	$\Delta B = -5.1$

PARALLAX LIMIT

NEW

Parallax of Cepheids in the Milky Way

Earth, Dècembér

> 0– 10 K ur

٠

10 Thousand - 100 Million Light-years

Galaxies hosting Cepheids and Type la supernovae Distant galaxies in the expanding universe hosting Type la supernovae

Light redshifted (stretched) by expansion of space

100 Million – 1 Billion Light-years

[CREDIT: NASA/ESA/HUBBLE]

WHAT EUCLID WILL MEASURE: BARYONIC ACOUSTIC OSCILLATIONS

When the early Universe first expanded, the formation of protons and neutrons created sound waves (bubbles) that rippled through the hot particle-radiation soup. About 300 000 years after the Big Bang, when the Universe had cooled down enough for atoms to form and light to travel freely, these waves froze in place. Over time, slightly more galaxies formed in clusters along the frozen ripples. The ripples stretched as the Universe expanded, increasing the distance between galaxies. Euclid will study the distribution of galaxies over immense distances, teasing out these ripple patterns and determining their size. This enables us to measure accurately the accelerated expansion of the Universe and teaches us about the nature of dark energy and dark matter.

Source: ESA and the Planck Collaboration / Gabriela Secara / Perimeter Institute

Artist's impression of the pattern of baryonic acoustic oscillations imprinted on the large-scale distribution of galaxies (exaggerated)

