

Clocking the End of Cosmic Inflation

Pierre Auclair, Baptiste Blachier and Christophe Ringeval

Cosmology, Universe and Relativity at Louvain (CURL) Louvain University, Louvain-la-Neuve, Belgium

Hundreds of scenarios for inflation are competing

- Hundreds of scenarios for inflation are competing
- However, one model-free and perturbative treatment for single-field models: the slow-roll approximation

Hubble-flow functions

$$\epsilon_0(N) = \frac{M_{\rm Pl}}{H}, \qquad \epsilon_{i+1} \equiv \frac{\mathrm{d}\ln|\epsilon_i|}{\mathrm{d}N}$$

• Encodes deviations from a purely de Sitter background

- Hundreds of scenarios for inflation are competing
- However, one model-free and perturbative treatment for single-field models: the slow-roll approximation

Hubble-flow functions

$$\epsilon_0(N) = \frac{M_{\rm Pl}}{H}, \qquad \epsilon_{i+1} \equiv \frac{\mathrm{d}\ln|\epsilon_i|}{\mathrm{d}N}$$

- Encodes deviations from a purely de Sitter background
- Computation of scalar and tensor power-spectra using ϵ_i -expansion, for instance

$$\mathcal{P}_{\zeta}(k) = \frac{H_*^2}{8\pi^2 M_{\rm Pl}^2 \epsilon_1^*} \left[1 - 2(C+1)\epsilon_{1*} - C\epsilon_{2*} - (2\epsilon_{1*} + \epsilon_{2*}) \ln\left(\frac{k}{k_*}\right) + \dots \right]$$

- $k_* \sim \mathrm{Mpc}^{-1}$ is the wave number around which the expansion is made
- Hubble-flow functions are evaluated at the time N_{\ast} at which the pivot scale exited Hubble radius during inflation

¹J. Martin and C. Ringeval (2006) and (2010)

- k_∗ ∼ Mpc⁻¹ is the wave number around which the expansion is made
- Hubble-flow functions are evaluated at the time N_{\ast} at which the pivot scale exited Hubble radius during inflation

How is determined
$$N_*$$
?¹
$$\frac{k_*}{a_0} = \underbrace{(1 + z_{end})^{-1}}_{a(N_{end})} \frac{a(N_*)}{a(N_{end})} H(N_*)$$

$$\xrightarrow{1}$$
J. Martin and C. Ringeval (2006) and (2010) \longrightarrow Depends on the reheating era!

The dependence is such that

$$\Delta N_* \equiv N_* - \underbrace{N_{\text{end}}}_{=} -\ln R_{\text{rad}} + \frac{1}{4} \ln \left[\frac{9}{\epsilon_{1*}(3 - \epsilon_{1\text{end}})} \frac{V_{\text{end}}}{V_*} \right] + \text{cste}$$

Pivot scale and reheating era

The dependence is such that

$$\Delta N_* \equiv N_* - \underbrace{N_{\text{end}}}_{=} -\ln R_{\text{rad}} + \frac{1}{4} \ln \left[\frac{9}{\epsilon_{1*}(3 - \epsilon_{1\text{end}})} \frac{V_{\text{end}}}{V_*} \right] + \text{cste}$$

For a given potential $V(\phi)$ and a reheating history $(R_{
m rad})$, to determine N_* we need

• the field trajectory $\phi(N) \Longleftrightarrow N(\phi)$

• the e-fold N_{end} at which inflation ended

Pivot scale and reheating era

The dependence is such that

$$\Delta N_* \equiv N_* - \underbrace{N_{\text{end}}}_{=} -\ln R_{\text{rad}} + \frac{1}{4} \ln \left[\frac{9}{\epsilon_{1*}(3 - \epsilon_{1\text{end}})} \frac{V_{\text{end}}}{V_*} \right] + \text{cste}$$

For a given potential $V(\phi)$ and a reheating history $(R_{
m rad})$, to determine N_{*} we need

• the field trajectory $\phi(N) \Longleftrightarrow N(\phi)$

• the e-fold N_{end} at which inflation ended

Two possible ways:

Exact numerical integration

• Slow-roll (SR) approximation

Pivot scale and reheating era

The dependence is such that

$$\Delta N_* \equiv N_* - \underbrace{N_{\text{end}}}_{=} -\ln R_{\text{rad}} + \frac{1}{4} \ln \left[\frac{9}{\epsilon_{1*}} \underbrace{\frac{V_{\text{end}}}{V_*}}_{=} \right] + \text{cste}$$

For a given potential $V(\phi)$ and a reheating history $(R_{
m rad})$, to determine N_{*} we need

• the field trajectory $\phi(N) \iff N(\phi)$ • the e-fold N_{end} at which inflation ended

Two possible ways:

Exact numerical integration

Slow-roll (SR) approximation

If we stick with analytical methods

- As SR is violated towards the end of inflation, both the approximated trajectory and $N_{\rm end}$ are plagued with (small) error
- Any errors damaging $N_{\rm end}$ (as the ones building up close to the end of inflation) are folded into all the values of ΔN

Assessing slow-roll accuracy: field trajectory

Let us be more precise on slow-roll accuracy

In full generality

- Friedamnn-Lemaître equations written in number of e-folds N + Klein-Gordon give the equation of motion for $\phi(N)$

Assessing slow-roll accuracy: field trajectory

Let us be more precise on slow-roll accuracy

In full generality

- Friedamnn-Lemaître equations written in number of e-folds N + Klein-Gordon give the equation of motion for $\phi(N)$

For a slowly rolling field

• The acceleration term is neglected

$$\Gamma\simeq\Gamma_{\rm sr}=-\frac{{\rm d}\ln V}{{\rm d}\phi}$$

Hence the field trajectory

$$N_{\rm sr}(\phi) = -\int^{\phi} \frac{V(\psi)}{V'(\psi)} \,\mathrm{d}\psi$$

Assessing slow-roll accuracy: characterization of the end of inflation

• For vanilla single-field models, the accelerated expansion ends through a graceful exit

$$\epsilon_{1 \text{end}} \equiv \epsilon_1(N_{\text{end}}) = 1 \qquad \Longleftrightarrow \qquad \Gamma_{\text{end}} \equiv \Gamma(N_{\text{end}}) = \pm \sqrt{2}$$

Assessing slow-roll accuracy: characterization of the end of inflation

- For vanilla single-field models, the accelerated expansion ends through a graceful exit

$$\epsilon_{1 \text{end}} \equiv \epsilon_1(N_{\text{end}}) = 1 \qquad \Longleftrightarrow \qquad \Gamma_{\text{end}} \equiv \Gamma(N_{\text{end}}) = \pm \sqrt{2}$$

· Without knowledge of the exact field trajectory, we resort to solving

$$\Gamma_{
m sr}(N_{
m end}^{
m sr}) = \pm \sqrt{2}$$
 with $N_{
m end}^{
m sr} = N_{
m sr}(\phi_{
m end}^{
m sr})$

i.e. we extrapolate the slow-roll trajectory up to the end of inflation

$$\Delta N_{\rm sr}(\phi) \equiv N_{\rm sr}(\phi) - N_{\rm end}^{\rm sr} = \int_{\phi}^{\phi_{\rm end}^{\rm sr}} \frac{V(\psi)}{V'(\psi)} \,\mathrm{d}\psi$$

Assessing slow-roll accuracy: characterization of the end of inflation

- For vanilla single-field models, the accelerated expansion ends through a graceful exit

$$\epsilon_{1 \text{end}} \equiv \epsilon_1(N_{\text{end}}) = 1 \qquad \Longleftrightarrow \qquad \Gamma_{\text{end}} \equiv \Gamma(N_{\text{end}}) = \pm \sqrt{2}$$

Without knowledge of the exact field trajectory, we resort to solving

$$\Gamma_{
m sr}(N_{
m end}^{
m sr}) = \pm \sqrt{2}$$
 with $N_{
m end}^{
m sr} = N_{
m sr}(\phi_{
m end}^{
m sr})$

i.e. we extrapolate the slow-roll trajectory up to the end of inflation

$$\Delta N_{\rm sr}(\phi) \equiv N_{\rm sr}(\phi) - N_{\rm end}^{\rm sr} = \int_{\phi}^{\phi_{\rm end}^{\rm sr}} \frac{V(\psi)}{V'(\psi)} \,\mathrm{d}\psi$$

Two source of errors

Trading $\Delta N(\phi) \longrightarrow \Delta N_{\rm sr}(\phi)$ induces two errors coming from

 $\Gamma\simeq\Gamma_{
m sr}$ and $\phi_{
m end}\simeq\phi_{
m end}^{
m sr}$

To separate the two effects, define $\Delta N_{
m sr}^{
m ee}(\phi)\equiv N_{
m sr}(\phi)-N_{
m sr}(\phi_{
m end})$

7

What to conclude?

For the fiducial value $\Delta N \simeq N_0 \sim -61.5$, the typical error on the trajectory are O(1) e-folds \implies Slow-roll approximation performs well!

What to conclude?

For the fiducial value $\Delta N \simeq N_0 \sim -61.5$, the typical error on the trajectory are O(1) e-folds \implies Slow-roll approximation performs well!

Why bother then?

- With forthcoming measurements (Euclid, galaxy surveys, LiteBIRD...) this $\mathcal{O}(1)$ error will not be innocuous anymore
- Models differing only through their reheating history can be disambiguated (cf C. Ringeval's talk)
- Conversely, if reheating is unknown, ΔN_* constrains $R_{\rm rad}$

Correcting slow-roll

Integral constraints

We see Γ as a function of ϕ and define the absolute error

$$\mathcal{E} \equiv \Gamma(\phi) - \Gamma_{\rm sr}(\phi) \quad \text{with E.O.M.} \quad \frac{2\Gamma}{6 - \Gamma^2} \frac{d\Gamma}{d\phi} + \Gamma = \Gamma_{\rm sr}$$

Integral constraints

We see Γ as a function of ϕ and define the absolute error

$$\mathcal{E} \equiv \Gamma(\phi) - \Gamma_{
m sr}(\phi)$$
 with E.O.M. $\frac{2\Gamma}{6 - \Gamma^2} \frac{d\Gamma}{d\phi} + \Gamma = \Gamma_{
m sr}$

$$\int_{\phi}^{\phi_{\text{end}}} \mathcal{E}(\psi) \, \mathrm{d}\psi = \ln\left[\frac{4}{6 - \Gamma^2(\phi)}\right]$$

$$\int_{\phi}^{\phi_{\text{end}}} \frac{\mathcal{E}(\psi)}{\Gamma(\psi)} \, \mathrm{d}\psi = \frac{1}{\sqrt{6}} \ln\left[(2 \mp \sqrt{3}) \frac{\sqrt{6} + \Gamma(\phi)}{\sqrt{6} - \Gamma(\phi)} \right]$$

- In SR regime, $\Gamma^2 \ll 1$, the integrated error made between ϕ and $\phi_{\rm end}$ is $\ln(2/3) \simeq -0.4$

• If $|\Gamma| \ll 1$, the integrated error is of order $\ln\left(2\mp\sqrt{3}\right)/\sqrt{6}\simeq\mp0.53$

Integral constraints

We see Γ as a function of ϕ and define the absolute error

$$\mathcal{E} \equiv \Gamma(\phi) - \Gamma_{\rm sr}(\phi) \quad {\rm with \ E.O.M.} \quad \frac{2\Gamma}{6 - \Gamma^2} \frac{d\Gamma}{d\phi} + \Gamma = \Gamma_{\rm sr}$$

$$\int_{\phi}^{\phi_{\text{end}}} \mathcal{E}(\psi) \, \mathrm{d}\psi = \ln\left[\frac{4}{6 - \Gamma^2(\phi)}\right] \qquad \qquad \int_{\phi}^{\phi_{\text{end}}} \frac{\mathcal{E}(\psi)}{\Gamma(\psi)} \, \mathrm{d}\psi = \frac{1}{\sqrt{6}} \ln\left[(2 \mp \sqrt{3}) \frac{\sqrt{6} + \Gamma(\phi)}{\sqrt{6} - \Gamma(\phi)}\right]$$

• In SR regime, $\Gamma^2 \ll 1$, the integrated error made between ϕ and $\phi_{\rm end}$ is $\ln(2/3) \simeq -0.4$

• If $|\Gamma| \ll 1$, the integrated error is of order $\ln(2 \mp \sqrt{3})/\sqrt{6} \simeq \mp 0.53$

Integral constraints on ${\cal E}$

- Both the absolute error \mathcal{E} and the relative error \mathcal{E}/Γ are bounded, deep in the SR regime as well as at the end of inflation
- One can expand the exact solution with \mathcal{E} or \mathcal{E}/Γ as small parameters

New expansion of the field trajectory

We express

$$\Delta N(\phi) = N(\phi) - N_{\text{end}} = -\int_{\phi}^{\phi_{\text{end}}} \mathrm{d}\psi \, \frac{1}{\Gamma_{\text{sr}}(\psi)} \underbrace{\frac{\Gamma_{\text{sr}}(\psi)}{\Gamma(\psi)}} = 1 - \frac{\mathcal{E}}{\Gamma}$$

so that

$$\Delta N(\phi) = \underbrace{N_{\rm sr}(\phi) - N_{\rm sr}(\phi_{\rm end})}_{\Gamma_{\rm sr}(\psi)} + \int_{\phi}^{\phi_{\rm end}} \mathrm{d}\psi \, \frac{\mathcal{E}(\psi)}{\Gamma^2(\psi)} \underbrace{\frac{\Gamma(\psi)}{\Gamma_{\rm sr}(\psi)}}_{\Gamma_{\rm sr}(\psi)} = \frac{1}{1 - \frac{\mathcal{E}}{\Gamma_{\rm sr}}}$$

SR approximation

and after a Taylor expansion of $1/(1-\mathcal{E}/\Gamma)$

New expansion of the field trajectory

We express

$$\Delta N(\phi) = N(\phi) - N_{\text{end}} = -\int_{\phi}^{\phi_{\text{end}}} \mathrm{d}\psi \, \frac{1}{\Gamma_{\text{sr}}(\psi)} \underbrace{\frac{\Gamma_{\text{sr}}(\psi)}{\Gamma(\psi)}} = 1 - \frac{\mathcal{E}}{\Gamma}$$

so that

$$\Delta N(\phi) = \underbrace{N_{\rm sr}(\phi) - N_{\rm sr}(\phi_{\rm end})}_{\text{SR examplified}} + \int_{\phi}^{\phi_{\rm end}} \mathrm{d}\psi \, \frac{\mathcal{E}(\psi)}{\Gamma^2(\psi)} \underbrace{\frac{\Gamma(\psi)}{\Gamma_{\rm sr}(\psi)}}_{= \frac{1}{1 - \frac{\mathcal{E}}{\Gamma}}}$$

SR approximation

and after a Taylor expansion of $1/(1-\mathcal{E}/\Gamma)$

Expansion in \mathcal{E}/Γ

$$\Delta N(\phi) = \Delta N_{\rm sr}^{\rm ee}(\phi) + \int_{\phi}^{\phi_{\rm end}} \frac{\mathcal{E}(\psi)}{\Gamma^2(\psi)} \,\mathrm{d}\psi + \sum_{k=2}^{\infty} \int_{\phi}^{\phi_{\rm end}} \frac{1}{\Gamma(\psi)} \left[\frac{\mathcal{E}(\psi)}{\Gamma(\psi)}\right]^k \,\mathrm{d}\psi$$

- This expansion is not based on the usual SR expansion, as the condition $|\Gamma|\ll 1$ is not needed
- Hence it safely incorporates effects coming from the end of inflation
- The "small parameter" \mathcal{E}/Γ is under control thanks to integral constraints

Velocity correction

The first order correction of this new expansion is exactly calculable!

$$\int_{\phi}^{\phi_{\text{end}}} \frac{\mathcal{E}(\psi)}{\Gamma^2(\psi)} \, \mathrm{d}\psi = \frac{1}{6} \ln \left[\frac{2\Gamma^2(\phi)}{6 - \Gamma^2(\phi)} \right]$$

- It acts as a velocity correction
- Even in slow-roll, for $|\Gamma|\ll 1,$ the term matters with a logarithmic growth

Velocity correction

The first order correction of this new expansion is exactly calculable!

$$\int_{\phi}^{\phi_{\text{end}}} \frac{\mathcal{E}(\psi)}{\Gamma^2(\psi)} \, \mathrm{d}\psi = \frac{1}{6} \ln \left[\frac{2\Gamma^2(\phi)}{6 - \Gamma^2(\phi)} \right]$$

- It acts as a velocity correction
- Even in slow-roll, for $|\Gamma|\ll 1,$ the term matters with a logarithmic growth

First order correction

As we are interested in $\Delta N(\phi)$ far from the end of inflation, $\Gamma \simeq \Gamma_{\rm sr}$ so that

$$\Delta N_{\rm sr}^{\rm vc}(\phi) \equiv \Delta N_{\rm sr}(\phi) + \frac{1}{6} \ln \left[\frac{2\Gamma_{\rm sr}^2(\phi)}{6 - \Gamma_{\rm sr}^2(\phi)} \right]$$

 \implies the velocity correction erases the logarithmic error growth w.r.t. ΔN to less than a tenth of an e-fold

Velocity correction

12

Endpoint correction

New algebraic methods for implementing endpoint corrections on the value of ϕ_{end} compatible with all types of single-field models

- Using our integral constraints and trapezoidal approximation
- Matching with Mukhanov inflation

	LFI ₂		SFI ₄₁		SI		TMI		ESI_1		PSNI	
$\phi_{\rm end}$	1.009	0%	9.657	0%	0.615	0%	0.839	0%	0.271	0%	1.564	0%
$\phi_{\mathrm{end}}^{\mathrm{sr}}$	1.414	40%	9.361	3.1%	0.940	53%	1.208	44%	0.535	97%	1.478	5%
$\phi_{\mathrm{end}}^{\pi}$	0.984	2.5%	9.661	0.04%	0.607	1.3%	0.826	1.5%	0.273	0.7%	—	—
$\phi_{\rm end}^{\rm m}$	0.986	2.3%	9.678	0.2%	0.594	3.4%	0.825	1.7%	0.238	12%	1.604	2%

Conclusion

- Observable predictions for cosmic inflation are measured in e-folds $\Delta N = N N_{\rm end}$
- Determining with precision $\Delta N(\phi)$ is crucial to correctly map wavenumbers today to wavenumbers during inflation
 - The approximated trajectory $N(\phi)$ is determined via SR with $\mathcal{O}(1)$ precision in e-folds
 - Same for $N_{\rm end}$

Conclusion

- Observable predictions for cosmic inflation are measured in e-folds $\Delta N = N N_{\rm end}$
- Determining with precision $\Delta N(\phi)$ is crucial to correctly map wavenumbers today to wavenumbers during inflation
 - The approximated trajectory $N(\phi)$ is determined via SR with $\mathcal{O}(1)$ precision in e-folds
 - Same for $N_{\rm end}$

In this work

- New methods to improve analytical observable predictions for the trajectory
 - Simple and practical velocity correction to the usual SR trajectory
 - Kills the absolute error on $\Delta N(\phi)$ by an order of magnitude, for all tested models

Conclusion

- Observable predictions for cosmic inflation are measured in e-folds $\Delta N = N N_{\rm end}$
- Determining with precision $\Delta N(\phi)$ is crucial to correctly map wavenumbers today to wavenumbers during inflation
 - The approximated trajectory $N(\phi)$ is determined via SR with $\mathcal{O}(1)$ precision in e-folds
 - Same for $N_{\rm end}$

In this work

- New methods to improve analytical observable predictions for the trajectory
 - Simple and practical velocity correction to the usual SR trajectory
 - Kills the absolute error on $\Delta N(\phi)$ by an order of magnitude, for all tested models
- Algebraic methods to improve accuracy on the endpoint of inflation ϕ_{end}
 - Allows a more accurate determination of $ho_{
 m end}$
 - Computationally not expensive
 - Does not improve the VC correction alone but never degrades it

Incidentally, we derived a new exact solution of the field trajectory when the inflationary potential V is expressed in e-folds ${\cal N}$

$$\Lambda(N) = e^{-6\Delta N} \frac{V_{\rm end}}{V(N)} \Lambda_{\rm end} - \int_{N}^{N_{\rm end}} e^{6(n-N)} \frac{V(n)}{V(N)} \,\mathrm{d}n \quad \text{with} \quad \Lambda(N) \equiv \frac{1}{6 - \Gamma^2(N)} \frac{V(n)}{V(N)} \,\mathrm{d}n$$

Maybe useful, maybe not!

Thank you for your attention !