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Motivations

Motivations for PBHs

• May constitute part of Dark Matter

• May seed the formation of SMBHs

• May lead to some of the mergers seen by LVK

Constraints

• Microlensing

• Cosmic Microwave Background

• Limits to their merger rates (GW)

Motivations to study clustering

Sizeable clustering may:

• change past and present merger rate of PBH binaries

• modify the formation of cosmological structures

• relax bounds set by CMB and microlensing

Evolution of PBH clustering involves complicated non-linear dynamics, the initial amount of clustering

can produce drastic effects on the subsequent evolution.
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Different approaches to study spatial clustering

Most approaches used in the literature rely on large-scale structure formalism applied in the context of

galaxy and halo formation. We are mostly interested in the two-point correlation function.

• Poisson model and bias theory

• Press-Schechter formalism

• Excursion-set formalism

• Peak theory

Purpose of the presentation:

• Explicit some of the key differences between the different approaches above.

• Derive explicit expressions for the initial two-point statistics of PBHs...

• using the excursion-set formalism...

• in order to account for “cloud-in-cloud”...

• and exclusion effects at short separation scales
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Poisson model and bias theory

One postulates the existence of a field ρPBH(x⃗):

• Probability to form a PBH is ρPBHδV

• Average density of PBHs is n = ⟨ρPBH⟩

• Joint probability to form PBHs

δP = ρPBH(x⃗1)δV1ρPBH(x⃗2)δV2

• Auto-correlation function

ξPBH(r) =

〈
[ρPBH(x⃗+ r⃗)− n][ρPBH(x⃗)− n]

n2

〉
• Average joint probability to form PBHs

δP (r) = n2[1 + ξPBH(r)]δV1δV2
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Poisson model and bias theory

One postulates the existence of a field ρPBH(x⃗):

• Probability to form a PBH is ρPBHδV

• Average density of PBHs is n = ⟨ρPBH⟩

• Joint probability to form PBHs
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• Auto-correlation function

ξPBH(r) =

〈
[ρPBH(x⃗+ r⃗)− n][ρPBH(x⃗)− n]

n2

〉
• Average joint probability to form PBHs

δP (r) = n2[1 + ξPBH(r)]δV1δV2

Technical challenges

• A perturbation theory for the

(over-)density fields δ after inflation

• A bias b to relate ρPBH with δ

Limitations

• “Cloud-in-cloud”

• Small-scale exclusion effects

• Estimating the bias is difficult
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“Press-Schechter”-inspired Ali-Haimoud 2018

• Critical density threshold δc

• Probability to form a PBH around x⃗1
a

P1 =

∫ ∞

δc

1√
2πσ2

exp

(
− δ2

2σ2

)
dδ =

1

2
erfc

(
δc√
2σ

)
• Probability to form a pair of PBHs

P2(r) =

∫∫ ∞

δc

1

2π det(Σ)
exp

(
−1

2
δ⃗TΣ−1δ⃗

)
d2δ

Σ =

(
σ2 Sr

Sr σ2

)
• Auto-correlation function

1 + ξPBH(r) =
P2(r)

P 2
1

aδ(x⃗) Gaussian field
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σ2 Sr

Sr σ2

)
• Auto-correlation function

1 + ξPBH(r) =
P2(r)

P 2
1

aδ(x⃗) Gaussian field

Technical challenges

• A perturbation theory for the

(over-)density fields δ after inflation

• Estimation of the density threshold δc

based on numerical relativity

Limitations

• “Cloud-in-cloud”

• Cannot account for small-scale exclusion

effects

Baseline to evaluate our work
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Coarse-graining
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Coarse-graining
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Excursion-set formalism Bond et al. 1991

• Multi-scale analysis ⇔ Langevin trajectories δR

• Gravitationally bound ⇔ Barrier crossing δc(R)

• PBHs ⇔ first passage time problem PFPT
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Joint probability to form pairs of PBHs

Setup

• Take a realization of δρ/ρ and two points

• On scales ≫ r, they see ≈ same

perturbations

• On scales ≪ r, they see independent

perturbations

• Translation to Langevin trajectories

Joint probability to form a pair of PBHs with masses S1, S2

P2(S1, S2; r) =

∫ δc(Sr)

−∞
dδr P (δr, Sr)PFPT(S1|δr, Sr)PFPT(S2|δr, Sr)
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Auto-correlation function (scale-invariant threshold δc)

• Probability to form one PBH

P1 = erfc

(
δc√
2σ

)

• Marginalized joint probability

P2(r) =

∫∫ σ2

Sr

P2(S1, S2; r) dS1 dS2

• Two-point correlation function

1 + ξPBH(r) =
P2(r)

P 2
1

• ω measures separations

ω ≡ Sr

σ2
≈

0 r → ∞
1 r → 0
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Auto-correlation function (scale-invariant threshold δc)

• Probability to form one PBH

P1 = erfc

(
δc√
2σ

)
• Marginalized joint probability

P2(r) =

∫∫ σ2

Sr
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≈
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Pairwise correlation functions

Joint probability to form a pair of PBHs with masses S1, S2

P2(S1, S2; r) =

∫ δc(Sr)

−∞
dδr P (δr, Sr)PFPT(S1|δr, Sr)PFPT(S2|δr, Sr)

Setup

• Take two PBHs with masses M1,M2

• Excess probability to find them at distance r

1 + ξS1,S2(r) =
P2(S1, S2; r)

P1(S1)P1(S2)

• wi = Si/Sr
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Pairwise correlation functions
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Conclusion

Summary

• PBH collapse =⇒ first-passage time of a Langevin trajectory

• Clustering =⇒ joint first-passage times of two trajectories with common past

• Effective exclusion effects on small scales ξPBH → −1, and cloud-in-cloud

• Access to the probability distribution of the mass-ratio

Ongoing and future works

• From “abstract” → actual physical scenarii

• From “initial clustering” → merger rate with B. Blachier

• Beyond Gaussian initial conditions (Stochastic inflation) with C. Animali, B. Blachier, V. Vennin
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Two-point correlation function (fixed δc)

Mean number density

n = P1 ≡
∫ σ2

0

PFPT(s) ds = erfc

(
ν√
2

)
, ν ≡ δc

σ

For a fixed threshold δc, the two integrals over S1 and S2 in P2 can be computed analytically.

P2 =

√
2 e−

ν2

2w

√
πw

∫ ∞

0

sinh
( ν

w
x
)
erfc2

[
x√

2(1− w)

]
e−

x2

2w dx .



Pairwise correlation function (fixed δc)

Using ∫ ∞

0

dxx2 e−βx2

sinh(γx) =

√
π(2β + γ2)

8β2
√
β

e
γ2

4β erf

(
γ

2
√
β

)
+

γ

4β2
,

the cross-correlation writes

1 + ξS1,S2(r) =
eλ

2(w1+w2−1)

√
πλ

√
(1− w1)(1− w2)

(1− w1w2)2

{
1 +

√
πλ

√
(1− w1)(1− w2)

1− w1w2

×
[

1

2λ2

1− w1w2

(1− w1)(1− w2)
+ 1

]
e
λ2 (1−w1)(1−w2)

1−w1w2 erf

[
λ

√
(1− w1)(1− w2)

1− w1w2

]}
.
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