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= Hundreds of scenarios for inflation are competing

= However, one model-free and perturbative treatment for single-field models: the slow-roll

approximation

Hubble-flow functions
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= Encodes deviations from a purely de Sitter background

= Computation of scalar and tensor power-spectra using €;-expansion, for instance
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Pivot scale

Inflation Reheating Radiation
N* ~ 50-70 efolds Nreh ? P(k)

= k.~ Mpc!is the wave number

around which the expansion is made

Nobs ~ 10 efolils

= Hubble-flow functions are evaluated ‘
at the time N, at which the pivot
scale exited Hubble radius during

inflation

1J. Martin and C. Ringeval (2006) and (2010)
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Inflation Reheating Radiation
N* ~ 50-70 efolds Nreh ? P(k)

= k.~ Mpc!is the wave number

around which the expansion is made

Nobs ~ 10 efolils

= Hubble-flow functions are evaluated ‘
at the time N, at which the pivot
scale exited Hubble radius during

inflation

How is determined N, ?*

1J. Martin and C. Ringeval (2006) and (2010)

Depends on the reheating era!
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Pivot scale and reheating era

The dependence is such that
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For a given potential V(¢) and a reheating history (R:aa), to determine N, we need

= the #(N) <= N(¢) = the (e-fold Nena) at which inflation ended

Two possible ways:

= Exact numerical integration = Slow-roll (SR) approximation

If we stick with analytical methods

= As SR is violated towards the end of inflation, both the approximated trajectory and Nenq are
plagued with (small) error

= Any errors damaging Nena (as the ones building up close to the end of inflation) are folded into all
the values of AN



Assessing slow-roll accuracy: field trajectory

Let us be more precise on slow-roll accuracy
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Let us be more precise on slow-roll accuracy
In full generality

= Friedamnn-Lemaitre equations written in number of e-folds N + Klein-Gordon give the equation
of motion for ¢(IN)

2 dI dlnV _d¢ r?
AT + r - - ) = Jnar? €1 =
6 —T12dN ~~ do dN 2
N—— Friction N——
Acceleration of the field External force

For a slowly rolling field

= The acceleration term is neglected

= Hence the field trajectory
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Assessing slow-roll accuracy: characterization of the end of inflation

= For vanilla single-field models, the accelerated expansion ends through a graceful exit
€1end = €1(Nena) =1 — Pend = I'(Nena) = £V2
= Without knowledge of the exact field trajectory, we resort to solving
T (Nena) = £vV2  with  Niia = N (63ha)
i.e. we extrapolate the slow-roll trajectory up to the end of inflation

. [P V(@)
ANsr(¢) = Nsr(¢) - ::Irl = / ’
T, VW)

de

Two source of errors

Trading AN (¢) — ANs:(¢) induces two errors coming from

ST
'~ Fsr and ¢>end =~ ¢end

To separate the two effects, define ANS(¢) = Ner(¢) — Nex(Pend)



Assessing slow-roll accuracy

Large Field Inflation(LFIy) Small Field Inflation(SF1y)
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Pseudo Natural Inflation(PSNI)

Exponential SUSY Inflation(ESI,)
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Slow-roll approximation performs well!
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Exponential SUSY Inflation(ESI) Pseudo Natural Inflation(PSNI)
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What to conclude?

For the fiducial value AN ~ Ny ~ —61.5, the typical error on the trajectory are O(1) e-folds —
Slow-roll approximation performs well!

Why bother then?

With forthcoming measurements (Euclid, galaxy surveys, LiteBIRD...) this O(1) error will not be
innocuous anymore

Models differing only through their reheating history can be disambiguated (cf C. Ringeval’s talk)
Conversely, if reheating is unknown, AN, constrains Rad
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Integral constraints

We see I' as a function of ¢ and define the absolute error

o dr
6-12dg

E=T(¢) —Tu(¢) with EO.M. 4T =Ty



Integral constraints
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€=T(¢) ~Tu(¢) with EOM. = iFFZ % +T =Ty
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Integral constraints

We see I' as a function of ¢ and define the absolute error

$end b
4 () 1 V6 +T(9)
E()dp =1n {] / dp = —=In |(2F V3) 2
/ 5-1209) o T YT E PTG )
. 2 .
= In SR regime, I'* < 1, the integrated error « If |T| < 1, the integrated error is of order
made between ¢ and ¢ena is In(2/3) ~ —0.4 1n(2 - \/3)/\/6 ~ 70.53

Integral constraints on £

= Both the absolute error € and the relative error £/T" are bounded, deep in the SR regime as well
as at the end of inflation

= One can expand the exact solution with £ or £/T" as small parameters



New expansion of the field trajectory

We express
Pend 1 -
AN = N — Ncn e d . sr () — _ &
(8) = N(9) ~ Nena /¢ e -
so that

Pend g
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¢

SR approximation

and after a Taylor expansion of 1/(1 — £/I)
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New expansion of the field trajectory

We express
bend
_ _ U [ rem _q_¢£
so that .
end ((/‘ .
AN(D) = Noe) = Nuoona)t [ v EEE L=
o}

SR approximation

and after a Taylor expansion of 1/(1 — £/I)
Expansion in £/T

$end 0 ®end k
ee g g
AN(9) = AN (9) + / v+ / {W’)} s
s —~ INCD)
= This expansion is based on the usual SR expansion, as the condition |I'| < 1 is not needed

= Hence it safely incorporates effects coming from the end of inflation

= The "small parameter" £/T is under control thanks to integral constraints
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Velocity correction

The first order correction of this new expansion is exactly calculable!

et E@) o1 [ 20R(9)
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= |t acts as a velocity correction

= Even in slow-roll, for |T'| < 1, the term matters with a logarithmic growth
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Velocity correction

The first order correction of this new expansion is exactly calculable!

et E@) o1 [ 20R(9)
/¢ () =6 [6F2(¢>}

= |t acts as a velocity correction

= Even in slow-roll, for |T'| < 1, the term matters with a logarithmic growth

First order correction
As we are interested in AN (¢) far from the end of inflation, I" ~ I'y, so that
1 2I2 (9)
AN (P) = ANy —ln | ——A—

—> the velocity correction erases the logarithmic error growth w.r.t. AN to less than a tenth of an
e-fold

11



Velocity correction

Large Field Inflation(LFI5) Small Field Inflation(SFIy)
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Endpoint correction

Exponential SUSY Inflation(ESI,) 9 Pseudo Natural Inflation(PSNI)
175 -
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New algebraic methods for implementing endpoint corrections on the value of ¢ena compatible with all
types of single-field models

= Using our integral constraints and trapezoidal approximation
= Matching with Mukhanov inflation

LFI, SFly SI TMI EST; PSNI
Pena | 1.009 0% [9.657 0% [0.615 0% [0.839 0% |0.271 0% |1.564 0%
o g | 1414 40% | 9.361  3.1% | 0.940 53% | 1.208 44% | 0.535 97% | 1.478 5%
Or g | 0984 2.5% | 9.661 0.04% | 0.607 1.3% | 0.826 1.5% | 0.273 0.7% | —  —

oM, 10.986 2.3% | 9.678  0.2% | 0.594 3.4% | 0.825 1.7% | 0.238 12% | 1.604 2%

“end

o
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Conclusion

= Observable predictions for cosmic inflation are measured in e-folds AN = N — Neng

= Determining with precision AN(¢) is crucial to correctly map wavenumbers today to
wavenumbers during inflation

= The approximated trajectory N(¢) is determined via SR with O(1) precision in e-folds
= Same for Ngpg
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Conclusion

= Observable predictions for cosmic inflation are measured in e-folds AN = N — Neng

= Determining with precision AN(¢) is crucial to correctly map wavenumbers today to
wavenumbers during inflation

= The approximated trajectory N(¢) is determined via SR with O(1) precision in e-folds
= Same for Ngpg

In this work

= New methods to improve analytical observable predictions for the trajectory

= Simple and practical velocity correction to the usual SR trajectory
= Kills the absolute error on AN(¢) by an order of magnitude, for all tested models

= Algebraic methods to improve accuracy on the endpoint of inflation ¢end

= Allows a more accurate determination of pong
= Computationally not expensive
= Does not improve the VC correction alone but never degrades it
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For the last word

Incidentally, we derived a new exact solution of the field trajectory when the inflationary potential V is
expressed in e-folds N

Nend
_ _6AN Vend _ 6(n—n) V(n) . _ 1
A(N)=e VN Acna /N e 7V(N) dn  with A(N) = TN T2(N)

Maybe useful, maybe not!
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Thank you for your attention !
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