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The propagation of waves in nonlinear media may be controlled to engineer situations where 
the waves propagate as though they were on an effectively curved geometry, like around a 
black hole or in an inflating universe. This enables the experimental study of field theories on 
curved geometries.

Controlled propagation of waves → effective geometry → linearised excitations
(curvature) (quantum field)(engineered nonlinearity)
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The propagation of waves in nonlinear media may be controlled to engineer situations where 
the waves propagate as though they were on an effectively curved geometry, like around a 
black hole or in an inflating universe. This enables the experimental study of field theories on 
curved geometries.

Controlled propagation of waves → effective geometry → linearised excitations
(curvature) (quantum field)(engineered nonlinearity)

Spatial change in geometry: black hole Temporal change in geometry: cosmology

Spontaneous emission from the vacuum Correlated/entangled waves Dynamical instabilities



Spacetime curvature
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Point of no returnPoint of no return

Point of no return = event horizon

General Relativity identifies gravity with curvature of spacetime



Foundations of analogue gravity
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Wave eq for collective excitations of quantum fluid

Fluid velocity Speed of sound

Relativistic form of wave eq for collective excitations:

Motion of collective excitations in inhomogeneous fluid flow ↔ scalar field on curved spacetime

In a quantum fluid
m – mass
g – interaction constant
n0 – mean field density

with

Control parameters: v0, cs

Surface gravity

Unruh PRL 46 1351 (1981), Visser Class Quant Grav 15 1767 (1998) 
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Possible geometries with

(i) transsonic flow along 1 spatial dimension → stationary 1D spacetime
       Horizon where

(ii) radially transsonic flow in 2 spatial dimensions → stationary spherically symmetric 2D spacetime
       Horizon where

(iii) radially and azimuthally transsonic flow in 2 spatial dimensions → stationary rotating spacetime
       Horizon where 
       Ergosurface where

Almeida et al. EPJH 48 15 (2023)

Effective spacetime in spatially inhomogeneous fluid flows

Fluid velocity Speed of sound
In a (quantum) fluid m – mass

g – interaction constant
n0 – mean field density



The Hawking effect of `analogues’
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Theory: Jacquet et al in prep 2024 + EPJD 76 152 (2022),
Exp: Falque et al arXiv:2311.01392
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SH controlled by surface gravity

Agullo et al “Event horizons are tunable factories of quantum entanglement” Int. Jour. Mod. Phys. D 31 2242008 (2022)



Polaritons = photons dressed with material excitations that live in the cavity plane

Microcavity polaritons

exciton

cavity photon
→ effective mass

→ interactions

Carusotto and Ciutti RMP 85 299 (2013)



Polaritons = photons dressed with material excitations that live in the cavity plane

50um

75um

Dynamics in the cavity plane described by Gross-Pitaevskii (Nonlinear Schrödinger) equation:

Driven-dissipative dynamics  →  Out-of-equilibrium system
     polariton-polariton interaction constant

     Losses

     pump

exciton

cavity photon
→ effective mass

→ interactions

Microcavity polaritons Carusotto and Ciutti RMP 85 299 (2013)



Polaritons = photons dressed with material excitations that live in the cavity plane

Imaging photons leaking out of the cavity

50um

75um

Dynamics in the cavity plane described by Gross-Pitaevskii (Nonlinear Schrödinger) equation:

Driven-dissipative dynamics  →  Out-of-equilibrium system
     polariton-polariton interaction constant

     Losses

     pump

SLM to control phase and mode of pump

Carusotto and Ciutti RMP 85 299 (2013)

exciton

cavity photon
→ effective mass

→ interactions

Microcavity polaritons

Our sample: DBR GaAs, QW InGaAs, Q = 3000, T=4K,
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GPE:

Linearise GPE around steady-state solution

→ Bogoliubov – de Gennes dynamics for

WKB dispersion relation

Bogoliubov spectrum out of equilibrium

higher order
derivatives

pump-dependent
         mass

spectral linewidth

LP

Quasi-resonant photon injection Pump-dependent mass

Falque K et al., arXiv:2311.01392

Falque K et al., arXiv:2311.01392
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GPE:

Linearise GPE around steady-state solution

→ Bogoliubov – de Gennes dynamics for

WKB dispersion relation

Bogoliubov spectrum out of equilibrium

nonlinearities pump-dependent
         mass

spectral linewidth

LP

Pump-dependent mass

Falque K et al., arXiv:2311.01392



Norm of Bogoliubov excitations Jacquet MJ et al., EPJD 76 2022
Falque K et al., arXiv:2311.01392

  
 

k [μm-1]

In fluid rest frame, excitations have frequencies

Expansion of acoustic field in terms of excitations Dispersion relation in fluid rest frame

Norm of excitations = Noether charge

In fluid rest frame:
positive-norm mode

negative-norm mode

14



Experimental scheme
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Experimental scheme
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How to create the effective spacetime?
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Falque K et al., arXiv:2311.01392



The effective spacetime
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Output:

Pavloff et al PRA 68 063608 (2003)

Falque K et al., arXiv:2311.01392



Tuning the effective spacetime
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0.6 1.4

Falque K et al., arXiv:2311.01392



Tuning the effective spacetime
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0.6 1.4

0.6 1.9

Falque K et al., arXiv:2311.01392



Tuning the effective spacetime
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0.6 1.4

0.6 3.6

0.6 1.9

Strength of emission controlled by

Falque K et al., arXiv:2311.01392



Bogoliubov spectrum in transsonic fluid
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Falque K et al., arXiv:2311.01392



Entanglement by the Hawking effect
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Theory: Jacquet et al in prep 2024
Exp: Falque et al arXiv:2311.01392
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Today

PRL 129 103601 2022, PRB 107 174507 2023

I Agullo et al PRL 128 091301 2022
arXiv:2307.06215

Quantum optics experiments
● Measure phase and density → access full field statistics and dynamics
● Homodyne detection to enhance signal strength and measure quantum correlations

● Enhance strength of emission and degree of entanglement by probing with squeezed state

24

Experiment arXiv:2311.01392

Experiments with polaritons
● High-resolution method to measure spectrum

● All-optical control of curvature
● tunable surface gravity κ → observe two-mode squeezing
● Measurement of spectrum → QFT

Theory: EPJD 76 152 2022
             PRL 130 111501 2023

Where do we go from here?

Entanglement in rotating geometries?
Theory: PRD 109 105024 2024



Winter school analogue gravity/cosmology in Benasque 7th - 17th January 2026
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