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What do we already know about it?

Init. cond. 
End of 

Inflation

Violent 
relaxation

Shell 
crossing

Cuspy profile
𝜌 ∝ 𝑟−1.5

Universal 
NFW Profile

Accretion 
& Mergers

Turn-
around

Single stream flow Multi stream flow

Hubble Flow

Zeldovich 1970

Ԧ𝑥 Ԧ𝑞, 𝑡 = Ԧ𝑞 + Ψ Ԧ𝑞, 𝑡

Ψ = Σ𝑛=1
∞ Ψ𝑛

• Valid till Ψ remains single 
valued, small

Taruya, Colombi 2017

Ԧ𝑥 = Σ𝑛,𝑚 𝜕𝑞𝑛,𝑡𝑚 Ԧ𝑥𝐿𝑃𝑇 ቚ
𝑞0,𝑡0

Ԧ𝑞 − Ԧ𝑞0
𝑛 𝑡 − 𝑡0

𝑚

• Valid around the 
neighborhood of Ԧ𝑞0 upto 
a few shell-crossings

Lagrangian Perturbation Theory Post-collapse Pert. Theory Self-similarity

Fillmore & Goldreich 1984
Bertschinger 1985

𝑓 𝜆1 Ԧ𝑟, 𝜆2𝑡 = 𝜆3𝑓 Ԧ𝑟, 𝑡

• All halo particles trace 
the same trajectory if 
scaled characteristically

• Valid as long as there 
are no other scales

𝑡 →

Numerical Model

Analytical Models



A 2D monolithic
CDM Halo

• Initial singlestream
flow → shell crossing at 
snap 9 → multistream

• Appearance of caustics

• Extrema 𝑟 − 𝑞 curve

• Folds in phase-space

• Spikes density profile

• Splashback radius

• Self-similarity is very 
well evident from the 
phase-space spirals
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Where are the gaps in our understanding?

Numerical Simulations

Primordial CDM halos: 𝜌 ∝ 𝑟−1.5 [Delos 2022]

Accretion, mergers → universal NFW profile 
[Navarro 1997]: 𝜌 ∝ 𝑟−1 center, 𝜌 ∝ 𝑟−3 fall-off.

Theory

Fillmore 1984, Bertschinger 1985 (purely radial dynamics): 𝜌 ∝ 𝑟−2.25

CDM halos seeded by gaussian fields → elliptical collapses, transverse motion.

Despite phase-space being evidently self-similar, it is not reflected in the 
density profile!

Goals of my project:

1. What is the extent of self-similarity in halo dynamics?
2. Where does it deviate and what causes it?
3. What can we infer about CDM halos in actual 3D cosmologies?
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Vlasov Simulations in 2D

• Numerically, CDM is modelled as a fluid:

• Its phase space distribution 𝑓 obeys the Vlasov-Poisson equations:
𝜕𝑓

𝜕𝑡
+ 𝑢 ⋅ ∇ Ԧ𝑟𝑓 − ∇ Ԧ𝑟𝜙 ⋅ ∇𝑢𝑓 = 0 ; Δ Ԧ𝑟𝜙 = 4𝜋𝐺𝜌

• ColDICE [Sousbie, Colombi 2016] - 𝑓 is a 2D(or 3D) sheet in 4D(or 6D) in phase-
space, vertices are evolved as per lagrangian equations of motion:

𝑓 Ԧ𝑟, 𝑢, 𝑡𝑖 = 𝜌𝑖 Ԧ𝑟 𝛿𝐷(𝑢 − 𝑢𝑖)

• We study 3 highly symmetric cases in ΩM = 1 universe, where the initial 

displacement field is composed of crossed sin-waves: Ψi ∼ 𝜖𝑖 sin
2𝜋

𝐿
𝑞𝑖

• Non-relativistic
• Collisionless

• Negligible velocity dispersion
• Self-gravitating

Designation 𝝐𝟐𝑫 = 𝝐𝒚/𝝐𝒙 𝒂𝑺𝑪,𝒙 𝒂𝑺𝑪,𝒚

Quasi-1D (Q1D) 1/6 0.053 0.14

Anisotropy (ANI) 2/3 0.045 0.055

Symmetric (SYM) 1 0.041 0.041
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Fillmore & Goldreich’s self-similarity

• Purely radial motion of spherical shells around an initial perturbation 𝛿 ≡
Τ𝛿𝑀𝑖 𝑟 𝑀𝑖 𝑟 = Τ𝑀𝑖 𝑟 𝑀0

−𝜖 in matter dominated era.
𝜖 : mass-accretion rate
𝑀0 : scale of initial perturbation → turnaround

• For a shell initially enclosing mass 𝑀𝑖, spherical collapse model:

𝑟𝑡𝑎
𝑟𝑖

= 𝐶𝑟
𝑀𝑖

𝑀0

𝜖
𝑡𝑡𝑎
𝑡𝑖

= 𝐶𝑡
Τ3 2 𝑀𝑖

𝑀0

Τ3𝜖 2

; 𝐶𝑟 , 𝐶𝑡 = 0.74, 1.39

• Position, time and mass are rescaled w.r.t turnaround scales:
𝜆 = Τ𝑟 𝑟𝑡𝑎 𝜏 = Τ𝑡 𝑡𝑡𝑎 ℳ Τ𝑟 𝑟𝑡𝑎 = Τ𝑀 𝑟, 𝑡 𝑀𝑡𝑎 𝑡

• Newtonian equations of gravity in terms of rescaled variables:
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• At turnaround 𝜏 = 1,  𝜆 = 1 and Τ𝑑𝜆 𝑑𝜏 = 0 → No dependence on 𝑡𝑖 , 𝑟𝑖 , 𝑀𝑖

Model parameters
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Particle Trajectories

The variable 𝜏 = 𝐶𝑡
− Τ3 2 𝑡

𝑡𝑖

𝑀0

𝑀𝑖

Τ3 2

can be interpreted in two ways:

1. If 𝑀𝑖 is fixed → proxy for time. Limited no. of snapshots ∼ 50-60
2. If 𝑡 is fixed → proxy for shells. Grid resolution = 2048

𝑦
/𝐿

𝑥/𝐿 𝑞/𝐿

𝑟/
𝑎
𝐿



Q1D 𝑎𝑆𝐶,𝑦 = 0.14 ANI 𝑎𝑆𝐶,𝑦 = 0.055 SYM 𝑎𝑆𝐶,𝑦 = 0.041
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Particle Trajectories

Reasons behind the deviations:

• Shell crossing → relaxation → power law density profile → convergence 
to self-similar behavior. So, the build up of prompt cusp during violent 
relaxation cannot be explained by self-similar dynamics.

• The period of relaxation for a particle is roughly 1-2 oscillations →
observed in all the 3 cases.
Additionally, erroneous forces due to halo image arising from periodic 
boundaries prevent infall of particles close to the boundaries 𝑞 ≳ 0.3

• The trajectories deviate again eventually → no. of oscillations we can 
follow using the fits: Q1D < ANI < SYM. Thus, extent of agreement 
correlated with the degree of anisotropy and transverse motion in the 
simulations: Q1D > ANI > SYM.
Typically, dynamics in halo exterior → radial and interior → transverse.
Once the amplitude of oscillations decrease down to the transverse 
motion dominated interior, we see deviations from FG model → purely 
radial orbits.
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Mass and Density profiles
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Extent of self-similarity? 

With a narrow range of 𝑀0, 𝜖 , we could track (≤ 10% error) 30-60% halo 
particles for ≥ 3-4 oscillations → Self-similarity is quite powerful!

Deviations?

Initial deviation → violent relaxation, build-up of a power-law profile. Particles 
typically take 1-2 oscillations to relax.
Periodic boundaries slow down the infall of particles closer to the boundaries.
Transverse motion in halo interior → deviation from FG model (purely radial orbits)
Mass deficit in simulations → dip in mass and density profile in halo exterior

Implications on 3D CDM halos seeded by grfs?

1. The dynamics during relaxation and prompt cusp 𝜌 ∝ 𝑟−1.5 in CDM halos 
cannot be explained by self-similarity → Post-collapse perturbation theory!

2. CDM halos seeded from gaussian IC → Q1D, ANI. Thus, need to generalize FG 
model by including elliptical collapse and transverse motion.

3. Even CDM halos have limited mass to accrete → self-similar infall 𝜌 ∝ 𝑟−2.25

which dips to 𝜌 ∝ 𝑟−3 in halo exterior → NFW profile!

Did we meet our goals?
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“As our island of knowledge grows, so does the 
shore of our ignorance...”

- J. A. Wheeler



1. Large Scale Structure
Dark matter ∼ 84 % of the total mass of the Universe [Planck 2018] . 
Structures ≳ 102 h−1 Mpc → clustering of dark matter

2. Modelling Halos ← My PhD
DM Halos are the basic units of cosmological structures.
Particle properties(mass, cross-section) → dynamics → halo structure

3. Modelling observables:
Annihilation signal of WIMPs [Slatyer 2016] → indirect DM detection! 

Fermi
1 GeV(2)

(0.5)
(0.2)
(0.1)
(0.05)

Why do we study dark matter dynamics?



Transverse motion and Anisotropy



Parameter distribution

• From the residues, the best-fit 𝜖:
Q1D (0.75-0.85) > ANI (0.65-0.75) > SYM (0.45-0.55) 
Slower infall along y-axis → oscillation freq ↓

• Even within a simulation, the best-fit 𝜖 ↑ with time
Deficit of infalling mass → oscillation freq ↓

• Theoretically, one 𝑀0, 𝜖 per halo. But, our simulations 
are not exact depictions → expect a dist. for 𝑀0, 𝜖
Spread in the best-fit params → 10-20% relative spread 
in initial 𝛿 = Τ𝑀𝑖 𝑟 𝑀0

−𝜖 assumed in theory.


