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Introduction

• Study of BH perturbations is crucial to model the GW signal from a binary BH
merger in the ringdown phase

• Non-linear perturbations play an important role at the beginning of this
phase

• Algebraically special perturbations play a key role in the identification of the
symmetries of BH perturbations

• They are also the only known analytic solution to the perturbation equations
• Goal of this work: investigate quadratic algebraically special perturbations of
the Schwarzschild BH

1



Linear perturbations Twisting vacuum solution Results for quadratic perturbations

Linear BH perturbations

Usual perturbation setup

gµν = ḡµν + ε hµν , ε � 1

Main idea: Decomposition of hµν using the symmetries of ḡµν

• 2+2 scalar-vector-tensor decomposition of hµν
• Gauge fixing [Regge, Wheeler ’57; Zerilli ’70]
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Analytical solutions

• Usual resolution procedure: Fourier transformation
• Recover contributions from quasi-normal modes and late-time tail
• Only numerical resolution

Analytical result [Chandrasekhar ’84]

YRW = eκa(t−r∗)fa(r) , YZ = e−κp(t−r∗)fp(r) , κ =
(`− 1)`(`+ 1)(`+ 2)

12M

• Purely outgoing waves (ingoing solutions also exist by time reversal)
• Divergent at the horizon r∗ → −∞
• Crucial for the proof of isospectrality [Glampedakis, Johnson+ ’17]
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Petrov classification

Main idea: classify spacetimes by multiplicity of the principal null directions of
the Weyl tensor. Higher multiplicity −→ higher symmetry

I

II

III

D

N O

General BH perturbations

Analytical perturbations

Black hole spacetime

algebraically
special
spacetimes

• Black hole perturbations are type I in general [Araneda ’18]
• These analytical perturbations are of type II: algebraically special

→ Can one recover these analytical perturbations starting from the algebraically
special requirement? 4
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Setup for the resolution

Goldberg-Sachs theorem
A vacuum solution of the Einstein field equations will admit a shear-free null
geodesic congruence if and only if the Weyl tensor is algebraically special.

Construction of the metric [Stephani, Kramer+ ’03]

ds2 = −2ωlωn + 2ωmωm̄

ωl = du + 2Re(L dz) , ωn = dr + 2Re(W dz) + Hωl , ωm =
dz̄
Pρ

• Metric depends on reals m(u, z, z̄), P(u, z, z̄) and complex L(u, z, z̄)
• H , W and ρ can be deduced from these 3 quantities
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Full equations of motion

Definitions:

ρ = − 1
r + iΣ

, 2iΣ = P2(∂̄L − ∂L̄) ,

W =
∂uL
ρ

+ ∂(iΣ) , ∂ = ∂z − L∂u ,

H =
K
2

− r∂u(log(P))− mr + NΣ

r2 +Σ2 , K = 2P2 Re(∂(∂̄ logP − ∂uL̄)) ,

N = ΣK + P2 Re(∂∂̄Σ− 2∂uL̄∂Σ− Σ∂u∂L̄) ,

Evolution:

i∂N − 3(m + iN )∂uL = 0 ,
P
[
∂ + 2(∂ logP − ∂uL̄)

]
∂
[
∂̄(∂̄ logP − ∂uL̄) + (∂̄ logP − ∂uL̄)2]− ∂u

[
P−3(m + iN )

]
= 0 .
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Linear perturbation setup

Schwarzschild solution
The Schwarzschild BH is recovered by setting spherical symmetry:

m(u, z, z̄) = M , P(u, z, z̄) = P0(z, z̄) =
1√
2
(1 + zz̄) , L(u, z, z̄) = 0 .

• Perturbative study: expand around this background
• Linear case investigated in part in [Couch, Newman ’73; Qi, Schutz ’93]

• Introduce ε � 1 and two real perturbation functions f1 and F1:

P(u, z, z̄) = P0(z, z̄)eεF1(u,z,z̄) , L(u, z, z̄) = iε∂z
[
f1(u, z, z̄)

]
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Linear perturbation resolution

Evolution equations
Einstein equations imply two evolution equations:

∆0∆0f1 + 2∆0f1 − 12M∂uf1 = 0 and ∆0∆0F1 + 2∆0F1 + 12M∂uF1 = 0

• To solve, decompose on spherical harmonics since ∆0Y m
` = −`(`+ 1)Y m

`

• Solutions are of the form

f1 = EaeκauY ma
`a

and F1 = Epe−κpuY mp
`p

→ recover Chandrasekhar’s result of outgoing waves obtained as analytical
solutions of the perturbation equations!
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Motivation

Investigation of non-linear GR
• Backreaction of perturbations on the BH properties (mass, spin)
• Non-linear deformability (Love numbers)

Consistency checks of numerical
simulations
• Analytical solution convenient
for verification of the simulated
amplitudes [Bucciotti, Juliano+ ’24]

Experimental detection of quadratic
perturbations
• Next-gen detectors will be
sensitive to quadratic
perturbations [Yi, Kuntz+ ’24]
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Principle of the computation

Perturbation setup
Introduce two new functions F2 and f2:

P = P0eεF1+ε2F2 , L = iε∂z f1 + ε2[i∂z f2 + κa∂z(f 2
1 )
]

Evolution equations become

∆0∆0f2 + 2∆0f2 − 12M∂uf2 = A(f1,F1)

∆0∆0F2 + 2∆0F2 + 12M∂uF2 = P(F1,F1) +Q(f1, f1) +R(f1,F1)

• Non-homogeneous linear equations imply amplitudes are fixed
• Can still be solved by decomposition onto spherical harmonics and use of
Clebsch-Gordan coefficients 10
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Result for the axial sector

• Analytic form of the source term (non-trivial to obtain)
A = −2F1∆0∆0f1 − 2∆0F1∆0f1 − 2∆0(F1∆0f1)− 8F1∆0f1

• Decomposed onto spherical harmonics: A = EpEae(κa−κp)u ∑
`,m A`

mY m
`

• Decomposition coefficients:
A`

m = −2`a(`a + 1)
[
`a(`a + 1) + `p(`p + 1) + `(`+ 1)− 4

]
kmamp`
`a`pm

Analytical solution

f2 = EpEae(κa−κp)u
∑
`,m

a`
mY m

` , a`
m =

A`
m

κ− κa + κp

→ from this, one can recover the metric content and check that it explicitly solves
the quadratic perturbation equations!

Clebsch-Gordan
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Time-independent perturbations

• Perturbations are time-independent if and only if κa = κp = 0, so
`a, `p ∈ {0, 1}

• They correspond to non-linear zero modes of the Schwarzschild BH
• Linear level: axial monopole is gauge and dipole adds spin, polar monopole
changes mass and polar dipole is gauge [Martel, Poisson ’05]

• Quadratic level, dipole-dipole interaction: modification of spin due to the
axial dipole + of mass due to the polar dipole→ change of BH horizon
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Conclusion

• First investigation of algebraically special quadratic perturbations of the
Schwarzschild BH

• Obtain an analytical solution of the quadratic perturbation equations using
a general Petrov type II solution of Einstein’s equations

• Can be used to investigate non-linear zero modes and check numerical
simulations

• Open the road to look for hidden symmetries of BH perturbations as in the
linear case

• Next step: generalisation to Kerr (work in progress)
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Thank you for your attention!
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