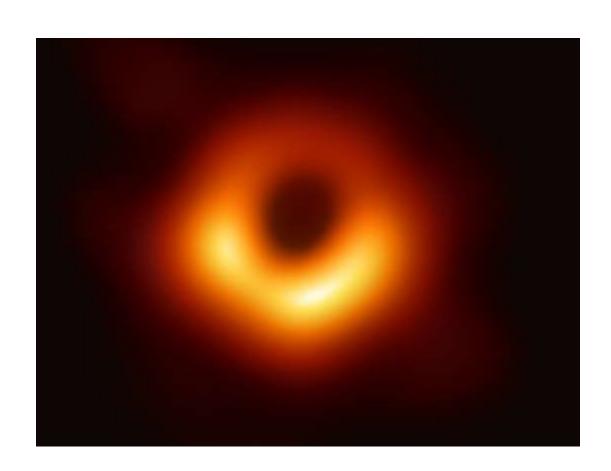
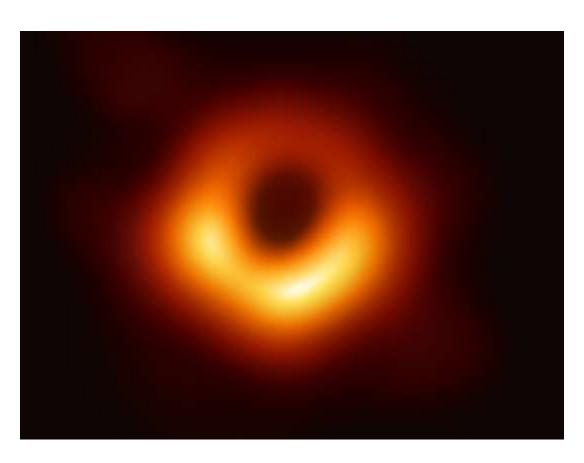
Mock modularity of Calabi-Yau threefolds

Khalil Bendriss
Laboratoire Charles Coulomb, Montpellier

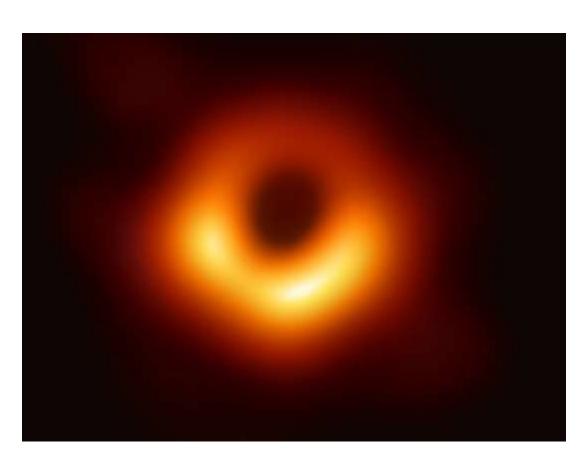
October 2024

Based on joint work with Sergey Alexandrov to appear soon...



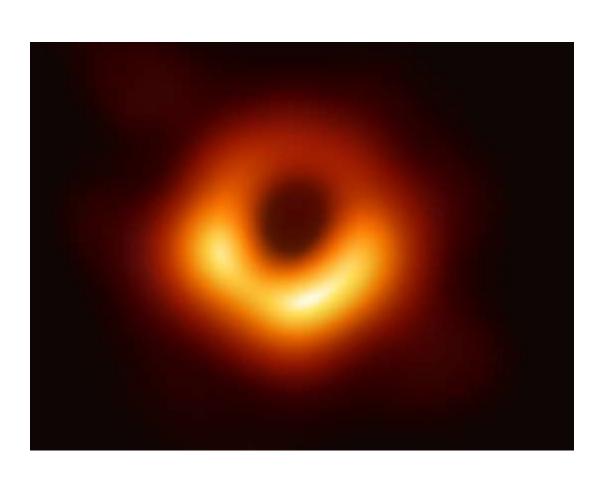


Thermodynamical objects!
 [Bekenstein '72, Hawking '74]



Thermodynamical objects!
 [Bekenstein '72, Hawking '74]

• Entropy *S*



Thermodynamical objects!
 [Bekenstein '72, Hawking '74]

Entropy S

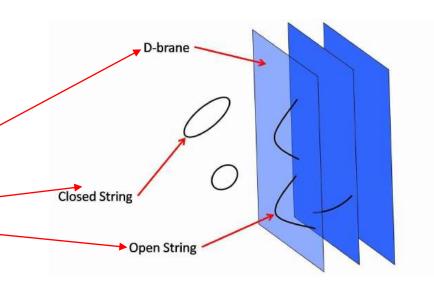
• log(S): Black hole microstates.

String theory

- String theory lives in 10 dimensions
- Compactify on a 6d manifold X.
- Often X is a Calabi-Yau threefold.

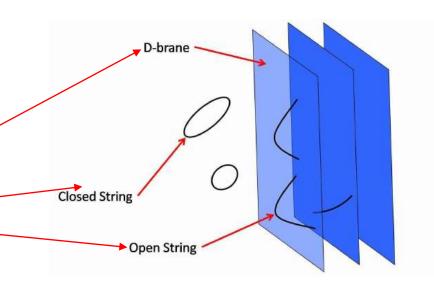
String theory

- String theory lives in 10 dimensions
- Compactify on a 6d manifold X.
- Often X is a Calabi-Yau threefold.
- A theory of extended objects



String theory

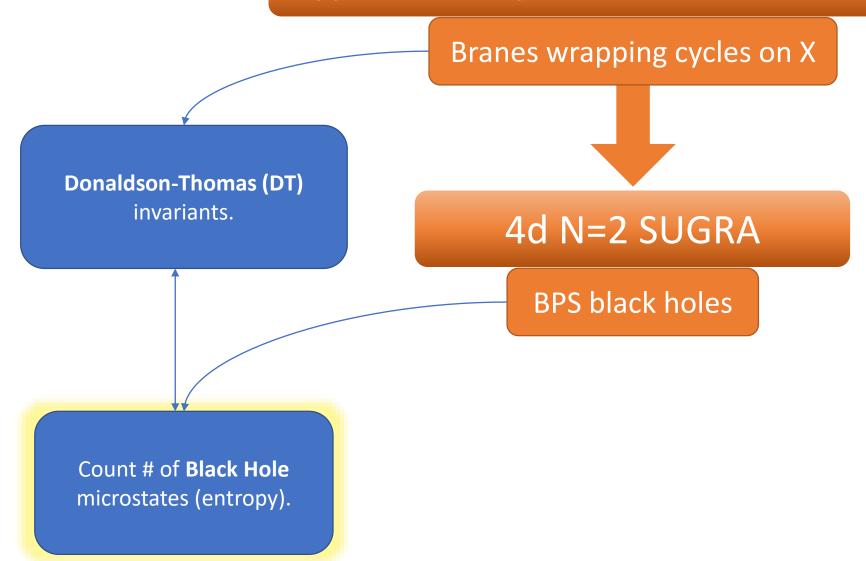
- String theory lives in 10 dimensions
- Compactify on a 6d manifold X.
- Often X is a Calabi-Yau threefold.
- A theory of extended objects
- Dp-brane: p+1 dimensional object

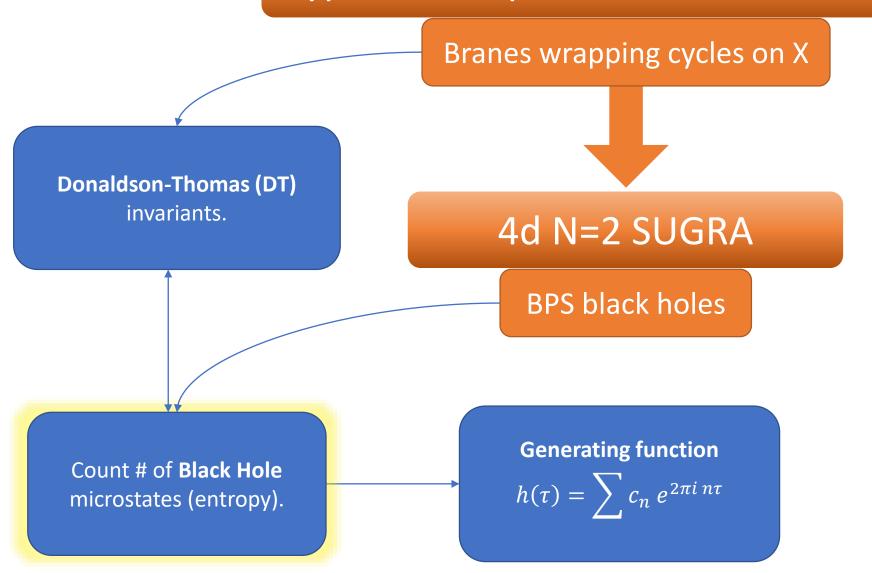


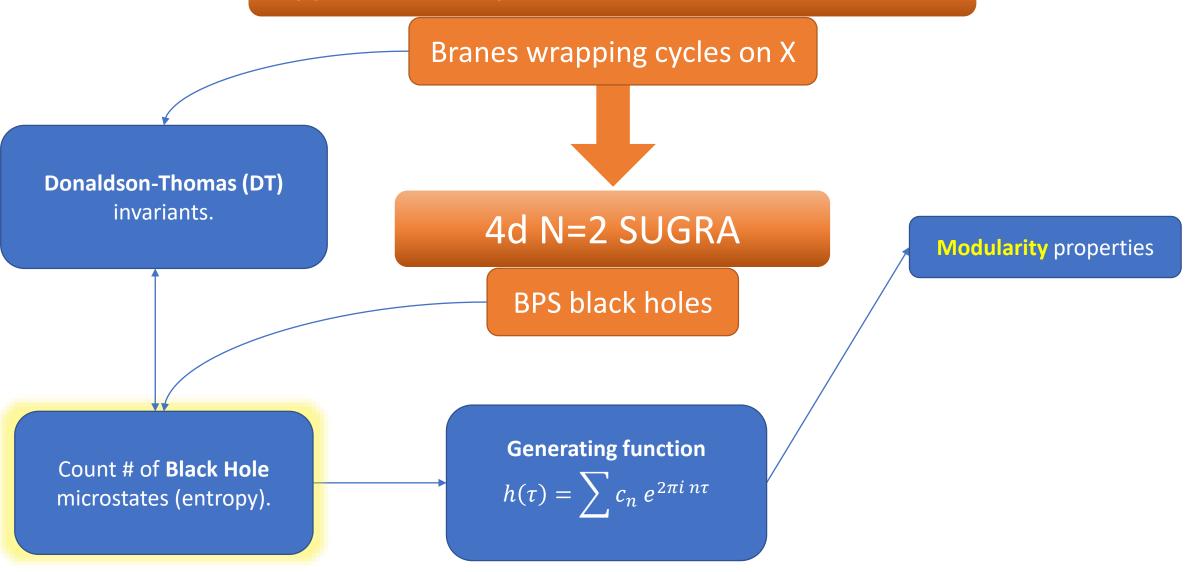
Branes wrapping cycles on X

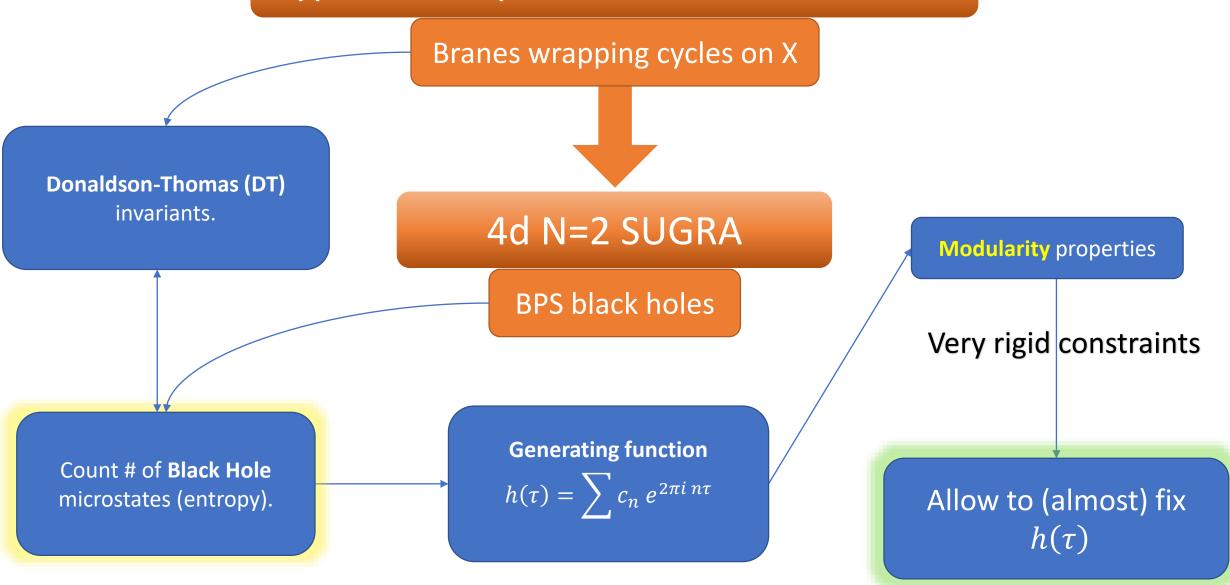
4d N=2 SUGRA

BPS black holes









Outline

I. Modularity

II. DT invariants

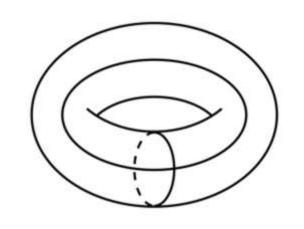
III. Constraining the generating function

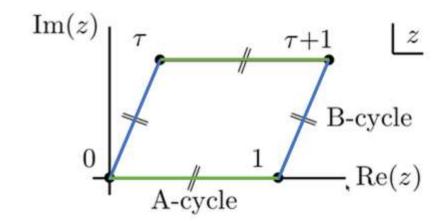
Outline

I. Modularity

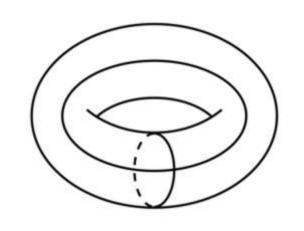
II. DT invariants

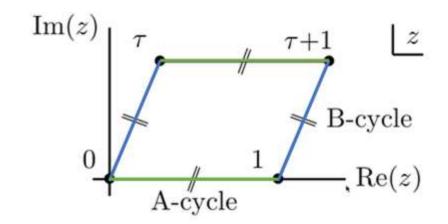
III. Constraining the generating function





 $\tau \in \mathbb{H}$ is a modulus of the torus (with $\Im(\tau) > 0$).

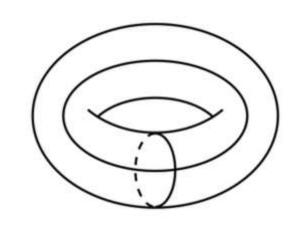


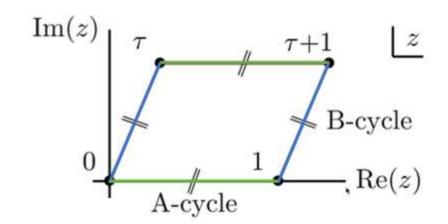


 $\tau \in \mathbb{H}$ is a modulus of the torus (with $\Im(\tau) > 0$).

 $SL(2,\mathbb{Z})$ The modular group

Keeps the torus invariant Preserves the orientation





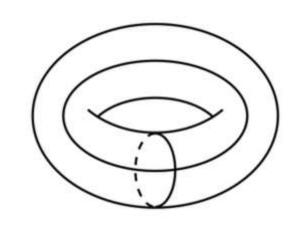
 $\tau \in \mathbb{H}$ is a modulus of the torus (with $\Im(\tau) > 0$).

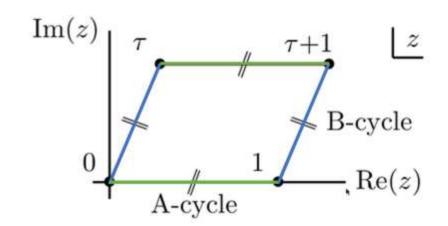
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$$
 The modular group

Keeps the torus invariant

Preserves the orientation

$$\tau \to \frac{a\tau + b}{c\tau + d}$$





 $\tau \in \mathbb{H}$ is a modulus of the torus (with $\Im(\tau) > 0$).

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$$
 The modular group

$$\tau \to \frac{a\tau + b}{c\tau + d}$$

Keeps the torus invariant

Preserves the orientation

Properties	Characterestics
$f : \frac{\mathbb{H} \to \mathbb{C}}{\tau \to f(\tau)} \text{ holomorphic}$	

$f : \frac{1}{2}$	$\mathbb{H} \to \mathbb{C}$ $\tau \to f(\tau) \text{ holomorphic}$
-------------------	--

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau)$$

Properties

k is the **weight**.

Characterestics

morphic

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau)$$

Properties

k is the weight.

Characterestics

Modular forms of fixed weight k form a finite dimensional vector space.

$\tau \to f(\tau)$	ç	$: \frac{\mathbb{H} \to \mathbb{C}}{\tau \to f(\tau)}$	holomorphic
--------------------	---	--	-------------

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau)$$

Properties

Modular forms have a Fourier expansion: $f(\tau) = \sum_{n=0}^{\infty} f(\tau)$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \to f(\tau + 1) = f(\tau)$$

$$f(\tau) = \sum_{n=n_0}^{\infty} c_n e^{2\pi i n \tau}$$

k is the weight.

Characterestics

Modular forms of fixed weight k form a finite dimensional vector space.

Mock modular Modular forms

Properties

Characterestics

$$f: \frac{\mathbb{H} \to \mathbb{C}}{\tau \to f(\tau)}$$
 holomorphic

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k \left(f(\tau) - \int_{-d/c}^{-i\infty} \frac{\overline{g(\bar{z})}}{(\tau-z)^k} \, dz\right)$$

 $g(\tau)$: Modular form of weight 2-k

k is the **weight**. $g(\tau)$ is the **shadow**.

Mock modular Modular forms

Properties

Characterestics

$$f: \frac{\mathbb{H} \to \mathbb{C}}{\tau \to f(\tau)}$$
 holomorphic

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k \left(f(\tau) - \int_{-d/c}^{-i\infty} \frac{\overline{g(\bar{z})}}{(\tau-z)^k} \, dz\right)$$

They have a **completion**:

$$\hat{f}(\tau,\bar{\tau}) = f(\tau) - \int_{\bar{\tau}}^{-i\infty} \frac{\overline{g(\bar{z})}}{(\tau-z)^k} dz$$

 $g(\tau)$: Modular form of weight 2-k

k is the **weight**. $g(\tau)$ is the **shadow**.

Mock modular Modular forms

Properties

Characterestics

$$f: \frac{\mathbb{H} \to \mathbb{C}}{\tau \to f(\tau)}$$
 holomorphic

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k \left(f(\tau) - \int_{-d/c}^{-i\infty} \frac{\overline{g(\bar{z})}}{(\tau-z)^k} \, dz\right)$$

They have a **completion**:

$$\hat{f}(\tau, \bar{\tau}) = f(\tau) - \int_{\bar{\tau}}^{-i\infty} \frac{\overline{g(\bar{z})}}{(\tau - z)^k} dz$$

 $g(\tau)$: Modular form of weight 2-k

k is the **weight**. $g(\tau)$ is the **shadow**.

Two mock modular forms of fixed weight k and shadow g are related by a **modular form**.

Depth 1 Mock modular Modular forms

Properties

Characterestics

$$f: \frac{\mathbb{H} \to \mathbb{C}}{\tau \to f(\tau)}$$
 holomorphic

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k \left(f(\tau) - \int_{-d/c}^{-i\infty} \frac{\overline{g(\overline{z})}}{(\tau-z)^k} \, dz\right)$$

They have a **completion**:

$$\hat{f}(\tau,\bar{\tau}) = f(\tau) - \int_{\bar{\tau}}^{-i\infty} \frac{\overline{g(\bar{z})}}{(\tau - z)^k} dz$$

 $g(\tau)$: Modular form of weight 2-k

k is the **weight**. $g(\tau)$ is the **shadow**.

Two mock modular forms of fixed weight k and shadow g are related by a **modular form**.

Depth *n* Mock modular Modular forms

Properties

Characterestics

$$f: \frac{\mathbb{H} \to \mathbb{C}}{\tau \to f(\tau)}$$
 holomorphic

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k \left(f(\tau) - \int_{-d/c}^{-i\infty} \frac{\overline{g(\bar{z})}}{(\tau-z)^k} \, dz\right)$$

They have a **completion**:

$$\hat{f}(\tau, \bar{\tau}) = f(\tau) - \int_{\bar{\tau}}^{-i\infty} \frac{\overline{g(\bar{z})}}{(\tau - z)^k} dz$$

 $g(\tau)$: Depth (n-1) mock modular form of weight 2-k

k is the **weight**. $g(\tau)$ is the **shadow**.

Two (higher depth) mock modular forms of fixed weight k and shadow g are related by a **modular form**.

Outline

I. Modularity

II. DT invariants

III. Constraining the generating function

The Donaldson-Thomas (DT) invariants

Type IIA compactified on a Calabi-Yau X

We restrict to $b_2 = 1$.

Count D6-D4-D2-D0 brane bound states

$$\gamma = (p^0, p, q, q_0)$$

The Donaldson-Thomas (DT) invariants

DT invariants

Type IIA compactified on a Calabi-Yau X

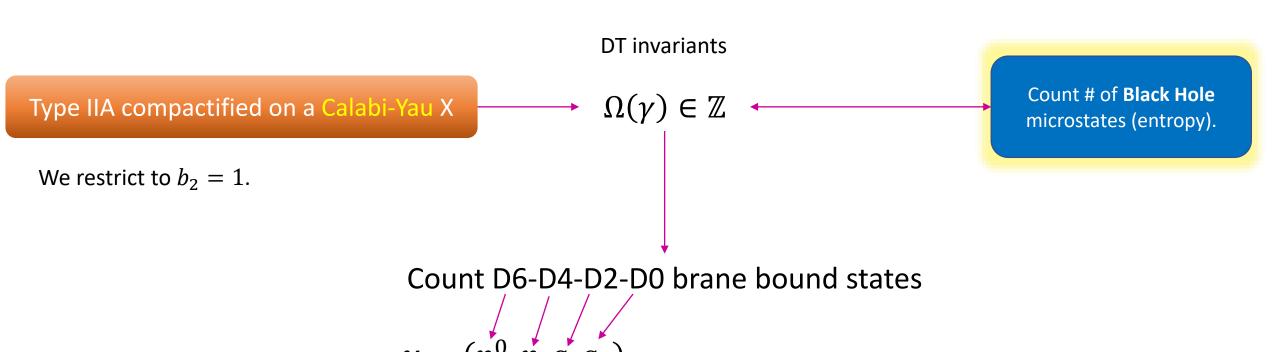
We restrict to $b_2 = 1$.

$$\Omega(\gamma) \in \mathbb{Z}$$

Count D6-D4-D2-D0 brane bound states

$$\gamma = (p^0, p, q, q_0)$$

The Donaldson-Thomas (DT) invariants



Defining the generating functions

Rank 0 DT invariants

D6-brane charge
$$p^0=0$$

$$\gamma=(0,p,q,q_0)$$

Defining the generating functions

Rank 0 DT invariants

D6-brane charge
$$p^0=0$$

$$\gamma=(0,p,q,q_0)$$

Define rational invariants

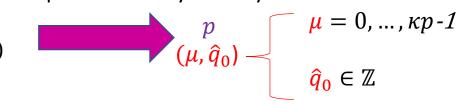
$$\overline{\Omega}(\gamma) = \sum_{m|\gamma} \frac{1}{m^2} \Omega(\gamma/m)$$

Rank 0 DT invariants

D6-brane charge
$$p^0=0$$

$$\gamma=(0,p,{\color{red}q},{\color{red}q}_0)$$

Spectral flow symmetry.



Define rational invariants

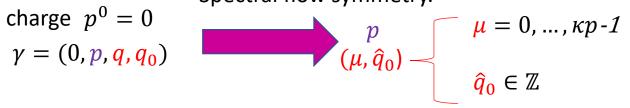
$$\overline{\Omega}(\gamma) = \sum_{m|\gamma} \frac{1}{m^2} \Omega(\gamma/m)$$

Rank 0 DT invariants

D6-brane charge
$$p^0 = 0$$

 $\gamma = (0, p, q, q_0)$

Spectral flow symmetry.



Define rational invariants

$$\overline{\Omega}(\gamma) = \sum_{m|\gamma} \frac{1}{m^2} \Omega(\gamma/m)$$

$$\overline{\Omega}_{p,\mu}(\widehat{q}_0)$$

Rank 0 DT invariants

D6-brane charge $p^0 = 0$

Spectral flow symmetry.

charge
$$p^0=0$$

$$\gamma=(0,p,q,q_0)$$

$$\mu=0,...,\kappa p-1$$

$$(\mu,\hat{q}_0)$$

$$\hat{q}_0\in\mathbb{Z}$$

Define rational invariants

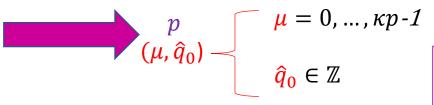
$$\overline{\Omega}(\gamma) = \sum_{m \mid \gamma} \frac{1}{m^2} \Omega(\gamma/m)$$

Generating function

$$h_{p,\mu}(\tau) = \sum_{\widehat{q}_0 \leq \widehat{q}_0^{max}} \overline{\Omega}_{p,\mu}(\widehat{q}_0) e^{-2\pi i \, \widehat{q}_0 \tau}$$

Rank 0 DT invariants

D6-brane charge $p^0 = 0$ $\gamma = (0, p, q, q_0)$ Spectral flow symmetry.



Define rational invariants

$$\overline{\Omega}(\gamma) = \sum_{m \mid \gamma} \frac{1}{m^2} \Omega(\gamma/m)$$

$$\overline{\Omega}_{t}$$

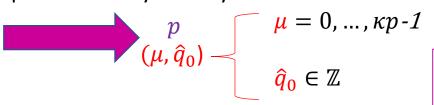
p labels different functions

 μ is a vector index.

Rank 0 DT invariants

D6-brane charge $p^0=0$ $\gamma=(0,p,q,q_0)$

Spectral flow symmetry.



Define rational invariants

$$\overline{\Omega}(\gamma) = \sum_{m|\gamma} \frac{1}{m^2} \Omega(\gamma/m)$$

$$\overline{\Omega}_{p,\mu}(\widehat{q}_0)$$

Modular properties!!

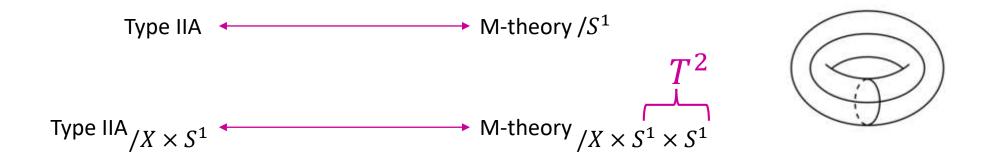
Generating function

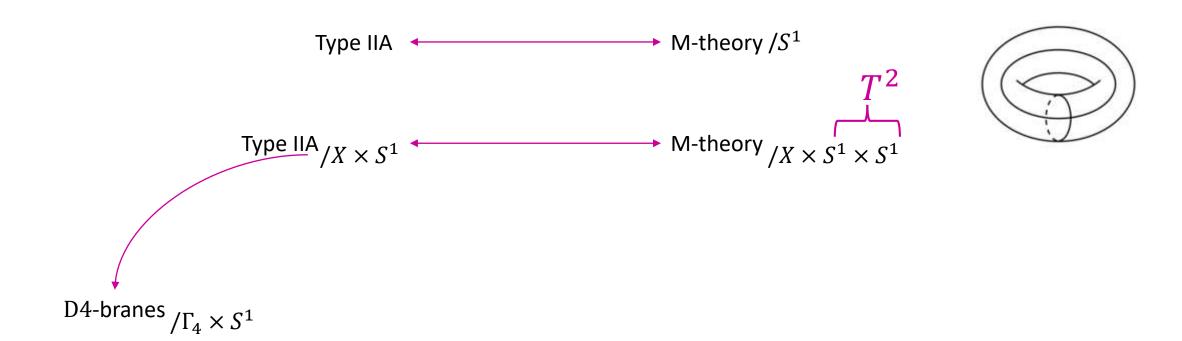
$$h_{p,\mu}(\tau) = \sum_{\widehat{q}_0 \le \widehat{q}_0^{max}} \overline{\Omega}_{p,\mu}(\widehat{q}_0) e^{-2\pi i \, \widehat{q}_0 \tau}$$

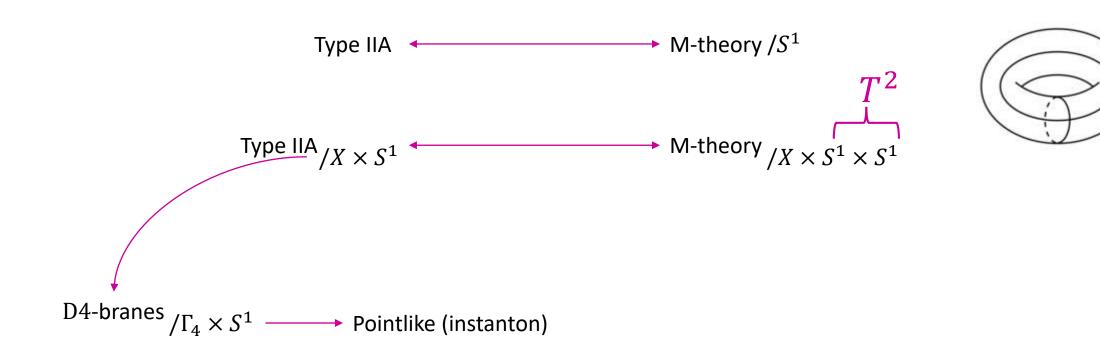
p labels different functions

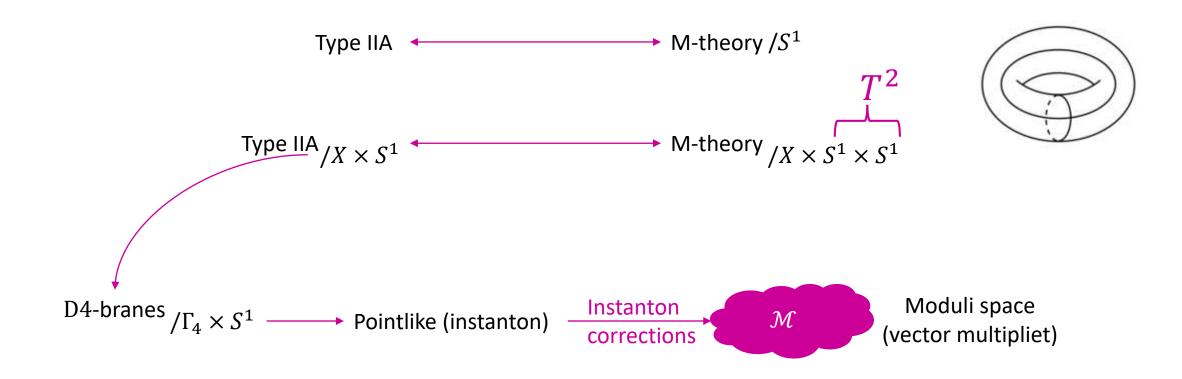
 μ is a vector index.

Type IIA
$$\longleftarrow$$
 M-theory $/S^1$

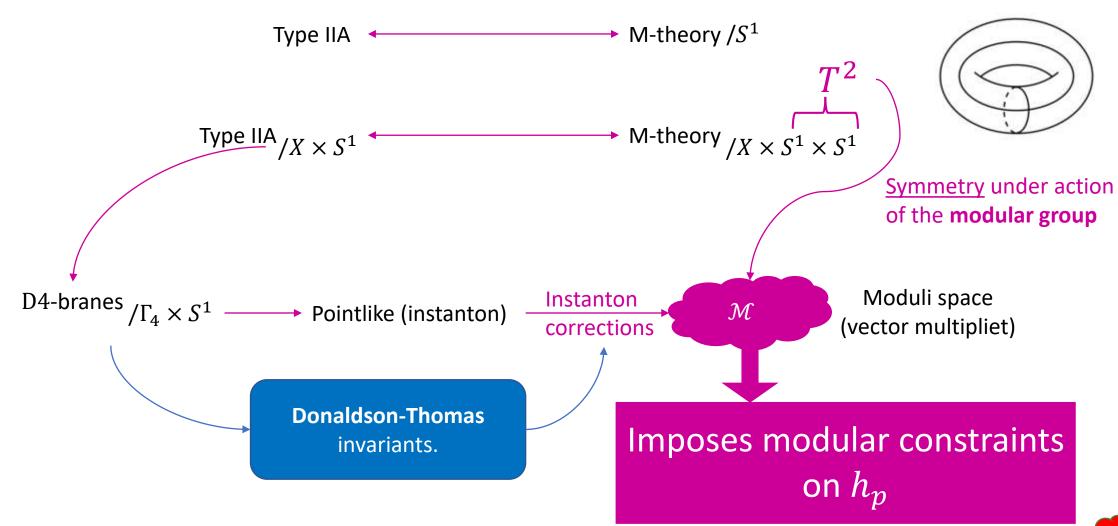


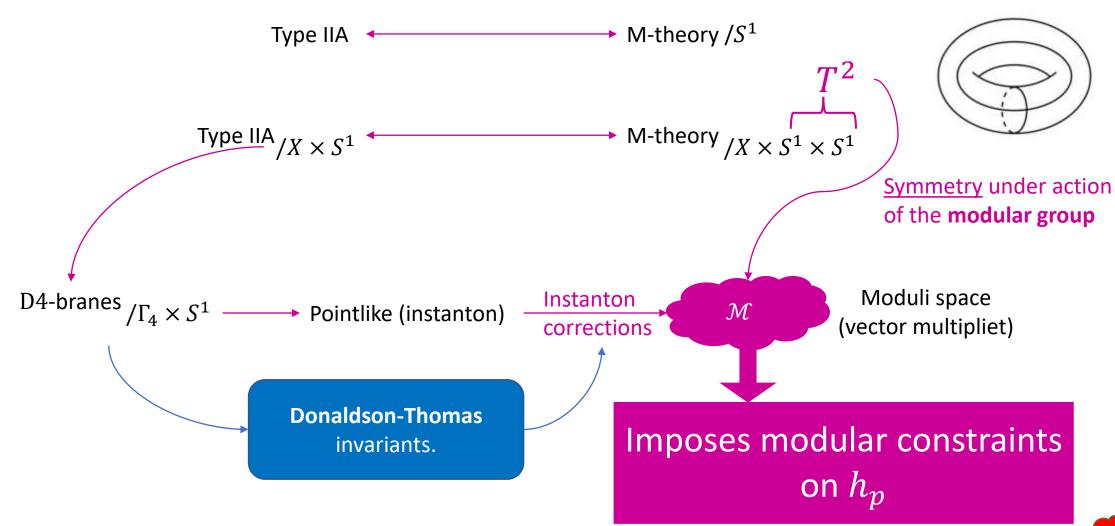












Outline

I. Modularity

II. DT invariants

III. Constraining the generating function

For p=1 $h_{1,\mu}(au)$ is a VV modular form

 $h_{1,\mu}(\tau)$ is a VV modular form

 $h_{p,\mu}(au)$ is a depth (p-1) VV ${
m mock}$ modular form

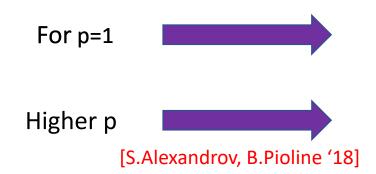
 $\overline{h_{1,\mu}(au)}$ is a VV modular form

 $h_{p,\mu}(au)$ is a depth (p-1) VV ${
m mock}$ modular form

Completion equation

$$\hat{h}_{p,\mu}(\tau,\bar{\tau}) = \sum_{n=1}^{p} \sum_{p_1 + \dots + p_n = p} R_{\mu,\mu_1,\dots,\mu_n}^{(p_1,\dots,p_n)}(\tau_2) \prod_{i=1}^{p} h_{p_i,\mu_i}(\tau)$$

$$\tau_2 = Im(\tau)$$



 $h_{1,\mu}(\tau)$ is a VV modular form

 $h_{p,\mu}(au)$ is a depth (p-1) VV ${
m mock}$ modular form

Completion equation

$$\hat{h}_{p,\mu}(\tau,\bar{\tau}) = \sum_{n=1}^{p} \sum_{p_1 + \dots + p_n = p} R_{\mu,\mu_1,\dots,\mu_n}^{(p_1,\dots,p_n)}(\tau_2) \prod_{i=1}^{p} h_{p_i,\mu_i}(\tau)$$

 $\tau_2 = Im(\tau)$

Let's look at an example

The modular ambiguity

Example:

$$p = 2$$

$$\hat{h}_{2,\mu}(\tau,\bar{\tau}) = h_{2,\mu}(\tau) + R_{\mu,\mu_1,\mu_2}^{(p_1,p_2)}(\tau_2)h_{1,\mu_1}h_{1,\mu_2}$$

The modular ambiguity

Example:

$$p = 2$$

$$\hat{h}_{2,\mu}(\tau,\bar{\tau}) = h_{2,\mu}(\tau) + R_{\mu,\mu_1,\mu_2}^{(p_1,p_2)}(\tau_2)h_{1,\mu_1}h_{1,\mu_2}$$

Problem: the equation doesn't fix h_2 completely.

Solution: compute a few DT invariants (specifically the polar terms) and fix the modular ambiguity

The modular ambiguity

Example:

$$p = 2$$

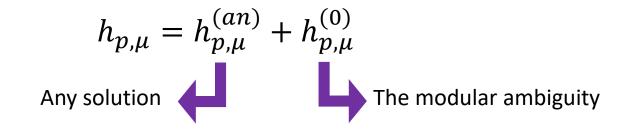
$$\hat{h}_{2,\mu}(\tau,\bar{\tau}) = h_{2,\mu}(\tau) + R_{\mu,\mu_1,\mu_2}^{(p_1,p_2)}(\tau_2)h_{1,\mu_1}h_{1,\mu_2}$$

Problem: the equation doesn't fix h_2 completely.

Solution: compute a few DT invariants (specifically the polar terms) and fix the modular ambiguity

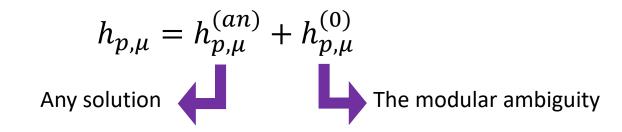
$$h_{p,\mu} = h_{p,\mu}^{(an)} + h_{p,\mu}^{(0)}$$

$$h_{p,\mu} = h_{p,\mu}^{(an)} + h_{p,\mu}^{(0)}$$
 Any solution



Strategy:

- 2. Compute a few DT invariants and fix $h_p^{\left(0
 ight)}$



Strategy:

- $\overline{\,\,\,\,\,\,\,\,\,}$ 1. Find a solution $h_p^{(an)}$

Can we perform step 1 for all p?

$$h_{p,\mu} = h_{p,\mu}^{(an)} + h_{p,\mu}^{(0)}$$
 Any solution The modular ambiguity

Strategy:

- 1. Find a solution $h_p^{(an)}$

Can we perform step 1 for all p ?

Challenge: the completion equation for h_p depends on $h_{p_i}^{(0)}$ for lower charges.

$$\hat{h}_{2,\mu}(\tau,\bar{\tau}) = h_{2,\mu}(\tau) + R_{\mu,\mu_1,\mu_2}^{(p_1,p_2)}(\tau_2)(h_{1,\mu_1}^{(an)} + h_{1,\mu_2}^{(0)})(h_{1,\mu_2}^{(an)} + h_{1,\mu_1}^{(0)})$$

Strategy:

- 1. Find a solution $h_p^{(an)}$

Can we perform step 1 for all p ?

Challenge: the completion equation for h_p depends on $h_{p_i}^{(0)}$ for lower charges.

$$\hat{h}_{2,\mu}(\tau,\bar{\tau}) = h_{2,\mu}(\tau) + R_{\mu,\mu_1,\mu_2}^{(p_1,p_2)}(\tau_2)(h_{1,\mu_1}^{(an)} + h_{1,\mu_2}^{(0)})(h_{1,\mu_2}^{(an)} + h_{1,\mu_1}^{(0)})$$

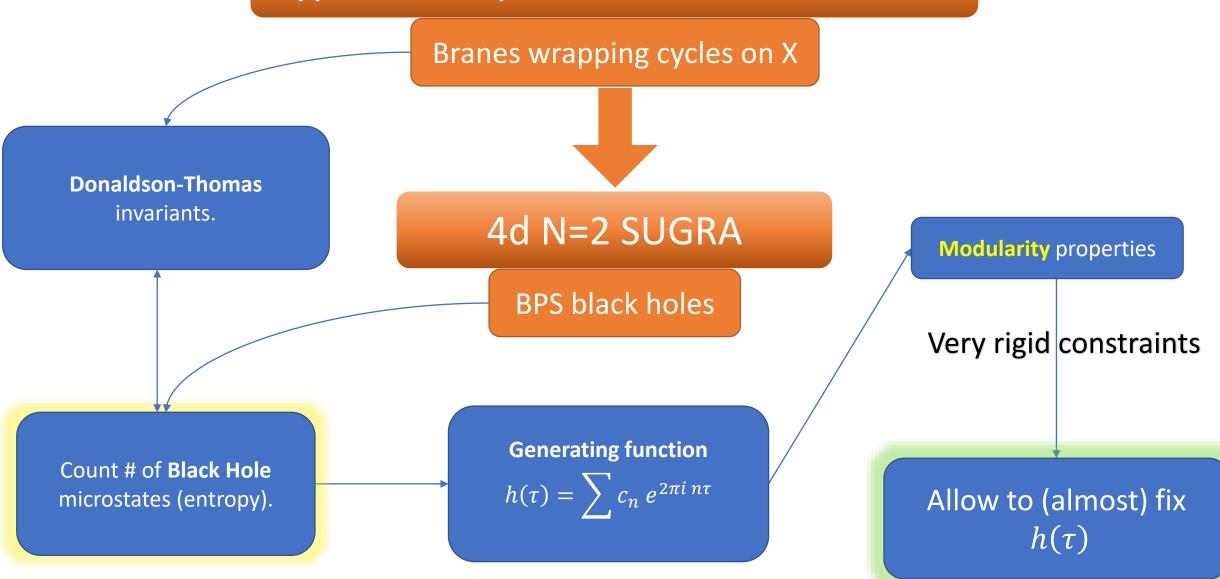
Result: Recipe to compute h_p up to $h_{p_i}^{(0)}$ for all $p_i \leq p$. (Using indefinite theta series)

Conclusions

- DT invariants of the Calabi-Yau count the number of BPS black hole microstates.
- Generating functions of these invariants at rank 0, posess remarkable modular properties.

 Mock modular
- We fix these functions, by solving their modular anomaly, up to computing a finite number of DT invariants.
- Further directions:
 - Compute polar terms to fix $h_p^{(0)}$ (done for p=1 for eleven CYs [S. Alexandrov, S.Feyzbakhsh, A.Klemm, B.Pioline, T.Schimannek '23])
 - Generalize the construction for $b_2 > 1$.

Type IIA compactified on a Calabi-Yau X



Appendix

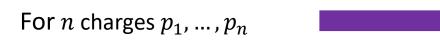
Disentangling the ambiguity

Ansatz to extract the dependance of the generating functions on lower rank ambiguities

$$h_{p,\mu}(\tau,\bar{\tau}) = \sum_{n=1}^p \sum_{p_1+\dots+p_n=p} g_{\mu,\mu_1,\dots,\mu_n}^{(p_1,\dots,p_n)}(\tau) \prod_{i=1}^n h_{p_i,\mu_i}^{(0)}(\tau)$$
 Anomalous coefficients
$$g_{\mu\nu}^{(p)} = \delta_{\mu\nu}$$

We trade the conditions on h_p for conditions on $g_{\mu,\mu_i}^{(p_i)}$

The new completion equation



 $g^{(p_1,\ldots,p_n)}$ is a VV depth (n-1) mock modular form

Completion equation

$$s_1 = p_1 + p_2$$

$$g^{(p_1,p_2)}$$

$$p_1$$

$$s_m = p_n$$

$$g^{(p_n)}$$

$$p_2$$

$$p_n$$

$$\hat{g}^{(p_1,...,p_n)} = Sym \left\{ \sum_{\sum n_i = n} R^{(s_1,...,s_m)} \prod_{i=1}^m g^{(p_{j_i+1},...,p_{j_{i+1}})} \right\}$$

Goal: find the anomalous coefficients $m{g}_{\mu,\mu_1,...,\mu_n}^{(p_1,...,p_n)}(m{ au})$

Studying n = 2

Example:

$$n = 2$$

$$\hat{g}_{\mu,\mu_1,\mu_2}^{(p_1,p_2)} = g_{\mu,\mu_1,\mu_2}^{(p_1,p_2)} + R_{\mu,\mu_1,\mu_2}^{(p_1,p_2)}(\tau_2)$$

Indefinite theta series

Definite theta series

$$\vartheta_{\mu}(\tau) = \sum_{k \in \Lambda + \mu} e^{-\pi i \, Q(k) \, \tau}$$

 Λ is a d dimensional lattice. It has quadratic form $Q(x) \in 2\mathbb{Z}$ Q is negative definite

 $\vartheta_{\mu}(au)$ is a Vector valued modular form of weight d/2

Indefinite theta series

$$\vartheta_{\mu}(\tau) = \sum_{k \in \Lambda + \mu} \Phi(\sqrt{2\tau_2} \, k) \, e^{-\pi i \, Q(k) \, \tau}$$

 Λ is a d dimensional lattice. It has quadratic form $Q(x) \in 2\mathbb{Z}$ Q is indefinite

Kernel: ensures convergence.

	Holomorphic	Modular
	(Product of) difference of sign functions.	(Product of) difference of error functions.
)	$(sign(v_1 \cdot x) - sign(v_2 \cdot x))$	$\left(\operatorname{Erf}\left(\frac{v_1 \cdot \mathbf{x}}{ v_1 }\right) - \operatorname{Erf}\left(\frac{v_2 \cdot \mathbf{x}}{ v_2 }\right)\right)$

When a vector v_i is null then we can have both!

$$Erf\left(\frac{v_1 \cdot \mathbf{x}}{||v_1||}\right) \to sign(v_1 \cdot \mathbf{x})$$

 $\Phi(x)$

Studying n = 2

Example:

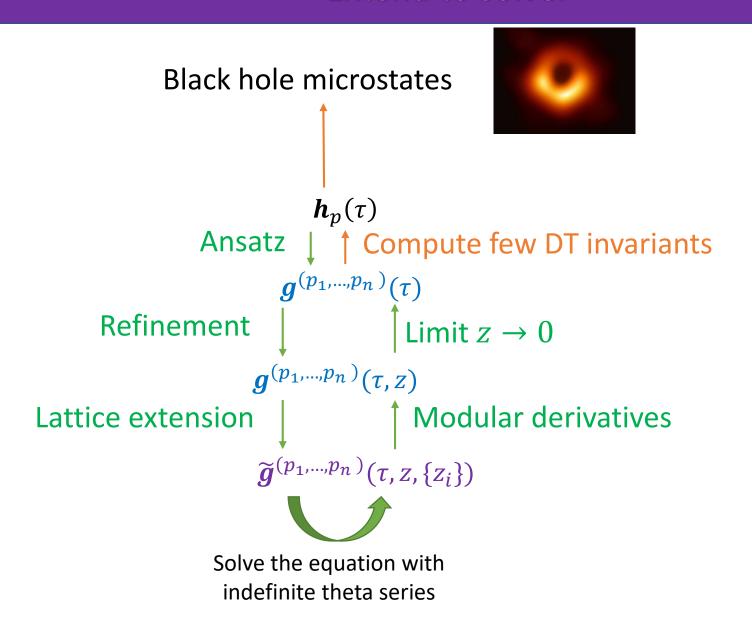
$$n = 2$$

$$\hat{g}_{\mu,\mu_1,\mu_2}^{(p_1,p_2)} = g_{\mu,\mu_1,\mu_2}^{(p_1,p_2)} + R_{\mu,\mu_1,\mu_2}^{(p_1,p_2)}(\tau_2)$$

 $R_{\mu,\mu_1,\mu_2}^{(p_1,p_2)}$: Positive definite theta series on a 1 dimensional lattice with kernel $Erf(v_1 \cdot k) - sign(v_1 \cdot k)$

Choose $g_{\mu,\mu_1,\mu_2}^{(p_1,p_2)}$ to be an indefinite theta series with kernel $sign(v_1 \cdot k) - sign(w_1 \cdot k)$ where $Q(w_1) = 0$.

Recipe for solution: Extend to solve.



<u>Vector-Valued(VV)</u> Modular forms

 $\rho = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$f: \overset{\mathbb{H}}{\tau} \to \mathbb{C}$ holomorphic

$$f_{\mu}\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k \sum_{\nu} M_{\mu\nu}(\rho) f_{\nu}(\tau)$$

Properties

Modular forms have a Fourier expansion:

$$f_{\mu}(\tau) = \sum_{n=n_0}^{\infty} c_{n,\mu} q^n$$
, $q = e^{2\pi i \tau}$

Characterestics

k is the **weight**. $M_{\mu\nu}$ is the **multiplier system**.

VV Modular forms of fixed weight k and multiplier system $M_{\mu\nu}$ form a finite dimensional vector space.

Jacobi-like Modular forms

Properties

Characterestics

$$f: \frac{\mathbb{H} \to \mathbb{C}}{\tau \to f(\tau)}$$
 holomorphic

$$f\left(\frac{a\tau+b}{c\tau+d}, \frac{z}{c\tau+d}\right) = (c\tau+d)^k e^{\frac{2\pi i \, m \, c \, z^2}{c\tau+d}} f(\tau, z)$$

Jacobi-like forms have a series expansion in z:

$$f(\tau,z) = \sum_{n>n_0}^{\infty} f_n(\tau) z^n,$$

Automorphy factor

k is the **weight**. m is the **index**.

Modularity recap

Term	Math. Object	Charact.
Modular form	f(au)	Weight k
VV modular form	$f_{\mu}(au)$	Multiplier system $M_{\mu u}$
Jacobi-like form	$f(\tau,z); f(\tau,z_1,z_2)$	Index m; indices m_1, m_2
Mock modular form	$f(\tau) \leftrightarrow \hat{f}(\tau, \bar{\tau})$	Shadow $g(au)$

Modularity recap

Term	Math. Object	Charact.
Modular form	$f(\tau)$	Weight k
VV modular form	$f_{\mu}(au)$	Multiplier system $M_{\mu u}$
Mock modular form	$f(\tau) \leftrightarrow \hat{f}(\tau, \bar{\tau})$	Shadow $g(au)$

Modular forms offer control on the **growth** of their Fourier coefficients

$$n_0 > 0 \implies c_n \sim n^{\frac{k}{2}}$$

$$n_0 = 0 \implies c_n \sim n^{k-1}$$

$$n_0 < 0 \implies c_n \sim e^{C\sqrt{n}}$$