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Slow-roll inflation

• Hundreds of scenarios for inflation are competing

• However, one model-free and perturbative treatment for single-field models: the slow-roll
approximation

Hubble-flow functions

ϵ0(N) = MPl

H
, ϵi+1 ≡ d ln |ϵi|

dN

• Encodes deviations from a purely de Sitter background
• Computation of scalar and tensor power-spectra using ϵi-expansion, for instance

Pζ(k) = H2
∗

8π2M2
Plϵ

∗
1

[
1 − 2(C + 1)ϵ1∗ − Cϵ2∗ − (2ϵ1∗ + ϵ2∗) ln

(
k

k∗

)
+ ...

]
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Pivot scale

• k∗ ∼ Mpc−1 is the wave number
around which the expansion is made

• Hubble-flow functions are evaluated
at the time N∗ at which the pivot
scale exited Hubble radius during
inflation

How is determined N∗?1

k∗

a0
= (1 + zend)−1

Depends on the reheating era!

a(N∗)
a(Nend)H(N∗)

1J. Martin and C. Ringeval (2006) and (2010)
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Pivot scale and reheating era

The dependence is such that

∆N∗ ≡ N∗ − Nend = − lnRrad + 1
4 ln

[
9

ϵ1∗ (3 − ϵ1end)
Vend

V∗

]
+ cste

For a given potential V (ϕ) and a reheating history (Rrad), to determine N∗ we need

• the field trajectory ϕ(N) ⇐⇒ N(ϕ) • the e-fold Nend at which inflation ended

Two possible ways:

• Exact numerical integration • Slow-roll (SR) approximation

If we stick with analytical methods

• As SR is violated towards the end of inflation, both the approximated trajectory and Nend are
plagued with (small) error

• Any errors damaging Nend (as the ones building up close to the end of inflation) are folded into all
the values of ∆N
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Assessing slow-roll accuracy: field trajectory

Let us be more precise on slow-roll accuracy

In full generality

• Friedamnn-Lemaître equations written in number of e-folds N + Klein-Gordon give the equation
of motion for ϕ(N)

2
6 − Γ2

dΓ
dN︸ ︷︷ ︸

Acceleration of the field

+ Γ︸︷︷︸
Friction

= −d lnV
dϕ︸ ︷︷ ︸

External force

, Γ ≡ dϕ
dN , ϵ1 = Γ2

2

For a slowly rolling field

• The acceleration term is neglected
Γ ≃ Γsr = −d lnV

dϕ
• Hence the field trajectory

Nsr(ϕ) = −
∫ ϕ

V (ψ)
V ′(ψ) dψ
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Assessing slow-roll accuracy: characterization of the end of inflation

• For vanilla single-field models, the accelerated expansion ends through a graceful exit

ϵ1end ≡ ϵ1(Nend) = 1 ⇐⇒ Γend ≡ Γ(Nend) = ±
√

2

• Without knowledge of the exact field trajectory, we resort to solving

Γsr(N sr
end) = ±

√
2 with N sr

end = Nsr(ϕsr
end)

i.e. we extrapolate the slow-roll trajectory up to the end of inflation

∆Nsr(ϕ) ≡ Nsr(ϕ) −N sr
end =

∫ ϕsr
end

ϕ

V (ψ)
V ′(ψ) dψ

Two source of errors
Trading ∆N(ϕ) −→ ∆Nsr(ϕ) induces two errors coming from

Γ ≃ Γsr and ϕend ≃ ϕsr
end

To separate the two effects, define ∆Nee
sr (ϕ) ≡ Nsr(ϕ) −Nsr(ϕend)
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Assessing slow-roll accuracy
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Assessing slow-roll accuracy

What to conclude?
For the fiducial value ∆N ≃ N0 ∼ −61.5, the typical error on the trajectory are O(1) e-folds =⇒
Slow-roll approximation performs well!

Why bother then?

• With forthcoming measurements (Euclid, galaxy surveys, LiteBIRD...) this O(1) error will not be
innocuous anymore

• Models differing only through their reheating history can be disambiguated (cf C. Ringeval’s talk)
• Conversely, if reheating is unknown, ∆N∗ constrains Rrad
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Correcting slow-roll



Integral constraints

We see Γ as a function of ϕ and define the absolute error

E ≡ Γ(ϕ) − Γsr(ϕ) with E.O.M. 2Γ
6 − Γ2

dΓ
dϕ + Γ = Γsr

∫ ϕend

ϕ

E(ψ) dψ = ln
[

4
6 − Γ2(ϕ)

]

• In SR regime, Γ2 ≪ 1, the integrated error
made between ϕ and ϕend is ln(2/3) ≃ −0.4

∫ ϕend

ϕ

E(ψ)
Γ(ψ) dψ = 1√

6
ln

[
(2 ∓

√
3)

√
6 + Γ(ϕ)√
6 − Γ(ϕ)

]

• If |Γ| ≪ 1, the integrated error is of order
ln

(
2 ∓

√
3
)
/
√

6 ≃ ∓0.53

Integral constraints on E

• Both the absolute error E and the relative error E/Γ are bounded, deep in the SR regime as well
as at the end of inflation

• One can expand the exact solution with E or E/Γ as small parameters
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New expansion of the field trajectory

We express

∆N(ϕ) = N(ϕ) −Nend = −
∫ ϕend

ϕ

dψ 1
Γsr(ψ)

Γsr(ψ)
Γ(ψ) = 1 − E

Γ

so that

∆N(ϕ) = Nsr(ϕ) −Nsr(ϕend)︸ ︷︷ ︸
SR approximation

+
∫ ϕend

ϕ

dψ E(ψ)
Γ2(ψ)

Γ(ψ)
Γsr(ψ)

= 1
1− E

Γ

and after a Taylor expansion of 1/(1 − E/Γ)

Expansion in E/Γ

∆N(ϕ) = ∆Nee
sr (ϕ) +

∫ ϕend

ϕ

E(ψ)
Γ2(ψ) dψ +

∞∑
k=2

∫ ϕend

ϕ

1
Γ(ψ)

[
E(ψ)
Γ(ψ)

]k
dψ

• This expansion is not based on the usual SR expansion, as the condition |Γ| ≪ 1 is not needed
• Hence it safely incorporates effects coming from the end of inflation
• The "small parameter" E/Γ is under control thanks to integral constraints
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Velocity correction

The first order correction of this new expansion is exactly calculable!∫ ϕend

ϕ

E(ψ)
Γ2(ψ) dψ = 1

6 ln
[

2Γ2(ϕ)
6 − Γ2(ϕ)

]

• It acts as a velocity correction
• Even in slow-roll, for |Γ| ≪ 1, the term matters with a logarithmic growth

First order correction
As we are interested in ∆N(ϕ) far from the end of inflation, Γ ≃ Γsr so that

∆Nvc
sr (ϕ) ≡ ∆Nsr(ϕ) + 1

6 ln
[

2Γ2
sr(ϕ)

6 − Γ2
sr(ϕ)

]
=⇒ the velocity correction erases the logarithmic error growth w.r.t. ∆N to less than a tenth of an

e-fold
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Velocity correction
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Endpoint correction

New algebraic methods for implementing endpoint corrections on the value of ϕend compatible with all
types of single-field models

• Using our integral constraints and trapezoidal approximation
• Matching with Mukhanov inflation
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Conclusion

• Observable predictions for cosmic inflation are measured in e-folds ∆N = N −Nend

• Determining with precision ∆N(ϕ) is crucial to correctly map wavenumbers today to
wavenumbers during inflation

• The approximated trajectory N(ϕ) is determined via SR with O(1) precision in e-folds
• Same for Nend

In this work

• New methods to improve analytical observable predictions for the trajectory
• Simple and practical velocity correction to the usual SR trajectory
• Kills the absolute error on ∆N(ϕ) by an order of magnitude, for all tested models

• Algebraic methods to improve accuracy on the endpoint of inflation ϕend

• Allows a more accurate determination of ρend
• Computationally not expensive
• Does not improve the VC correction alone but never degrades it
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For the last word

Incidentally, we derived a new exact solution of the field trajectory when the inflationary potential V is
expressed in e-folds N

Λ(N) = e−6∆N Vend

V (N)Λend −
∫ Nend

N

e6(n−N) V (n)
V (N) dn with Λ(N) ≡ 1

6 − Γ2(N)

Maybe useful, maybe not!
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Thank you for your attention !
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