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* Entropy S

* log(S) : Black hole microstates.

How to compute ?
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String theory

* String theory lives in 10 dimensions

* Compactify on a 6d manifold X.
e Often X is a Calabi-Yau threefold. / O
* A theory of extended objects o

* Dp-brane: p + 1 dimensional object
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Type IIA compactified on a Calabi-Yau X

Branes wrapping cycles on X

Donaldson-Thomas (DT)

invariants. 4d N=2 SUGRA

BPS black holes

Generating function
Count # of Black Hole

microstates (entropy). ' h(z) = 2 c, e2Tnt

Modularity properties

Very rigid constraints

Allow to (almost) fix

h(t)
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Tori, lattices and the modular group
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A- cycle

T € H is a modulus of the torus (with 3(7) > 0).

Keeps the torus invariant

b
(a ) € SL(2,Z)  The modular group

c d Preserves the orientation

ar + b
CT +d Modularity ?
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Modular forms

H - C _
f ) holomorphic

al | b ( )k ) .

(0]

Modular forms have a _ TN T
. : flr) = cpe
Fourier expansion:

\ n=ny

((1) D > f@+1)=f@) Modular forms of fixed weight k form a
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Mock modular Modular forms

H
f . :;(C:( ) holomorphic

g(1): Depth (n — 1) mock
modular form of weight 2-k

at + b g(2) k is the weight.
f(CT+d> = (CT+d)k <f( ) jd/c (T—Z)k dz g(T) is the shadow.
They have a completion: f(r,?) = f(r) - j__wo (Tg—(z_z))k dz

Two (higher depth) mock modular forms of fixed weight k
and shadow g are related by a modular form.
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Defining the generating functions

Rank O DT invariants

Spectral flow symmetry.

D6-brane charge p° =0
Y = (O, P, q, CIO) ‘(,u Clo) {

Define rational invariants

)=y —ap/m) I

mly

qOEZ

ﬁp,u (670)

Generating function

hp,u(T) =

ﬁp,ﬂ (qo)e—zm qdoT




Defining the generating functions

Rank O DT invariants

Spectral flow symmetry.

D6-brane charge p° =0 p-1
Yy =(0,p,9,90) ' (H,Clo){

G, €Z Generating function

— 0 ~ —2mi 4oT
Define rational invariants hp,u (T) — Z Qp,[,l, (CIO)e 1o
— 1 - 5 <pamax
00 =Y Sag/m EEE 0,60 / 00=a]

mly
p labels different functions

L is a vector index.




Defining the generating functions

Rank O DT invariants

Spectral flow symmetry.

D6-brane charge p° =0 Modular properties!!
¥ = (0,p,9,490) ‘ (. Go) {

G, €Z Generating function

— 0 ~ —2mi 4oT
Define rational invariants hp,u (T) — Z Qp,[,l, (CIO)e 1o
— 1 - 5 <pamax
00 =Y Sag/m EEE 0,60 / 00=a]

mly
p labels different functions

L is a vector index.




A torus in type IIA ?

Type 1A < > M-theory /S?




A torus in type IIA ?

Type 1A < > M-theory /S?
r (&
Type ”A/X gl > M-theory /X x ST x §1




A torus in type IIA ?

Type 1A < > M-theory /S?
r (&
Type ”A/X gl > M-theory /X x ST x §1

D4-branes /T, X 1




A torus in type IIA ?

Type IIA < > M-theory /S
r (&
Type A 4 o 61 " M-theory /x » 51 x 1

D4-branes /T, x §S1 —— Pointlike (instanton)




D4-branes

A torus in type IIA ?

v

M-theory /S?

A

Type lIA

(&

Type IIA/X % §1 <

/T, x §S1 —— Pointlike (instanton)

v

M-theory /X x St x §1

Instanton Moduli space
corrections (vector multipliet)




A torus in type IIA ?

Type lIA < > M-theory /S?
(S
Type IIA/X 5 g1 > M-theory/X % §1 5 1

- T Instanton Moduli space
D4-branes /T, x §S1 —— Pointlike (instanton) : > p_ .
corrections (vector multipliet)

Donaldson-Thomas

invariants.




A torus in type IIA ?

A
v

Type lIA M-theory /S?

=

Type IIA/X % §1 <

Symmetry under action
of the modular group

Moduli space
(vector multipliet)

Instanton

D4-branes R
corrections

/T, x §S1 —— Pointlike (instanton)

Donaldson-Thomas :
Imposes modular constraints

on hp

invariants.




A torus in type IIA ?

A
v

Type lIA M-theory /S?

=

Type IIA/X % §1 <

Symmetry under action
of the modular group

Moduli space
(vector multipliet)

Instanton

D4-branes R
corrections

/T, x §S1 —— Pointlike (instanton)

Donaldson-Thomas :
Imposes modular constraints

on hp

invariants.




Outline

.  Modularity
[I. DT invariants

lll. Constraining the generating function



Modularity of h,,

For p=1 — hy ,(7) is a VV modular form




Modularity of h,,

For p=1 —
Higher p —

[S.Alexandrov, B.Pioline ‘18]

hy ,(7) is a VV modular form

hy . (7) is a depth (p — 1) VV mock modular
form




Modularity of h,,

Forp=1 NN
Higher p —

[S.Alexandrov, B.Pioline ‘18]

hy ,(7) is a VV modular form

hy . (7) is a depth (p — 1) VV mock modular
form

Completion equation

p

p
hou@D =Y > R @) | | @
i=1

n=1pi+--+pp=p

T, = Im(71)




Modularity of h,,

For p=1 —
Higher p —

[S.Alexandrov, B.Pioline ‘18]

hy ,(7) is a VV modular form

hy . (7) is a depth (p — 1) VV mock modular
form

Completion equation

p

p
hou@D =Y > R @) | | @
i=1

n=1pi+--+pp=p

Let’s look at an
example

T, = Im(71)
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Two-step approach

hy =BS5S + b))

Any solution A b The modular ambiguity

Strategy:

1. Find a solution héan) Can we perform

1forallp?
2. Compute a few DT invariants and fix hg)) step 1 torallp

Challenge: the completion equation for h,, depends on

hz(,(z) for lower charges.

Rpu(t,T) = hy (@) + REIP2 (2,) (P +RO) Y (R + 1) )

Result: Recipe to compute h;, up to hz(o(:) forall p; < p.

(Using indefinite theta series)




Conclusions

e DT invariants of the Calabi-Yau count the number of BPS black hole
microstates.

e Generating functions of these invariants at rank 0, posess remarkable
modular properties. » Mock modular

* We fix these functions, by solving their modular anomaly, up to
computing a finite number of DT invariants.

e Further directions:

 Compute polar terms to fix hz(go)(done forp = 1 for eleven CYs

[S. Alexandrov, S.Feyzbakhsh, A.Klemm, B.Pioline, T.Schimannek ‘23])
* Generalize the construction for b, > 1.
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Disentangling the ambiguity

Ansatz to extract the dependance of the
generating functions on lower rank ambiguities

p n
LD NN i) ] LNe
i=1

) p1+m+pf—\

Anomalous coefficients @ _ 5
9uv J15%

We trade the conditions on

(pi)
i

h,, for conditions on g




The new completion equation

g(pl'""pn) isa VV depth (n — 1) mock

For n charges pq, ..., P, modular form

Completion equation

R_‘_‘!"." Sm)

S$1=p+P2 Sm = Pn

g(.ln.l".z) v al - .g(pn) g(pl pn) Sym z R(Sl Sm)l_[g p]l'l'l p11+1
| X Nni=n

pl! oP )
iy, - i;:n(r)

Goal: find the anomalous coefficients g




Studying n = 2

Example: } n=>2

~(p1p2) _  (P1,p2) (p1,02)
uprpy = Gupniy T Ruppu, (T2)

Indefinite theta series



Definite theta series

ﬁu(r): z e—niQ(k)r

keA+u

A is a d dimensional lattice.
It has quadratic form Q(x) € 2Z
Q is negative definite

¥, (7) is a Vector valued modular
form of weight d /2




Indefinite theta series

9,(7) = z cp(\/sz k) e~ T

keA+u

Ais a d dimensional lattice.
It has quadratic form Q(x) € 2Z
Q is indefinite

Kernel: ensures convergence.

Holomorphic Modular When a vector v; is null then we

|

(Product of) difference of sign (Product of) difference of error can have both!

functions. functions.
Erf( ) — sign(v, - x)
: : - X Vy - X
D) | (sign(vy - x) = sign(v; - 1)) Erf(H ||> Erf(“Z ”> A
1 U2




Studying n = 2

Example: } n=>2

~(p1p2) _  (P1,p2) (p1,02)
uprpy = Gupniy T Ruppu, (T2)

Rﬁpﬁlpﬁg Positive definite theta series

on a 1 dimensional lattice with kernel

Erf(v, - k) —sign(vy - k) Our lattice doesn’t

Choose gﬁpﬁlpﬁz to be an indefinite have null vectors.

theta series with kernel
sign(vy - k) — sign(wy - k ) where

Q(wy) = 0.

Extend the lattice.




Recipe for solution:

Extend to solve.

Black hole microstates N/

h,(7)
Ansatz | 1 Compute few DT invariants

g (1)
Refinement Limitz = 0

g(plﬂ"'rpn)(r, Z)
Lattice extension I Modular derivatives

g(pl,---,pn ) (1,2, {z;})

\ 4

Solve the equation with
indefinite theta series



Vector-Valued(VV) Modular forms

H-C hol hi
Y S (D) olomorphic

b
fi (‘” " ) = (ct+d)* ) My (0) £, (@)

ct+d
Modular forms have a _ n 2wt
Fourier expansion: fu®) = Z Cnpd 1=¢
n=ny

Modular forms of fixed weight k and

My,

k is the weight.
v is the multiplier system.




Jacobi-like Modular forms

___—— Automorphy factor

H - C ,
f holomorphic
T = f(7)
at+b z 2nimc z? k is the weight.
— k
f(cr +d’ ct+ d) =(ct+d)fe i f(r,2) m is the index.

Jacobi-like forms have a
series expansionin z :

f= ) fu@

n>n0

The function f, (7) is a weight (k + ny) modular form.




Modularity recap

Modular form f() Weight k
VV modular form fu(T) Multiplier system M,
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Modularity recap

Modular form f() Weight k
VV modular form fu(T) Multiplier system M,
Mock modular form f(r) & f(z,7) Shadow g(7)

k
n0>0: Cp ~ N2

ng=0= ¢, ~nk1
ng < 0= ¢, ~efv"

Modular forms offer control on the growth of
their Fourier coefficients



