Strong Mixing At the Cosmological Collider

Arthur Poisson 2ndr year PhD student Sébastien Renaux-Petel Supervisor

Théorie, Univers et Gravitation November 6*th* 2024

Outline

• What is the cosmological collider?

• What is the strong mixing regime?

• How can we study it?

Outline

• What is the cosmological collider?

• What is the strong mixing regime?

• How can we study it?

Which Observable in Cosmology?

• We observe the primordial density fluctuations.

- We predict their distribution $\mathbb{P}(\delta \rho_k)$
- The physics we want = encoded in the higher point correlators:

The Non-Gaussianities.

Energy Scales

• Inflationary physics = Very High energy scales.

- PLANCK constraints: $H \lesssim 10^{14}$ GeV
- **Energy Conservation**: we cannot produce on-shell particles heavier than 10^4 GeV at the LHC.
- High-energy theories: often rely on the existence of very massive particles.

Idea: Use Inflation as a **Cosmological Collider**

Spontaneous Particle Production

- Expansion = time dependent background: No energy conservation.
- Massive particles are spontaneously produced!

No *σ* Particles

• Initially, $|\Psi\rangle$ and $|\Omega\rangle$ coincide and they are driven away from each other by the expanding background.

Spontaneous Particle Production

- Expansion = time dependent background: No energy conservation.
- Massive particles are **spontaneously** produced!
- Produced massive particles can decay into density fluctuations.

Exchange Process in Inflation

- End of Inflation = Initial Condition for Large Scale Structures.
- Different process in the bulk leads to different correlations.

Cosmological Collider Signal

• Exchange of massive particles leads to oscillating behavior in the squeezed limit:

$$
\langle \delta \rho^{k_1} \delta \rho^{k_2} \delta \rho^{k_3} \rangle \sim \left(\frac{k_3}{k_2}\right)^{1/2} e^{-\pi m / H} \cos\left(\frac{m}{H} \log\left(\frac{k_3}{k_1}\right) + \varphi\right)
$$

Figure from Werth, Pinol, Renaux-Petel, [2312.06559](https://arxiv.org/abs/2312.06559) Using $\mathcal{C}osmo\mathcal{F}low^{TM}$

• Physically: property of massive field propagation if $m \gg H$:

$$
\sigma'' - \frac{2}{\tau}\sigma' + \left(k^2 + \frac{m^2}{\tau^2H^2}\right)\sigma = 0
$$

$$
\implies \sigma \sim (k\tau)^{\frac{3}{2} \pm \Delta}, \Delta = \sqrt{\frac{9}{4} - \frac{m^2}{H^2}}
$$

Outline

• What is the cosmological collider?

• What is the strong mixing regime?

• How can we study it?

- We can build a general theory of inflationary fluctuations.
- Inflation = scalar inflaton field + metric field.

- We can build a general theory of inflationary fluctuations.
- Inflation = scalar inflaton field + metric field.

primordial by *δρ*Poisson equation

- We can build a general theory of inflationary fluctuations.
- Inflation = scalar inflaton field + metric field.

- We can build a general theory of inflationary fluctuations.
- Inflation = scalar inflaton field + metric field.

• We can ignore the coupling with the tensor modes at the Leading order.

• Time depending background: spontaneous breaking of time translation symmetry.

- Time depending background: spontaneous breaking of time translation symmetry.
- One scalar degree of freedom: Goldstone Boson π of time translations.

- Time depending background: spontaneous breaking of time translation symmetry.
- One scalar degree of freedom: Goldstone Boson π of time translations.
- Most generic coupling with a massive scalar *σ*:

- Time depending background: spontaneous breaking of time translation symmetry.
- One scalar degree of freedom: Goldstone Boson π of time translations.
- Most generic coupling with a massive scalar *σ*:

$$
\mathcal{L} = a^3 \left(\frac{\dot{\pi}^2}{2} + \frac{\dot{\sigma}^2}{2} - \frac{c_s^2}{2} \frac{(\nabla \pi)^2}{2a^2} - \frac{1}{2} \frac{(\nabla \sigma)^2}{2a^2} - \frac{m^2}{2} \sigma^2 + \rho \dot{\pi} \sigma - \frac{1}{2\Lambda a^2} (\nabla \pi)^2 \sigma \right)
$$

- Time depending background: spontaneous breaking of time translation symmetry.
- One scalar degree of freedom: Goldstone Boson π of time translations.
- Most generic coupling with a massive scalar *σ*:

$$
\mathcal{L} = a^3 \left(\frac{\dot{\pi}^2}{2} + \frac{\dot{\sigma}^2}{2} - \frac{c_s^2}{2} \frac{(\nabla \pi)^2}{2a^2} - \frac{1}{2} \frac{(\nabla \sigma)^2}{2a^2} - \frac{m^2}{2} \sigma^2 + \rho \dot{\pi} \sigma - \frac{1}{2\Lambda a^2} (\nabla \pi)^2 \sigma \right)
$$

Cubic Coupling

- Time depending background: spontaneous breaking of time translation symmetry.
- One scalar degree of freedom: Goldstone Boson π of time translations.
- Most generic coupling with a massive scalar *σ*:

$$
\mathcal{L} = a^3 \left(\frac{\dot{\pi}^2}{2} + \frac{\dot{\sigma}^2}{2} - \frac{c_s^2}{2} \frac{(\nabla \pi)^2}{2a^2} - \frac{1}{2} \frac{(\nabla \sigma)^2}{2a^2} - \frac{m^2}{2} \sigma^2 + \rho \dot{\pi} \sigma - \frac{1}{2\Lambda a^2} (\nabla \pi)^2 \sigma \right)
$$

Mixing Term

$$
\sigma = \sigma
$$

$$
\pi \sigma
$$

Strong Mixing: Current Project

- Strong Mixing: $\rho \gg H$, \rightarrow is giving a strong contribution.
- We cannot rely on the simpler diagrams!

Strong Mixing: Current Project

- Strong Mixing: $\rho \gg H$, \rightarrow is giving a strong contribution.
- We cannot rely on the simpler diagrams!

• Can be computed numerically:

Python Package for Cosmological Correlators

 \rightarrow Include mixing in the free Hamiltonian

Strong Mixing: Current Project

- Strong Mixing: $\rho \gg H$, \rightarrow is giving a strong contribution.
- We cannot rely on the simpler diagrams!

• Can be computed numerically: \rightarrow Include mixing in the free Hamiltonian

• It's solving fully coupled linear equations of motion: could it be done analytically?

Outline

• What is the cosmological collider?

• What is the strong mixing regime?

 $\overline{\mathscr{S}}$

• How can we study it?

Effective Field Theory

• At low energy, any two-field system can be approximated by a single-field effective theory.

Figure from Arkani-Hamed and al. 1811.00024

Canonical Transformation

• We use the EFT to parametrize a field redefinition.

$$
\begin{cases} X_1 = \pi_{\text{EFT}} + \delta \pi \\ X_2 = \sigma - \sigma_{\text{EFT}} \end{cases}
$$

- Canonical Transformation: this should capture particle production.
- These variables allow one to know the interaction picture fields perturbatively:

$$
\begin{cases}\nX_1 = X_1^{\text{Free}} + \delta X_1 \\
X_2 = X_2^{\text{Free}} + \delta X_2\n\end{cases}
$$

• Small *c*: consider the leading order in time derivative expansion:

Classical EOM approximate solution

$$
\sigma_{\text{EFT}} \approx \frac{\rho}{k^2/a^2 + m_{\text{eff}}^2} p_{\pi}
$$

• Small *c*: consider the leading order in time derivative expansion:

Canonial field redefinition

*σ*EFT ≈ *ρ* $k^2/a^2 + m_e^2$ eff *pπ* **Classical EOM approximate solution** $m_{\rm eff}^2$

$$
X_1 = \pi - \frac{\rho}{k^2/a^2 + m_{\text{eff}}^2} p_{\sigma}
$$

$$
X_2 = \sigma - \frac{\rho}{k^2/a^2 + m_{\text{eff}}^2} p_{\pi}
$$

$$
P_1 = p_{\pi}
$$

$$
P_2 = p_{\sigma}
$$

• Small *c*: consider the leading order in time derivative expansion:

Canonial field redefinition

Classical EOM approximate solution

$$
\sigma_{\text{EFT}} \approx \frac{\rho}{k^2/a^2 + m_{\text{eff}}^2} p_{\pi}
$$

• Decay of the momenta at late time:

$$
X_1 = \pi - \frac{\rho}{k^2/a^2 + m_{\text{eff}}^2} p_{\sigma}
$$

$$
X_2 = \sigma - \frac{\rho}{k^2/a^2 + m_{\text{eff}}^2} p_{\pi}
$$

$$
P_1 = p_{\pi}
$$

$$
P_2 = p_{\sigma}
$$

• Small *c*: consider the leading order in time derivative expansion:

Canonial field redefinition

Classical EOM approximate solution

$$
\sigma_{\text{EFT}} \approx \frac{\rho}{k^2/a^2 + m_{\text{eff}}^2} p_{\pi}
$$

• Decay of the momenta at late time:

$$
\langle X_1^n(t \to t_{\text{end}}) \rangle \to \langle \pi^n(t_{\text{end}}) \rangle
$$

$$
X_1 = \pi - \frac{\rho}{k^2/a^2 + m_{\text{eff}}^2} p_{\sigma}
$$

$$
X_2 = \sigma - \frac{\rho}{k^2/a^2 + m_{\text{eff}}^2} p_{\pi}
$$

$$
P_1 = p_{\pi}
$$

$$
P_2 = p_{\sigma}
$$

Perturbativity: 2 Points functions

Perturbativity: 2 Points functions

We just found a way to perturbatively solve the full quadratic EOM!

Perturbativity: 2 Points functions

We just found a way to perturbatively solve the full quadratic EOM!

• However, the mixing contribution is treated non-perturbatively.

Cubic Interaction

• Original Hamiltonian:

$$
\mathcal{H}_I \supset - (2\pi)^3 \delta^{(3)} \left(\sum k_i \right) \frac{a}{2\Lambda} k_1 \cdot k_2 \pi^{k_1} \pi^{k_2} \sigma^{k_3}
$$

• New Hamiltonian ⊃ 6 interactions:

Perturbativity: 3 Points functions

• Perturbative knowledge of 2 points \Longrightarrow 3 points by Wick Theorem:

- Generic extension of the EFT techniques.
- Work in progress!

Conclusion

• Strong Mixing regime to be understood analytically:

$$
\sum_{\alpha} \left(\frac{\partial \mathcal{L}}{\partial \mathcal{L}} \right)^{\alpha} = \sum_{\alpha} \left(\frac{\partial \mathcal{L}}{\partial \mathcal{L}} \right)^{\alpha}
$$

• Interaction picture fields can be approached using new variables motivated by an EFT description:

