Dark Matter Halo Dynamics in 2D Vlasov simulations A self-similar approach

Abineet Parichha 2nd year Doctoral Student Dr. Stephane Colombi Supervisor

Theorie, Univers et Gravitation 6th November, 2024

INSTITUT D'ASTROPHYSIQUE DE PARIS

Unité mixte de recherche 7095

CNRS - Sorbonne Université

1. Introduction

Context Discrepancies

2. Methodology

Numerical simulations Theoretical model

3. Data analysis

Particle Trajectories Mass and Density profiles

4. Conclusions

What do we already know about it?

Numerical Model

Analytical Models

Lagrangian Perturbation Theory	Post-collapse Pert. Theory	Self-similarity
Zeldovich 1970 →	Taruya, Colombi 2017	Fillmore & Goldreich 1984 Bertschinger 1985
$\vec{x}(\vec{q},t) = \vec{q} + \Psi(\vec{q},t)$ $\vec{\Psi} = \Sigma_{n=1}^{\infty} \vec{\Psi}^{n}$	$\vec{x} = \sum_{n,m} \left. \partial_{\vec{q}^{n},t^{m}} \vec{x}^{LPT} \right _{\vec{q}_{0},t_{0}} \\ (\vec{q} - \vec{q}_{0})^{n} (t - t_{0})^{m}$	$f(\lambda_1 \vec{r}, \lambda_2 t) = \lambda_3 f(\vec{r}, t)$
• Valid till $\overrightarrow{\Psi}$ remains single valued, small	• Valid around the neighborhood of \vec{q}_0 upto a few shell-crossings	 All halo particles trace the same trajectory if scaled characteristically
		 Valid as long as there are no other scales

A 2D monolithic CDM Halo

- Initial singlestream
 flow → shell crossing at
 snap 9 → multistream
- Appearance of caustics
 - Extrema r q curve
 - Folds in phase-space
 - Spikes density profile
 - Splashback radius
- Self-similarity is very well evident from the phase-space spirals

2D SIN VLASOV simulation N = 2048^2, A = (18, 18), Step = 1, Angle = 0 °

Where are the gaps in our understanding?

Fillmore 1984, Bertschinger 1985 (purely radial dynamics): $\rho \propto r^{-2.25}$ CDM halos seeded by gaussian fields \rightarrow elliptical collapses, transverse motion. Despite phase-space being evidently self-similar, it is not reflected in the density profile!

Goals of my project:

- 1. What is the extent of self-similarity in halo dynamics?
- 2. Where does it deviate and what causes it?
- 3. What can we infer about CDM halos in actual 3D cosmologies?

Presentation Overview

1. Introduction

Context Discrepancies

2. Methodology

Numerical simulations Theoretical model

3. Data analysis Particle Trajectories Mass and Density profiles

4. Conclusions

Vlasov Simulations in 2D

- Numerically, CDM is modelled as a fluid:
 - Non-relativistic
 - Collisionless

- Negligible velocity dispersion
- Self-gravitating
- Its phase space distribution f obeys the Vlasov-Poisson equations: $\frac{\partial f}{\partial t} + \vec{u} \cdot \nabla_{\vec{r}} f - \nabla_{\vec{r}} \phi \cdot \nabla_{\vec{u}} f = 0 \quad ; \quad \Delta_{\vec{r}} \phi = 4\pi G\rho$
- ColDICE ^[Sousbie, Colombi 2016] f is a 2D(or 3D) sheet in 4D(or 6D) in phasespace, vertices are evolved as per lagrangian equations of motion: $f(\vec{r}, \vec{u}, t_i) = \rho_i(\vec{r})\delta_D(\vec{u} - \vec{u}_i)$
- We study 3 highly symmetric cases in $\Omega_{\rm M} = 1$ universe, where the initial displacement field is composed of crossed sin-waves: $\Psi_{\rm i} \sim \epsilon_i \sin\left(\frac{2\pi}{L}q_i\right)$

Designation	$\epsilon_{2D} = \epsilon_y/\epsilon_x$	$a_{SC,x}$	a _{SC,y}
Quasi-1D (Q1D)	1/6	0.053	0.14
Anisotropy (ANI)	2/3	0.045	0.055
Symmetric (SYM)	1	0.041	0.041

Fillmore & Goldreich's self-similarity

- Purely radial motion of spherical shells around an initial perturbation $\delta \equiv \delta M_i(r)/M_i(r) = (M_i(r)/M_0)^{-\epsilon}$ in matter dominated era. Model parameters $\begin{cases} \epsilon : \text{mass-accretion rate} \\ M_0 : \text{scale of initial perturbation} \to \text{turnaround} \end{cases}$
- For a shell initially enclosing mass M_i , spherical collapse model:

$$\frac{r_{ta}}{r_i} = C_r \left(\frac{M_i}{M_0}\right)^{\epsilon} \qquad \frac{t_{ta}}{t_i} = C_t^{3/2} \left(\frac{M_i}{M_0}\right)^{3\epsilon/2}; \quad C_r, C_t = 0.74, 1.39$$

• Position, time and mass are rescaled w.r.t turnaround scales:

$$\lambda = r/r_{ta}$$
 $\tau = t/t_{ta}$ $\mathcal{M}(r/r_{ta}) = M(r,t)/M_{ta}(t)$

• Newtonian equations of gravity in terms of rescaled variables:

$$\frac{d^{2}\lambda}{d\tau^{2}} = \frac{\lambda}{9\tau^{2}} - \frac{1}{3} \left(\frac{C_{r}}{C_{t}}\right)^{2} \frac{\tau^{\frac{2}{3}\left(\frac{1}{\epsilon}-1\right)}}{\lambda} \mathcal{M}\left(\frac{\lambda}{\Lambda}\right)$$
$$\mathcal{M}\left(\frac{\lambda}{\Lambda}\right) = \frac{2}{3\epsilon} \int_{1}^{\infty} \frac{d\tau'}{\tau'^{1+\frac{2}{3\epsilon}}} H\left[\frac{\lambda}{\Lambda}(\tau) - \frac{\lambda}{\Lambda}(\tau')\right]; \quad \Lambda(\tau) = \tau^{\frac{2}{3}\left(1+\frac{2}{3\epsilon}\right)}$$

• At turnaround $\tau = 1$, $\lambda = 1$ and $d\lambda/d\tau = 0 \rightarrow No$ dependence on t_i , r_i , M_i

Presentation Overview

1. Introduction

Context Discrepancies

2. Methodology

Numerical simulations Theoretical model

3. Data analysis

Particle Trajectories Mass and Density profiles

4. Conclusions

Particle Trajectories

The variable $\tau = C_t^{-3/2} \left(\frac{t}{t_i}\right) \left(\frac{M_0}{M_i}\right)^{3/2}$ can be interpreted in two ways:

- 1. If M_i is fixed \rightarrow proxy for time. Limited no. of snapshots \sim 50-60
- 2. If t is fixed \rightarrow proxy for shells. Grid resolution = 2048

Q1D
$$(a_{SC,y} = 0.14)$$

ANI $(a_{SC,y} = 0.055)$

SYM
$$(a_{SC,y} = 0.041)$$

Particle Trajectories

Reasons behind the deviations:

- Shell crossing → relaxation → power law density profile → convergence to self-similar behavior. So, the build up of prompt cusp during violent relaxation cannot be explained by self-similar dynamics.
- The period of relaxation for a particle is roughly 1-2 oscillations → observed in all the 3 cases.
 Additionally, erroneous forces due to halo image arising from periodic boundaries prevent infall of particles close to the boundaries q ≥ 0.3
- The trajectories deviate again eventually → no. of oscillations we can follow using the fits: Q1D < ANI < SYM. Thus, extent of agreement correlated with the degree of anisotropy and transverse motion in the simulations: Q1D > ANI > SYM.

Typically, dynamics in halo exterior \rightarrow radial and interior \rightarrow transverse. Once the amplitude of oscillations decrease down to the transverse motion dominated interior, we see deviations from FG model \rightarrow purely radial orbits.

Mass and Density profiles

Presentation Overview

1. Introduction

Context Discrepancies

2. Methodology

Numerical simulations Theoretical model

3. Data analysis

Particle Trajectories Mass and Density profiles

4. Conclusions

Did we meet our goals?

Extent of self-similarity?

With a narrow range of (M_0, ϵ) , we could track ($\leq 10\%$ error) 30-60% halo particles for $\geq 3-4$ oscillations \rightarrow Self-similarity is quite powerful!

Deviations?

Initial deviation \rightarrow violent relaxation, build-up of a power-law profile. Particles typically take 1-2 oscillations to relax.

Periodic boundaries slow down the infall of particles closer to the boundaries Transverse motion in halo interior \rightarrow deviation Mass deficit in simulations \rightarrow dip in mass an

Implications on 3D CDM halos seed $\frac{n}{m_{e}}$

- 1. The dynamics during relaxation and procannot be explained by self-similarity \rightarrow
- 2. CDM halos seeded from gaussian IC \rightarrow C $\downarrow_{\Gamma}^{a=1}$ model by including elliptical collapse an 10^{-3}
- 3. Even CDM halos have limited mass to accrete \rightarrow self-similar infall $\rho \propto r^{-2.25}$ which dips to $\rho \propto r^{-3}$ in halo exterior \rightarrow NFW profile!

Acknowledgement

Thesis supervisor : Stephane Colombi (IAP, France)

Collaborators : Shohei Saga, Atsushi Taruya (YITP, Japan)

References

- I. J. A. Fillmore, P. Goldreich, "Self-similar gravitational collapse in an expanding universe", *Astrophysical Journal*, vol. 281, p. 1-8, June 1, 1984
- II. T. Sousbie, S. Colombi, "ColDICE: A parallel Vlasov–Poisson solver using moving adaptive simplicial tessellation", *Journal of Computational Physics*, vol. 321, p. 644-697, September 15, 2016

"As our island of knowledge grows, so does the shore of our ignorance..." - J. A. Wheeler

THANK YOU!

Why do we study dark matter dynamics?

1. Large Scale Structure

Dark matter ~ 84 % of the total mass of the Universe $^{[Planck\ 2018]}$. Structures $\gtrsim 10^2\ h^{-1}$ Mpc \rightarrow clustering of dark matter

2. Modelling Halos ← My PhD

DM Halos are the basic units of cosmological structures. Particle properties(mass, cross-section) \rightarrow dynamics \rightarrow halo structure

3. Modelling observables:

Annihilation signal of WIMPs $[Slatyer 2016] \rightarrow indirect DM detection!$

Transverse motion and Anisotropy

Parameter distribution

500

400

Residual 00%

200

100

0.10

0.15

0.20

0.25

 $-\epsilon = 0.45$

 $- \epsilon = 0.475$

 $\varepsilon = 0.5$ $\varepsilon = 0.525$

 $\epsilon = 0.55$

0.30

- From the residues, the best-fit ε: Q1D (0.75-0.85) > ANI (0.65-0.75) > SYM (0.45-0.55)
 Slower infall along y-axis → oscillation freq ↓
- Even within a simulation, the best-fit *e* ↑ with time Deficit of infalling mass → oscillation freq ↓
- Theoretically, one (M_0, ϵ) per halo. But, our simulations are not exact depictions \rightarrow expect a dist. for (M_0, ϵ) Spread in the best-fit params \rightarrow 10-20% relative spread in initial $\delta = (M_i(r)/M_0)^{-\epsilon}$ assumed in theory.

