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The three stages of a binary

Inspiral Merger Ringdown 

Post Newtonian 
Theory 

Perturbation 
Theory 

Numerical 
Relativity 

[Antelis & Moreno (2017), arXiv:1610.03567]
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Different techniques for different regions of parameter space

GSF

PNPM
NR

Ignoring spin!

3



Post-Newtonian results: what are they used for?

Post-Newtonian dynamics and waveforms are used:

• alone (in time or frequency domain)

• resummed (e.g. Padé resummations)

• inform EOB models (SEOB and TEOB)

• enter phenomenological waveform models (IMRPhenom)

• hybridized with NR

• hybridized with GSF

Advantages:

• first-principle method

• fully analytical

• fast to evaluate

• helps understand physics

Disadvantages:

• only valid in inspiral phase

• slow and oscillating convergence

• degrades for high eccentricity

• degrades for high mass-ratios
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The three sectors of a PN computation

Conservativedynamics Gravitationalradiation

Radiation reaction /dissipative dynamics
𝒂 = 𝒂N + 𝒂1PN + 𝒂2PN + 𝒂2.5PN + …

𝐹 = 𝐹N + 𝐹1PN + 𝐹2PN + 𝐹2.5PN + …
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Relating near-zone and exterior vacuum zone
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• In NZ, obtain PN expansion of metric [up to homogeneous solution]

• In FZ, obtain PM expansion of metric [up to homogeneous solution]

• Both homogeneous solutions obtained by imposing asymptotic

matching in buffer zone 6



Equations of motion at 4.5PN in GR

[Blanchet, Faye, DT 2024]



The 4.5PN equations of motion [2407.18295]
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+
1

c6

[
...

]
︸ ︷︷ ︸

3PN

+
1
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[
...

]
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[
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)
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Acceleration in terms of multipolar moments [2407.18295]

Acceleration in terms of the (ML,SL) at 4.5PN
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ai4.5PN 1 = (very long !)

Replace (ML,SL) ⇒ acceleration in terms of (y1,y2,v1,v2)
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Flux balance laws [2407.18295]

Poincaré invariants (Econs,Jcons,Pcons,Gcons) conserved by the

conservative acceleration ⇒ needed up to 2PN

Fluxes at infinity (FE ,F i
J ,F i

P ,F i
G) known at relative 2PN [absolute

4.5PN]

We proved all 4 balance laws with relative 2PN accuracy:

d

dt
(Econs + ERR) = −FE

d

dt
(Jcons + JRR) = −FJ

d

dt
(Pcons + PRR) = −FP

d

dt
(Gcons +GRR) = P −FG

The HRR are Schott terms. In practice, we first compute

dHcons

dt
+ FH = (expression) = −dHRR

dt

where the fact that (expression) can be written as a total derivative is

highly non-trivial and is the core of the proof.
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Defining the center-of-mass frame [2407.18295]

Integrating the flux balance equations yields

P i(t) = P i
0 −

∫ t

t0

dt′FP (t′)

Gi(t) = Gi
0 + P i

0(t− t0)−
∫ t

t0

dt′FG(t′)−
∫ t

t0

dt′
∫ t′

t0

dt′′FP (t′′)

where t0 = initial time, before emission of GWs

Apply Lorentz boost ⇒ rest frame of initial system: P i
0 = 0 and Gi

0 = 0

Send t0 → −∞. The conditions to be in the CM frame are:

Gi(t) + Γi(t) = 0 =⇒ P i(t) + Πi(t) = 0

where

Πi(t) =

∫ t

−∞
dt′FP (t′)

Γi(t) =

∫ t

−∞
dt′FG(t′) +

∫ t

−∞
dt′Πi(t′)
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Gravitational recoin: circular orbits

m
1

m
2

V
recoil

CM motion

dP
dt

GW

dP
dt

CM dP
dt

GW= –

v
1

v
2
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Gravitational recoil: secular effect for eccentric orbits

Asymmetric binary

More GWsFewer GWs

GWs that escaped toinfinity contribute to thecenter-of-mass frame

In the center of mass frame

More GWs𝒗𝐶𝑀Fewer GWs

Gravitational recoil
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Passage to the CM frame [2407.18295]

Solving iteratively for the yi1 in Gi + Γi = 0, we find

yi1 = xi
(
X2 + ν∆P

)
+ ν∆Q vi︸ ︷︷ ︸

matter contribution

obtained by solving for yi1 in Gi = 0

+
(

Ri
)

︸ ︷︷ ︸
radiation contribution

where

Ri =
(
− Γi

m

)
︸ ︷︷ ︸

3.5PN

+
ν

mc2

[(
v2

2
− Gm

r

)
Γi + vj

(
Πj + F j

G

)
xi
]

︸ ︷︷ ︸
4.5PN

+O(11)
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The equations of motion in the CM frame [2407.18295]

In the CM frame, we find

aiRR = ai2.5PN + ai3.5PN + ai4.5PN

∣∣∣
mat

+ ai4.5PN

∣∣∣
rad

where

ai2.5PN =
8G2m2ν

c5r3

[
vi
(2Gm

5r
+ 3ṙ2 − 6

5
v2
)
+ niṙ

(2Gm
15r

− 5ṙ2 +
18

5
v2
)]

ai3.5PN = (...)

ai4.5PN

∣∣∣
mat

= (...)

and the new non-local contribution reads:

ai4.5PN

∣∣∣∣
rad

=
G∆

r2c2
(
2nivj + njvi

) [
Πj + F j

G

]
.

We thus disagree with [gr-qc/9703075] and [2302.11016] who have not taken

these nonlocal effects into account.
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Post-Newtonian methods applied to

scalar-tensor theory



Generalized Fierz-Pauli-Brans-Dicke theory

Action defined in Jordan frame : S = SST[gαβ, ϕ] + Sm[gαβ,m] where

SST =
c3

16πG

∫
d4x

√
−g

[
ϕR− ω(ϕ)

ϕ
gαβ∂αϕ∂βϕ

]
The effective matter action for two point particles reads

Sm = −cm1(ϕ)
√

−(gαβ)1dy
α
1 y

α
1 + (1 ↔ 2)

The weak equivalence principle is broken: the inertial mass of a neutron

star, when idealized as a point particle, depends on the local value of the

scalar field [Eardley, PRD 12, 3072 (1975)].

Conformal transformation to Einstein frame

Perturbation around flat space and a constant scalar background

hµν ≡
√
−det[(ϕ/ϕ0)gαβ]×

gµν

ϕ/ϕ0
− ηµν

ψ ≡ ϕ/ϕ0 − 1 15



Expansions of the functions appearing in ST theory

The ω function is expanded as

ω(ϕ) = ω0 + (ϕ− ϕ0)ω
′
0 + ...

For A ∈ {1, 2}, the mass function is expanded as

mA(ψ) = mA

(
1 + sAψ +

s2A − sA + s′A
2

ψ2 + ...

)
where sensitivities are defined as

sA =
d lnmA(ϕ)

d lnϕ
, s′A =

d2 lnmA(ϕ)

d lnϕ2
, . . .

Weakly gravitating stars: sA ≪ 1; NS: sA ≈ 0.2; BH: sA = 1/2.

Various parameters you might see are just complicated combinations of

these parameters: G̃, α, γ̄, ζ, λA, β̄A, χ̄A, κ̄A, δ̄A, ...
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Why study this theory ?

To look for deviation to GR ? Not really, ST theory is strongly

constrained by binary pulsars [2407.16540] and solar system tests ...

• Simplest motivated deviation to GR — just add a non-minimally

coupled scalar field!

• Technology developed for it useful for more complicated, less

contrained theories — e.g. scalar Gauss-Bonnet

• Templates useful to search for strong deviations from GR in

LVK/ET/LISA data — we only used GR templates for searches,

might have missed very exotic signal

• Good toy model for studying GR — dipolar vs quadrupolar

radiation, no gauge problems with scalar field

17



The quasi-Keplerian parametrization

at 2PN for scalar tensor theories

[DT 2024a]



The Kepler solution

Relative 2 body acceleration in CM frame:

ai = ai1 − ai2 = −Geffmn
i

r2

In the bound case, we know that the orbit is an ellipse:

r =
a(1− e2)

1 + e cos(ϕ− ϕperi)

where a is the semimajor axis and e the eccentricity (e < 1 for bound

orbits), given in terms of the energy (E < 0) and angular momentum J :

a = −Gm
2E

and e =

√
1 +

2EJ

G2m2
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The Kepler solution

To describe the time evolution, it is however more practical to use the

following set of three equations

r = a(1− e cosu)

ℓ = n(t− t0) = u− e sin(u)

ϕ− ϕ0 = v(u)

where we have introduced

• the eccentric anomaly u, which acts as an affine parameter

• the true anomaly v(u) ≡ 2 arctan
[√

1+e
1−e tan

(
u
2

)]
• the mean motion n ≡ 2π/P , where P is a time period

• the mean anomaly ℓ = n(t− t0), which increases linearly with time

and goes from 0 to 2π over one orbit
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The Kepler solution

r = a(1− e cosu)

ℓ = n(t− t0) = u− e sin(u)

ϕ− ϕ0 = v

v = 2arctan

[√
1 + e

1− e
tan

(u
2

)]

Figure from [gr-qc/0407049]
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The quasi-Keplerian solution at 1PN order

What happens if we now want to solve the equations of motion for the

1PN acceleration ? ai = −G12mni

r2
+ 1

c2
(many terms)i

Damour & Deruelle [Ann.IHP.Phys.Th. 43, 1 (1985), p.107] showed that the

equations of motion then reads

r = ar(1− er cosu)

ϕ− ϕ0 = Kv

n(t− t0) = u− et sin(u)

v(u) = 2 arctan

[√
1 + eϕ
1− eϕ

tan
(u
2

)]
which is the same equation as before, except:

• there are now three eccentricities er, et, eϕ

• pericenter precession appears via the factor K = 1+ k (with k ≪ 1)

• ar and n acquire post-Newtonian corrections
21



Doubly periodic structure of QK motion

The time between two periastrons

is the radial period denote P , so the

mean motion n = 2π/P is the

radial frequency.

The time for the angular coordinate ϕ

to go from 0 to 2π is P/K, so ω = nK

is the angular frequency

Thus, K = 1 + k with k ≪ 1 is a

measure of the pericenter precession

22



The quasi-Keplerian solution at 2PN order

Damour & Schäfer [Nuovo Cim.B 101 (1988) 127] showed that the QK

parametrization reads at 2PN

r = ar(1− er cosu)

ϕ− ϕ0 = K
[
v + fϕ sin(2v) + gϕ sin(3v)

]
n(t− t0) = u− et sin(u)+ft sin(v) + gt(v − u)

v(u) = 2 arctan

[√
1 + eϕ
1− eϕ

tan
(u
2

)]

Here, the new parameters fϕ, gϕ, ft and gt are all of order O(1/c4),

while all other parameters acquire 2PN corrections.

But how do we determine the values of these parameters ?
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Determining the QK parameters

Assume we are working in some theory of gravity [e.g. GR or ST theory],

and that we have determined (in a PN sense):

E = f(r, ṙ, ϕ̇) and J = g(r, ṙ, ϕ̇)

For many theories of gravity, we can invert this as

ṙ2 = A+
B

r
+
C

r2
+
D1

r3
+
D2

r4
+
D3

r5
+O

(
1

c6

)
ϕ̇ =

F

r2
+
I1
r3

+
I2
r4

+
I3
r5

+O
(

1

c6

)
where A, B, C and F are of order 1, but D1 and D2 are 1PN and the

others 2PN. All these parameters are functions of E and J .

N.B.: this polynomial structure is spoiled by tails in the EOM at 3PN in

ST theory and 4PN in GR
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Determining the QK parameters [2401.06844]

I obtained expressions for QK parameters (ar, et, gt, ...) [technical!], e.g.:

ar = −B
A

+
D1

2C
+

2BD2
1 − 2BCD2 + 4B2D3 −ACD3

2C3
+O

(
1

c4

)
Expression of A, B, ... depends of the theory. For example, in ST theory:

B = G̃αm

{
1 + ε

[
3 + γ̄ − 7

2
ν

]
+ ε2

[
9

4
+

3

4
γ̄ + ν

(
− 12− 15

4
γ̄
)
+

21

4
ν2

]}
where ε = −2E/(mνc2) > 0 and ε = O(1/c2).

In you favorite theory:

1. determine E = f(r, ṙ, ϕ̇) and J = f̃(r, ṙ, ϕ̇)

2. invert in PN sense to obtain ṙ = g(E, J, r) and ϕ̇ = g̃(E, J,R)

3. read off A, B, C, ...

4. use results of [2401.06844] to obtain QK parametrization
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Peters’s formula for ST theories at -1PN order [2401.06844]

In GR, Peters obtained from flux-balance arguments at Newtonian order

that (a, e) secularly co-evolve as [PhysRev.136.B1224]

a =
c′0e

12
19

1− e2

(
1 +

121

304
e2
) 870

2299

(in GR)

where c0 is a constant depending on the orbit.

In ST, from the energy for an elliptic orbit and the leading −1PN dipole

formula for the fluxes of energy and angular momentum,

Fs =
Gϕ0(3 + 2ω0)

3c3
I(2)a I(2)a , Gs

i =
Gϕ0(3 + 2ω0)

3c3
ϵiabI

(1)
a I

(2)
b ,

I obtain at leading-order

a =
c0e

4/3

1− e2
(in ST)

Remarkably, it does not depend on the ST parameters!
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Peters’s formula for ST theories at -1PN order [2401.06844]

ST

GR

0.0 0.2 0.4 0.6 0.8 1.0

0.001

0.010

0.100

1

10

100

e

a
[G
m
c
-
2
]
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Fluxes of energy and angular

momentum at 1.5PN

[DT 2024b]



The fluxes: tails, memory, and more [2410.12898]

The fluxes are divided into a scalar and tensor contribution:

F tot = F + Fs and Gtot = G + Gs [see also [2407.10908] for expressions in

terms of orbital variables, without specifying the motion]

There are contributions from:

We thus have

F = F inst + F tail Fs = Fs,inst + Fs,tail ,

Gi = Ginst
i + Gtail

i + Gmem
i Gs

i = Gs,inst
i + Gs,Πs

i + Gs,tail
i 28

• tails • memory

• hereditary terms Πs arising from

passage to CM frame

• instantaneous terms



Fourier expansion of moments at Newtonian order [2410.12898]

At Newtonian order, IsL is periodic in ℓ = n(t− t0), so we can decompose

it as a Fourier series:

IsL(t) =
∑
p∈Z

pĨ
s
L e

ipℓ

The coefficients are given by

pĨ
s
L =

1

2π

∫ 2π

0
dℓ IsL(t)e

−ipℓ

Changing variables to the eccentric anomaly u [using Kepler’s equation

ℓ = u− et sin(u)], we find that all integrals reduce to Bessel functions:

Jp(x) =
1

2π

∫ 2π

0
du e−i(pu−x sinu)

For example, the scalar dipole reads at Newtonian order:

pĨ
s
x ∝ 1

p
Jp(ep) pĨ

s
y ∝ − i

√
1− e2

ep
Jp(ep) pĨ

s
z = 0
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Computing the tails [2410.12898]

The leading tail term reads:

Fs,tail
M×Ii

=
4G2M(3 + 2ω0)

3c6

(2)

I si

∫ ∞

0
dτ

(4)

I si (u− τ)

[
ln

(
cτ

2b0

)
+ 1

]
Replace moments by Fourier decomposition Isi (t) = Is

1

∑
p∈Z pÎ

s
L e

ipℓ and

use the integration formula∫ +∞

0
dτ ln

(
cτ

2b0

)
e−ipωτ =

i

pω

[
ln

(2|p|b0
c

)
+ γE + i

π

2
sg(p)

]
Obtain after orbit averaging:〈

Fs,tail
M×Ii

〉
∝ ν2x11/2φs

1(et)

where the enhancement function φs
1(et) = 1 + 7e2t +O(et) and reads

φ1(et) = 2

∞∑
p=1

p5
∑

m∈{−1,1}
s∈{−1,1}

(
m
p Î

s
i

)(
m
p Î

s
i

)∗
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Memory and Πs contributions

For Gmem
i and Gs,Πs

i :

• separate oscillatory “AC” terms and nonoscillatory “DC” terms

• for the AC terms, replace moments by their Fourier decomposition,

and compute integrals straightforwarly

• for DC terms, integrate wrt time using the expressions a(t) and e(t)

[Peters’s formula]

We find that
〈
Gmem
i

〉
= 0 and

〈
Gs,Πs

i

〉
= 0
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From fluxes to evolution of orbital elements [2410.12898]

Consider an orbital element ξ ∈ {x, et, ...}: It will satisfy:〈
dξ

dt

〉
=

∂ξ

∂E

〈
dE

dt

〉
+
∂ξ

∂J

〈
dJ

dt

〉
The quasi-Keplerian parametrization gives us ξ(E, J) so we can compute

the partial derivatives ∂ξ/∂E and ∂ξ/∂J .

We use the flux balance laws to write〈
dE

dt

〉
= −⟨F⟩ − ⟨Fs⟩〈

dJ

dt

〉
= −⟨G⟩ − ⟨Gs⟩

and we have now computed the orbit-averaged fluxes!

Since all the orbital parameters are related by the QK parametrization,

we just need to evolve a pair, e.g. (x, et).
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Evolution of (x, et) [2410.12898]

〈
dx

dt

〉
=

2c3ζνx4

3G̃αm

{
4S2

−

(
1 + 1

2
e2t

)
(1 − e2t )

5/2
+

x

15(1 − e2t )
7/2

(
X1 + e

2
tX2 + e

4
tX3

)
+ 8π

(
1 + 1

2
γ̄
)
S2
−φ

s
1(et) x

3/2

+ x
2

(
X4 + e2tX5 + e4tX6 + e6tX7

(1 − e2t )
9/2

+
X8 + e2tX9 + e4tX10

(1 − e2t )
4

)

+ 4π
(
1 + 1

2
γ̄
)
x
5/2

(
X11φ2(et) + X12φ

s
2(et) + X13α

s
1(et) + X14θ

s
1(et)

+
(
X15 + e

2
tX16

)φs
1(et)

1 − e2t
+ X17

φ̃s
1(et)

(1 − e2t )
3/2

+ X18e
2
tφ

s
0(et)

)
+ O(x

3
)

}
,

〈
det

dt

〉
= −

c3ζνx3et

G̃αm

{
2S2

−
(1 − e2t )

3/2
+

x

15(1 − e2t )
5/2

(
E1 + e

2
tE2

)
+

8π

3

(
1 + 1

2
γ̄
)
S2
−

1 − e2t

e2t

(
φ
s
1(et) −

φ̃s
1√

1 − e2t

)
x
3/2

+ x
2

(
E3 + e2tE4 + e4tE5

(1 − e2t )
7/2

+
E6 + e2tE7

(1 − e2t )
3

)

+ 4π
(
1 + 1

2
γ̄
)
x
5/2

[
E8

1 − e2t

e2t

(
φ2(et) −

φ̃2√
1 − e2t

)
+ E9

1 − e2t

e2t

(
φ
s
2(et) −

φ̃s
2√

1 − e2t

)

+ E10
1 − e2t

e2t

(
α
s
1(et) −

α̃s
2√

1 − e2t

)
+ E11

1 − e2t

e2t

(
θ
s
1(et) −

θ̃s1√
1 − e2t

)
+

E12

e2t

(
φ
s
1(et) −

φ̃s
1√

1 − e2t

)
+ E13φ

s
1(et) +

E14√
1 − e2t

φ̃
s
1(et)

+ E15(1 − e
2
t )φ

s
0(et)

]
+ O(x

3
)

}
,
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Conclusion



Recapitulation

In general relativity

• equations of motion at 4.5PN

• new hereditary terms at 4.5PN !

In scalar-tensor theory

• fluxes and waveform for quasicircular orbits

• quasi-Keplerian parametrization at 2PN for quasi-elliptic orbits

• fluxes and orbital element evolution at 1.5PN [N2.5LO]
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Backup slides



Generalized Fierz-Pauli-Brans-Dicke theory

Action defined in Jordan frame : S = SST[gαβ, ϕ] + Sm[gαβ,m] which

reads

SST =
c3

16πG

∫
d4x

√
−g

[
ϕR− ω(ϕ)

ϕ
gαβ∂αϕ∂βϕ

]
For the post-Newtonian setup, better to work in Einstein frame. Define

φ =
ϕ

ϕ0
and g̃µν =

ϕ

ϕ0
gµν where ϕ −→

r→∞
ϕ0

The action in Einstein frame then reads

S =
c3ϕ0
16πG

∫
d4x

√
−g̃

[
R̃− 3 + 2ω(ϕ)

2φ2
g̃αβ∂αφ∂βφ

]
+ Sm[φ

−1g̃αβ,m]
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Equivalence to DEF gravity

Our Einstein frame action

S =
c3ϕ0
16πG

∫
d4x

√
−g̃

[
R̃− 3 + 2ω(ϕ0φ)

2φ2
g̃αβ∂αφ∂βφ

]
+ Sm[φ

−1g̃αβ,m]

is equivalent to Damour & Esposito-Farèse (DEF) gravity [gr-qc/9602056]:

SDEF =
c3

16πG∗

∫
d4x

√
−g∗

[
R∗ − 2gαβ∗ ∂αφ̄∗∂βφ̄∗

]
+Sm

[
A(φ̄∗)g

∗
αβ,m

]
where G∗ = G/ϕ0, ḡµν = g̃µν and φ̄ = T (ϕ), where

T (x) =
1

2

∫ x

dy

√
3 + 2ω(y)

2y2
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Field equations

The field equations should be expressed using the Landau & Lifschitz

formulation. Perturbation of (conformal inverse) metric around

Minkowski:

hµν =
√
g̃g̃µν − ηµν

[At linear level, this is equivalent the “trace reversed metric”]

Perturb (normalized) scalar field around background value:

φ = 1 + ψ

Restriction to harmonic gauge ∂µh
µν = 0, the field equations read:

□hµν =
16πG

c4ϕ0

[
φ(−g)Tµν +

c4ϕ0
16πG

Λµν [h, ψ]

]

□ψ =
8πG

c4ϕ0

[
φ
√
−g

[3 + 2ω(ϕ0ϕ)]

(
T − 2φ

∂T

∂φ

)
+
c4ϕ0
8πG

Λs[h, ψ]

]
where the non-linear couplings are described by Λµν [h, ψ] and Λs[h, ψ] 37



Fluxes at Newtonian order

At Newtonian order [reminder: the leading order is −1PN], the flux is

instantaneous, i.e. no tails or memory. The QK representation allows us

to write the fluxes only in terms of the eccentric anomaly:

F = f [r, ϕ, ṙ, ϕ̇] = g[r, ϕ] = h[u]

After some trigonometry, we find that the structure is in fact

F =
∑
k

[
αk

[1− et cos(u)]k
+

βk sin(u)

[1− et cos(u)]k

]
The orbit averaged flux reads:

⟨F⟩ = 1

P

∫ P

0
dtF =

1

2π

∫ 2π

0
dℓF =

1

2π

∫ 2π

0
du

dℓ

du
F

where dℓ/du = 1− et cos(u). We can then use:

1

2π

∫ 2π

0

du

[1− et cos(u)]n
=
Pn−1(1/

√
1− e2t )

(1− e2t )
n/2

38



Linearized metric in exterior vacuum

N.B. I will focus on the scalar field for pedagogy

In the exterior vacuum zone, we formally perform a multipolar

post-Minkowskian expansion ψ = Gψ1 +G2ψ2 + ...

At linear level, the scalar field equation reads □ψ1 = 0, so we can express

it as a multipolar expansion [Thorne 1980]:

ψ1 = − 2

c2

∑
ℓ⩾0

(−)ℓ

ℓ!
∂L

[
r−1IsL

]
The “source moments” can be matched to a near-zone,

post-Newtonian (v ≪ c) computation involving the matter, such that

they can be expressed as functions of the phase space variable of the

compact binary system

IsL[y1,y2,v1,v2]
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Multipolar moments: an example

For example, we have [2201.10924]

Isi = −m1(1− 2s1)y
i
1

ϕ0(3 + ω0)
− m2(1− 2s2)y

i
2

ϕ0(3 + ω0)
+O

(
1

c2

)
where various ST parameters come from

ω(ϕ) = ω0 + (ϕ− ϕ0)ω
′
0 + ...

and [for A ∈ {1, 2}] :

mA(ψ) = mA (mA + sAψ + ...)

Note that the weak equivalence principle is broken so the inertial mass of

a star (seen as a point-particle) can depend on the local value of the

scalar field, hence the need to introduce sensitivities, e.g.

sA =
d lnmA(ϕ)

d lnϕ
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MPM metric in exterior vacuum

Now that the linear metric is entirely determined, we go back to the

MPM expansion: ψ = Gψ1 +G2ψ2 + ... and inject it into our full

vacuum field equation

□ψ = Λs[h, ψ]

where Λs[h, ψ] is at least quadratic in the fields. Thus, we contruct the

MPM metric by iterating:

□ψn = Λ(n)
s [h1, ..., hn−1;ψ1, ..., ψn−1]

This generates nonlocal effects such as tail, the quadratic memory, etc. !
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Radiative moments

Once the MPM metric constructed, we can discard all subdominant

terms in the R→ ∞ limit. We thus recover an (asymptotically)

multipolar structure:

ψ ∼ 1

r

∑
n̂LUs

L

We recover the tail terms of GR , but also find new ST tail terms and a

new ST memory term:

Uij =
(2)

Iij +
2GM

ϕ0c3

∫ +∞

0

dτ
(4)

Iij(u− τ)

[
ln

(
cτ

2b0

)
+

11

12

]
+

G(3 + 2ω0)

3c3

∫ +∞

0

dτ
[(2)
Is⟨i

(2)

Isj⟩

]
(u− τ) + (inst) +O

(
1

c4

)

Us
i =

(1)

Isi +
2GM

ϕ0c3

∫ +∞

0

dτ
(3)

Isi (u− τ)

[
ln

(
cτ

2b0

)
+ 1

]
+ (inst) +O

(
1

c6

)
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Fluxes at infinity

Now that we know that asymptotic structure of the scalar waves [idem

for GWs] at I+, we can deduce the fluxes of energy and angular

momentum that they carry [2401.06844]:

Fs =
c3R2(3 + 2ω0)ϕ0

16πG

∫
d2Ωψ̇2

=

∞∑
ℓ=0

Gϕ0(3 + 2ω0)

c2ℓ+1ℓ!(2ℓ+ 1)!!
U̇s
L U̇s

L

Gs
i =

c3R3(3 + 2ω0)ϕ0
16πG

∫
d2Ωψ̇ϵiabna∂bψ

=

∞∑
ℓ=1

Gϕ0(3 + 2ω0)

c2ℓ+1(ℓ− 1)!(2ℓ+ 1)!!
ϵiab Us

aL−1 U̇s
bL−1

where we have used ψ ∼ 1
r

∑
n̂LUs

L(t− r/c).
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Quasicircular orbits

Why are we interested in the fluxes ? Consider the case of a

quasicircular orbit. First, the angular momentum flux is related to the

energy flux by F = ωG, so we only consider the energy balance law:

dE

dt
= −F −Fs

In the COM frame, the only dynamical variables are r = |y1 − y2|,
n = (y1 − y2)/r and v = v1 − v2.

The fluxes depend on them only through r ≈ (Gm/ω2)2/3,

v2 ≈ (Gmω)2/3 and n · v ≈ 0, where ω is the orbital frequency.

Thus, the energy balance equation reduces to an equation of the type:

dω

dt
= f(ω)

This immediately yields the phase and frequency evolution !
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How to treat nonlocal terms ?

Starting at 0.5PN order, nonlocal tail terms appear, such as:

Fs,tail =
4G2M(3 + 2ω0)

3c6

(2)

I si

∫ ∞

0
dτ

(4)

I si (u− τ)

[
ln

(
cτ

2b0

)
+ 1

]
For a quasi-circular orbit,

Iis(t) =

kmax∑
k=−kmax

αke
ikωt

where k ̸= 0, so we trivially use the formula∫ +∞

0
dτ ln

(
cτ

2b0

)
e−ikωτ =

i

kω

[
ln
(2|n|b0

c

)
+ γE + i

π

2
sg(n)

]
to compute the flux. However, for an (quasi-)elliptic orbit, the time

dependence of the dipole is much more complicated!

⇒ the solution is to compute expand the moments in Fourier series
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Fluxes associated to tails

Injecting the Fourier expansion into the tail integrals that enter the flux,

using standard integrals and orbit averaging, I find for example:

〈
Fs,tail

〉
=

4πG2M(3 + 2ω0)

c6

×

{
n5

3

∞∑
p=1

[
p5

∑
m∈{−1,1}
s∈{−1,1}

(
m
p Ĩ

s
i

)(
m
p Ĩ

s
i

)∗
+ 5kp4

∑
m∈{−1,1}

m
(
m
p Ĩ

s
i

)(
m
p Ĩ

s
i

)∗
]

+
n7

30c2

∞∑
p=1

p7
(
pĨ

s
ij

)(
pĨ

s
ij

)∗
+

n3

ϕ20c
2

∞∑
p=1

p3
(
pẼ

s
)(

pẼ
s
)∗}

where the Fourier coefficients are given as functions of x et et.

46



Fluxes associated to tails in terms of enhancement functions

Finally we can express the orbit average flux as〈
Fs,tail

〉
=
c5x5ν2ζ

3G̃α
× 4π(1 + γ̄/2)

√
x

{
2S2

−φ
s
1(et)

+ x

[
C1φs

2(et) +
41

15
S2
−νθ

s
1(et) + C2αs

1(et) + C3xφs
0(et)

]}
〈
Gs,tail

〉
=
c2x7/2ν2ζ

3
× 4π(1 + γ̄/2)

√
x

{
2S2

−φ̃
s
1(et)

+ x

[
D1φ̃

s
2(et) +

41

30
S2
−νθ̃

s
1(et) +D2α̃

s
1(et)

]}

where φs
s(et), etc., are enhancement functions of the eccentricity whose

limit as et → 1 is 1 [except for αs
1(et) and α

s
2(et), for which it is zero].

Thus, we explicitly recover the expression for circular orbits of [2201.10924].
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Expression of the enhancement functions

Typically, an enhancement function is exactly defined in terms of the

Fourier coefficients, e.g.

φs
1(et) = 2

∞∑
p=1

∑
m∈{−1,1}
s∈{−1,1}

p5
(
m
p Î

s,00
i

)(
m
p Î

s,00
i

)∗

This is simply a function over et ∈ [0, 1] which can be computed

numerically, but we can also perform a et → 0 expansion:

φs
1(et) = 1+7e2t +

717

32
e4t +

7435

144
e6t +

7305575

73728
e8t +

103947697

614400
e10t +O(e12t )

For increased accuracy, it is possible to resum these by factorizing

by (1− e2t )
−n/2 for some n [2308.13606]. Other more complex

resummation methods exist as well [1607.05409].
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Memory contribution to the flux

The angular momentum flux also has a memory-like nonlocal term:

Gmem
i = −2G2ϕ0(3 + 2ω0)

15c8
ϵik(j

(3)

I a)k

∫ ∞

0
dτ

[(2)
I sa

(2)

I sj
]
(u− τ)

Replacing the moments by their Fourier decomposition leads to an

integrand of the type
∑

k αke
ikℓ.

The k ̸= 0 terms correspond to the “AC’ contribution”. They are trivial

to integrate and can to be shown to vanish upon orbit averaging.

The k = 0 is the “DC term”, and reads:

Gmem
DC =

4G2G3m5ν2

105c10
I(3)xy (u)

∫ ∞

0
dτ

[
e2(13 + 2e2)

a5(1− e2)7/2

]
(tret − τ)

The DC term is finite and essentially constant, so the DC flux vanishes

upon orbit averaging.

Thus, ⟨Gmem⟩ = 0
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Instantaneous’ flux at 1.5PN

Finally, we can compute the intanteneous flux at 1.5PN with the 2PN

QK parametrization in the same way as before ... but there is a

complicating when trying to go the the CoM frame !

Indeed, the linear momentum P i and CoM position Gi of the matter

content satisfy the balance equations:

dGi

dt
= Pi −F i

s,G −F i
G and

dPi

dt
= −F i

s,P −F i
P

where the fluxes enter at 2.5PN order. But COM frame is defined not

only for the matter content, but also for the GWs ! Thus is is defined by

Gi +

∫ t

−∞
dt′

∫ t′

−∞
dt′′

[
F i
s,G + F i

G

]
(t) +

∫ t

−∞
dt′

[
F i
s,P + F i

P

]
(t′) = 0

which reduces to Gi = 0 only at 2PN order. Thus, we have an extra

nonlocal term to deal with!

⇒ under investigation 50



Evolution equations at 2.5PN order

With the 1.5PN fluxes thus derived, I yet have to obtain:〈
dx

dt

〉
= f(x, et) and

〈
det
dt

〉
= g(x, et)

This is the generalization to elliptic orbits of the “chirp” for circular

orbits, i.e. one of the main observable in a gravitational wave !
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