

Clocking the End of Cosmic Inflation

Pierre Auclair, **Baptiste Blachier** and Christophe Ringeval

Cosmology, Universe and Relativity at Louvain (CURL) Louvain University, Louvain-la-Neuve, Belgium

• Hundreds of scenarios for inflation are competing

- Hundreds of scenarios for inflation are competing
- However, one model-free and perturbative treatment for single-field models: the slow-roll approximation

Hubble-flow functions

$$
\epsilon_0(N) = \frac{M_{\rm Pl}}{H}, \qquad \epsilon_{i+1} \equiv \frac{\mathrm{d} \ln |\epsilon_i|}{\mathrm{d} N}
$$

• Encodes deviations from a purely de Sitter background

- Hundreds of scenarios for inflation are competing
- However, one model-free and perturbative treatment for single-field models: the slow-roll approximation

Hubble-flow functions

$$
\epsilon_0(N) = \frac{M_{\rm Pl}}{H}, \qquad \epsilon_{i+1} \equiv \frac{\mathrm{d} \ln |\epsilon_i|}{\mathrm{d} N}
$$

- Encodes deviations from a purely de Sitter background
- Computation of scalar and tensor power-spectra using *ϵi*-expansion, for instance

$$
\mathcal{P}_{\zeta}(k) = \frac{H_{*}^{2}}{8\pi^{2}M_{\text{Pl}}^{2}\epsilon_{1}^{*}} \left[1 - 2(C+1)\epsilon_{1*} - C\epsilon_{2*} - (2\epsilon_{1*} + \epsilon_{2*})\ln\left(\frac{k}{k_{*}}\right) + \ldots\right]
$$

- $k_* \sim \text{Mpc}^{-1}$ is the wave number around which the expansion is made
- Hubble-flow functions are evaluated at the time *N*[∗] at which the pivot scale exited Hubble radius during inflation

¹J. Martin and C. Ringeval (2006) and (2010)

- $k_* \sim \text{Mpc}^{-1}$ is the wave number around which the expansion is made
- Hubble-flow functions are evaluated at the time *N*[∗] at which the pivot scale exited Hubble radius during inflation

How is determined
$$
N_*
$$
?¹
\n
$$
\frac{k_*}{a_0} = \underbrace{(1 + z_{\text{end}})^{-1} \frac{a(N_*)}{a(N_{\text{end}})} H(N_*)
$$
\n
$$
\xrightarrow{\text{1. Martin and C. Ringeval (2006) and (2010)}} \text{Depends on the reheating era!}
$$

3

$$
\Delta N_* \equiv N_* - \boxed{N_{\rm end}} = -\ln R_{\rm rad} + \frac{1}{4}\ln \left[\frac{9}{\left(\epsilon_{1*}(3 - \epsilon_{\rm 1end})} \frac{\left(\overline{V_{\rm end}}\right)}{\left(\overline{V_{*}}\right)}\right] + \text{cste}
$$

$$
\Delta N_* \equiv N_* - \underbrace{(N_{\text{end}})}_{\text{end}} = -\ln R_{\text{rad}} + \frac{1}{4} \ln \left[\underbrace{\frac{9}{(\epsilon_{1*})(3 - \epsilon_{1 \text{end}})}_{\text{[V_*]}} \underbrace{\frac{V_{\text{end}}}{V_*}}_{\text{end}} \right] + \text{cste}
$$

For a given potential $V(\phi)$ and a reheating history (R_{rad}) , to determine N_* we need

• the field trajectory $\phi(N) \iff N(\phi)$ • the e-fold N_{end} at which inflation ended

$$
\Delta N_* \equiv N_* - \boxed{N_{\text{end}}} = -\ln R_{\text{rad}} + \frac{1}{4}\ln \left[\frac{9}{\boxed{\epsilon_{1*}(3 - \epsilon_{\text{lead}})} \frac{V_{\text{end}}}{V_*}} \right] + \text{cste}
$$

For a given potential $V(\phi)$ and a reheating history (R_{rad}) , to determine N_* we need

- the field trajectory $\phi(N) \iff N(\phi)$ the e-fold N_{end} at which inflation ended
	-

Two possible ways:

-
- Exact numerical integration Slow-roll (SR) approximation

$$
\Delta N_* \equiv N_* - \boxed{N_{\text{end}}} = -\ln R_{\text{rad}} + \frac{1}{4} \ln \left[\frac{9}{\left(\epsilon_{1*}\right)(3 - \epsilon_{1\text{end}})} \frac{V_{\text{end}}}{V_*} \right] + \text{cste}
$$

For a given potential $V(\phi)$ and a reheating history (R_{rad}) , to determine N_* we need

• the field trajectory $\phi(N) \iff N(\phi)$ • the e-fold N_{end} at which inflation ended

Two possible ways:

-
- Exact numerical integration • Slow-roll (SR) approximation

If we stick with analytical methods

- \bullet As SR is violated towards the end of inflation, both the approximated trajectory and N_{end} are plagued with (small) error
- Any errors damaging N_{end} (as the ones building up close to the end of inflation) are folded into all the values of ∆*N*

Assessing slow-roll accuracy: field trajectory

Let us be more precise on slow-roll accuracy

In full generality

• Friedamnn-Lemaître equations written in number of e-folds $N +$ Klein-Gordon give the equation of motion for *ϕ*(*N*)

Assessing slow-roll accuracy: field trajectory

Let us be more precise on slow-roll accuracy

In full generality

• Friedamnn-Lemaître equations written in number of e-folds $N +$ Klein-Gordon give the equation of motion for *ϕ*(*N*)

For a slowly rolling field

• The acceleration term is neglected

$$
\Gamma \simeq \Gamma_{\rm sr} = -\frac{\mathrm{d}\ln V}{\mathrm{d}\phi}
$$

• Hence the field trajectory

$$
N_{\rm sr}(\phi) = -\int^{\phi} \frac{V(\psi)}{V'(\psi)} \, \mathrm{d}\psi
$$

Assessing slow-roll accuracy: characterization of the end of inflation

• For vanilla single-field models, the accelerated expansion ends through a graceful exit

$$
\epsilon_{1\text{end}} \equiv \epsilon_1(N_{\text{end}}) = 1 \qquad \Longleftrightarrow \qquad \Gamma_{\text{end}} \equiv \Gamma(N_{\text{end}}) = \pm \sqrt{2}
$$

Assessing slow-roll accuracy: characterization of the end of inflation

• For vanilla single-field models, the accelerated expansion ends through a graceful exit

$$
\epsilon_{1\text{end}} \equiv \epsilon_1(N_{\text{end}}) = 1 \qquad \Longleftrightarrow \qquad \Gamma_{\text{end}} \equiv \Gamma(N_{\text{end}}) = \pm \sqrt{2}
$$

• Without knowledge of the exact field trajectory, we resort to solving

$$
\Gamma_{\rm sr}(N^{\rm sr}_{\rm end}) = \pm \sqrt{2} \quad \text{with} \quad N^{\rm sr}_{\rm end} = N_{\rm sr}(\phi^{\rm sr}_{\rm end})
$$

i.e. we extrapolate the slow-roll trajectory up to the end of inflation

$$
\Delta N_{\rm sr}(\phi) \equiv N_{\rm sr}(\phi) - N_{\rm end}^{\rm sr} = \int_{\phi}^{\phi_{\rm end}^{\rm sr}} \frac{V(\psi)}{V'(\psi)} d\psi
$$

Assessing slow-roll accuracy: characterization of the end of inflation

• For vanilla single-field models, the accelerated expansion ends through a graceful exit

$$
\epsilon_{1\text{end}} \equiv \epsilon_1(N_{\text{end}}) = 1 \qquad \Longleftrightarrow \qquad \Gamma_{\text{end}} \equiv \Gamma(N_{\text{end}}) = \pm \sqrt{2}
$$

• Without knowledge of the exact field trajectory, we resort to solving

$$
\Gamma_{\rm sr}(N^{\rm sr}_{\rm end}) = \pm \sqrt{2} \quad \text{with} \quad N^{\rm sr}_{\rm end} = N_{\rm sr}(\phi^{\rm sr}_{\rm end})
$$

i.e. we extrapolate the slow-roll trajectory up to the end of inflation

$$
\Delta N_{\rm sr}(\phi) \equiv N_{\rm sr}(\phi) - N_{\rm end}^{\rm sr} = \int_{\phi}^{\phi_{\rm end}^{\rm sr}} \frac{V(\psi)}{V'(\psi)} d\psi
$$

Two source of errors

Trading $\Delta N(\phi) \longrightarrow \Delta N_{\rm sr}(\phi)$ induces two errors coming from

 $\Gamma \simeq \Gamma_{\rm sr}$ and $\phi_{\rm end} \simeq \phi_{\rm end}^{\rm sr}$

To separate the two effects, define $\Delta N_{\rm sr}^{\rm ee}(\phi)\equiv N_{\rm sr}(\phi)-N_{\rm sr}(\phi_{\rm end})$

7

What to conclude?

For the fiducial value $\Delta N \simeq N_0 \sim -61.5$, the typical error on the trajectory are $\mathcal{O}(1)$ e-folds \implies Slow-roll approximation performs well!

What to conclude?

For the fiducial value $\Delta N \simeq N_0 \sim -61.5$, the typical error on the trajectory are $\mathcal{O}(1)$ e-folds \implies Slow-roll approximation performs well!

Why bother then?

- With forthcoming measurements (Euclid, galaxy surveys, LiteBIRD...) this $\mathcal{O}(1)$ error will not be innocuous anymore
- Models differing only through their reheating history can be disambiguated (cf C. Ringeval's talk)
- Conversely, if reheating is unknown, ∆*N*[∗] constrains *R*rad ⁸

[Correcting slow-roll](#page-19-0)

Integral constraints

We see Γ as a function of ϕ and define the absolute error

$$
\mathcal{E} \equiv \Gamma(\phi) - \Gamma_{\rm sr}(\phi) \quad \text{with E.O.M.} \quad \frac{2\Gamma}{6 - \Gamma^2} \frac{d\Gamma}{d\phi} + \Gamma = \Gamma_{\rm sr}
$$

Integral constraints

We see Γ as a function of *ϕ* and define the absolute error

$$
\mathcal{E} \equiv \Gamma(\phi) - \Gamma_{\rm sr}(\phi) \quad \text{with } \text{E.O.M.} \quad \frac{2\Gamma}{6 - \Gamma^2} \frac{d\Gamma}{d\phi} + \Gamma = \Gamma_{\rm sr}
$$

$$
\int_{\phi}^{\phi_{\text{end}}} \mathcal{E}(\psi) d\psi = \ln \left[\frac{4}{6 - \Gamma^2(\phi)} \right]
$$

$$
\int_{\phi}^{\phi_{end}} \frac{\mathcal{E}(\psi)}{\Gamma(\psi)} d\psi = \frac{1}{\sqrt{6}} \ln \left[(2 \mp \sqrt{3}) \frac{\sqrt{6} + \Gamma(\phi)}{\sqrt{6} - \Gamma(\phi)} \right]
$$

• In SR regime, $\Gamma^2 \ll 1$, the integrated error made between ϕ and ϕ_{end} is $\ln(2/3) \simeq -0.4$

• If $|\Gamma| \ll 1$, the integrated error is of order $\ln\left(2\mp\sqrt{3}\right)/\sqrt{6} \simeq \mp 0.53$

Integral constraints

We see Γ as a function of *ϕ* and define the absolute error

$$
\mathcal{E} \equiv \Gamma(\phi) - \Gamma_{\rm sr}(\phi) \quad \text{with } \text{E.O.M.} \quad \frac{2\Gamma}{6 - \Gamma^2} \frac{d\Gamma}{d\phi} + \Gamma = \Gamma_{\rm sr}
$$

$$
\int_{\phi}^{\phi_{\text{end}}} \mathcal{E}(\psi) d\psi = \ln \left[\frac{4}{6 - \Gamma^2(\phi)} \right]
$$
\n
$$
\int_{\phi}^{\phi_{\text{end}}} \frac{\mathcal{E}(\psi)}{\Gamma(\psi)} d\psi = \frac{1}{\sqrt{6}} \ln \left[(2 \mp \sqrt{3}) \frac{\sqrt{6} + \Gamma(\phi)}{\sqrt{6} - \Gamma(\phi)} \right]
$$

• In SR regime, $\Gamma^2 \ll 1$, the integrated error made between ϕ and ϕ_{end} is $\ln(2/3) \simeq -0.4$

• If $|\Gamma| \ll 1$, the integrated error is of order $\ln\left(2\mp\sqrt{3}\right)/\sqrt{6} \simeq \mp 0.53$

Integral constraints on $\mathcal E$

- Both the absolute error $\mathcal E$ and the relative error $\mathcal E/\Gamma$ are bounded, deep in the SR regime as well as at the end of inflation
- One can expand the exact solution with $\mathcal E$ or $\mathcal E/\Gamma$ as small parameters

New expansion of the field trajectory

We express

$$
\Delta N(\phi) = N(\phi) - N_{\text{end}} = -\int_{\phi}^{\phi_{\text{end}}} d\psi \frac{1}{\Gamma_{\text{sr}}(\psi)} \underbrace{\Gamma_{\text{sr}}(\psi)}_{\Gamma(\psi)} \longrightarrow 1 - \frac{\varepsilon}{\Gamma}
$$

so that

$$
\Delta N(\phi) = \underbrace{N_{\rm sr}(\phi) - N_{\rm sr}(\phi_{\rm end})}_{\text{SR approximation}} + \int_{\phi}^{\phi_{\rm end}} d\psi \underbrace{\mathcal{E}(\psi)}_{\Gamma^2(\psi)} \underbrace{\frac{\Gamma(\psi)}{\Gamma_{\rm sr}(\psi)}}_{\text{SFR approximation}} = \frac{1}{1 - \frac{\mathcal{E}}{\Gamma}}
$$

and after a Taylor expansion of $1/(1 - \mathcal{E}/\Gamma)$

New expansion of the field trajectory

We express

$$
\Delta N(\phi) = N(\phi) - N_{\text{end}} = -\int_{\phi}^{\phi_{\text{end}}} d\psi \frac{1}{\Gamma_{\text{sr}}(\psi)} \underbrace{\Gamma_{\text{sr}}(\psi)}_{\Gamma(\psi)} \longrightarrow 1 - \frac{\varepsilon}{\Gamma}
$$

so that

$$
\Delta N(\phi) = \underbrace{N_{\rm sr}(\phi) - N_{\rm sr}(\phi_{\rm end})}_{\text{SR approximation}} + \int_{\phi}^{\phi_{\rm end}} d\psi \underbrace{\mathcal{E}(\psi)}_{\Gamma^2(\psi)} \underbrace{\frac{\Gamma(\psi)}{\Gamma_{\rm sr}(\psi)}}_{\text{N}} \longrightarrow \frac{1}{1 - \frac{\mathcal{E}}{\Gamma}}
$$

and after a Taylor expansion of $1/(1 - \mathcal{E}/\Gamma)$

Expansion in E*/*Γ

$$
\Delta N(\phi) = \Delta N_{\rm sr}^{\rm ee}(\phi) + \int_{\phi}^{\phi_{\rm end}} \frac{\mathcal{E}(\psi)}{\Gamma^2(\psi)} \, \mathrm{d}\psi + \sum_{k=2}^{\infty} \int_{\phi}^{\phi_{\rm end}} \frac{1}{\Gamma(\psi)} \left[\frac{\mathcal{E}(\psi)}{\Gamma(\psi)} \right]^k \mathrm{d}\psi
$$

- This expansion is not based on the usual SR expansion, as the condition $|\Gamma| \ll 1$ is not needed
- Hence it safely incorporates effects coming from the end of inflation
- **•** The "small parameter" \mathcal{E}/Γ is under control thanks to integral constraints

Velocity correction

The first order correction of this new expansion is exactly calculable!

$$
\int_{\phi}^{\phi_{\text{end}}} \frac{\mathcal{E}(\psi)}{\Gamma^2(\psi)} \, \mathrm{d}\psi = \frac{1}{6} \ln \left[\frac{2\Gamma^2(\phi)}{6 - \Gamma^2(\phi)} \right]
$$

- It acts as a velocity correction
- Even in slow-roll, for $|\Gamma| \ll 1$, the term matters with a logarithmic growth

Velocity correction

The first order correction of this new expansion is exactly calculable!

$$
\int_{\phi}^{\phi_{\text{end}}} \frac{\mathcal{E}(\psi)}{\Gamma^2(\psi)} \, \mathrm{d}\psi = \frac{1}{6} \ln \left[\frac{2\Gamma^2(\phi)}{6 - \Gamma^2(\phi)} \right]
$$

- It acts as a velocity correction
- Even in slow-roll, for $|\Gamma| \ll 1$, the term matters with a logarithmic growth

First order correction

As we are interested in $\Delta N(\phi)$ far from the end of inflation, $\Gamma \simeq \Gamma_{\rm sr}$ so that

$$
\Delta N_{\rm sr}^{\rm vc}(\phi) \equiv \Delta N_{\rm sr}(\phi) + \frac{1}{6} \ln \left[\frac{2\Gamma_{\rm sr}^2(\phi)}{6 - \Gamma_{\rm sr}^2(\phi)} \right]
$$

 \implies the velocity correction erases the logarithmic error growth w.r.t. ΔN to less than a tenth of an e-fold

Velocity correction

12

Endpoint correction

New algebraic methods for implementing endpoint corrections on the value of ϕ_{end} compatible with all types of single-field models

- Using our integral constraints and trapezoidal approximation
- Matching with Mukhanov inflation

Conclusion

- Observable predictions for cosmic inflation are measured in e-folds $\Delta N = N N_{\text{end}}$
- Determining with precision ∆*N*(*ϕ*) is crucial to correctly map wavenumbers today to wavenumbers during inflation
	- The approximated trajectory $N(\phi)$ is determined via SR with $\mathcal{O}(1)$ precision in e-folds
	- Same for N_{end}

Conclusion

- Observable predictions for cosmic inflation are measured in e-folds $\Delta N = N N_{\text{end}}$
- Determining with precision ∆*N*(*ϕ*) is crucial to correctly map wavenumbers today to wavenumbers during inflation
	- **•** The approximated trajectory $N(\phi)$ is determined via SR with $\mathcal{O}(1)$ precision in e-folds
	- Same for N_{end}

In this work

- New methods to improve analytical observable predictions for the trajectory
	- Simple and practical velocity correction to the usual SR trajectory
	- Kills the absolute error on $\Delta N(\phi)$ by an order of magnitude, for all tested models

Conclusion

- Observable predictions for cosmic inflation are measured in e-folds $\Delta N = N N_{\text{end}}$
- Determining with precision $\Delta N(\phi)$ is crucial to correctly map wavenumbers today to wavenumbers during inflation
	- The approximated trajectory $N(\phi)$ is determined via SR with $\mathcal{O}(1)$ precision in e-folds
	- Same for N_{end}

In this work

- New methods to improve analytical observable predictions for the trajectory
	- Simple and practical velocity correction to the usual SR trajectory
	- Kills the absolute error on $\Delta N(\phi)$ by an order of magnitude, for all tested models
- Algebraic methods to improve accuracy on the endpoint of inflation ϕ_{end}
	- **•** Allows a more accurate determination of ρ_{end}
	- Computationally not expensive
	- Does not improve the VC correction alone but never degrades it

Incidentally, we derived a new exact solution of the field trajectory when the inflationary potential *V* is expressed in e-folds *N*

$$
\Lambda(N) = e^{-6\Delta N} \frac{V_{\text{end}}}{V(N)} \Lambda_{\text{end}} - \int_{N}^{N_{\text{end}}} e^{6(n-N)} \frac{V(n)}{V(N)} dn \quad \text{with} \quad \Lambda(N) \equiv \frac{1}{6 - \Gamma^2(N)}
$$

Maybe useful, maybe not!

[Thank you for your attention !](#page-33-0)