

Searching for UltraLight Dark Matter: from the lab to space

J. Gué, E. Savalle, <u>A. Hees</u>, P. Wolf

LNE-SYRTE, CNRS, Paris Obs., Université PSL, Sorbonne Univ. ex PhD students (now at IFAE, Barcelona and at CEA respectively)

C observation @Keck

Systèmes de Référence Temps-Espace

in collaboration with

- SYRTE: M. Abgrall, S. Bize, E. Cantin, F. Florian, R. Le Targat, J. Lodewyck, P-E. Pottie, ...
- CEA: P. Brun, L. Chevalier, H. Deschamps, P. Polovodov, E. Savalle
- CSM and OCA: O. Minazzoli
- OCA/Grasse Station: J. Chabé, C. Courde
- ROB: B. Bertrand, P. Defraigne
- U. Sidney: Y. Stadnik
- U. Queensland: B. Roberts

DM needed to explain astro/cosmo observations but not direct detection so far

• DM needed at: galactic scales (rotation curves, ...), galaxy cluster (bullet cluster, ...), cosmo (CMB, structure formation, ...)

Fig. from US cosmic vision: new idea for Dark Matter, 2017

3

UltraLight Dark Matter needs to be a boson and it behaves classically

• Occupation number (number of particles per volume of phase-space)

$$\frac{n}{n_k} \sim \frac{6\pi^2 \hbar^3 \rho_{\rm DM}}{m^4 c^2 v_{\rm max}^3}$$

Calculation inspired from Tourrenc et al, arXiv:quantum-ph/0407187, 2004

- Around the Sun $ho_{\rm DM} \approx 0.4 {\rm GeV/cm}^3$
- This occupation number is larger than 1 if the DM mass is lower than
 ~ 10 eV: Dark Matter lighter than 10 eV can only be made of boson
 - a bosonic scalar particle (i.e. a scalar field)
 - a bosonic pseudo-scalar particle (i.e. an axion)
 - a boson vector particle (i.e. a hidden photon)
- For m << eV: the occupation number is huge and such a bosonic field can be treated classically (no quantization)

A massive scalar field or a massive vector field oscillates at its Compton frequency

Cosmological evolution

$$\varphi, X^i \sim \cos mt$$

 p_{ij}

• The averaged stress-energy tensor:

$$\rho \sim \left\langle T_0^0 \right\rangle = \frac{m^2 \varphi_0^2}{2}$$

- The galactic DM distribution: specific spectral distribution
 - complex data analysis (for long dataset, the oscillation is not coherent)
 - use to distinguish from systematics
 - stochastic evolution: allows to probe large masses with low freq. searches
 - see G. Centers et al, Nat. Comm., 2021 E. Savalle et al, PRL, 2021 V. Flambaum and Samsonov, PRD, 2023

A scalar DM is expected to break the equivalence principle

• An effective Lagrangian for the scalar-matter coupling

$$\mathcal{L}_{\text{mat}}\left[g_{\mu\nu},\Psi,\varphi\right] = \mathcal{L}_{SM}\left[g_{\mu\nu},\Psi\right] + \varphi^{i} \left[\frac{d_{e}^{(i)}}{4e^{2}}F_{\mu\nu}F^{\mu\nu} - \frac{d_{g}^{(i)}\beta_{3}}{2g_{3}}F_{\mu\nu}^{A}F_{A}^{\mu\nu} - \sum_{j=e,u,d}\left(\frac{d_{m_{j}}^{(i)}}{m_{j}} + \gamma_{m_{j}}\frac{d_{g}^{(i)}}{m_{j}}\right)m_{j}\bar{\psi}_{j}\psi_{j}\right]$$

- Couplings usually considered:
 - linear in φ : lowest order expansion (cfr Damour-Donoghue)
 - quadratic in φ : lowest order if there is a Z₂ symmetry (cfr Stadnik et al)

see Damour and Donoghue, PRD, 2010

6

• This leads to a space-time dependance of some constants of Nature to the scalar field $lpha(arphi) = lpha \left(1 + \frac{d_e^{(i)} \varphi^i}{e}\right)$

$$m_j(\varphi) = m_j \left(1 + \frac{d_{m_j}^{(i)} \varphi^i}{m_j \varphi^i} \right) \quad \text{for } j = e, u, d$$
$$\Lambda_3(\varphi) = \Lambda_3 \left(1 + \frac{d_g^{(i)} \varphi^i}{g^i} \right)$$

Can be interpreted as a signature of a violation of the Einstein Equivalence Principle: oscillations of the constants of Nature!

see also Arvanitaki et al, PRD 2015, Hees et al, PRD, 2018

Axion and ALP are effectively leading to quadratic couplings

• At tree level, the axion/ALP couples through terms like

$$\sim \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{a\mu\nu} \quad \text{or} \quad \sim \frac{a}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu} \\ \text{BUT}$$

• the axion-gluon coupling induces a quadratic coupling to the pion mass

$$\frac{\delta m_{\pi}^2}{m_{\pi}^2} = -\frac{m_u m_d}{2\left(m_u + m_d\right)^2} \left(\frac{a}{f_a}\right)^2$$

see H. Kim and G. Perez, PRD, 2024

=> induces a dependency on atom rest-mass and atomic transitions

see J. Gué, etl al, PRD, 2024

• the axion-gluon coupling induces a quadratic coupling to EM at 1-loop

$$\frac{\delta\alpha}{\alpha} = c_{F^2} \frac{\alpha}{4\pi^2} \left(\frac{a}{f_a}\right)^2$$

see C. Beadle et al, PRD, 2024 H. Kim et al, PRD, 2024

Various experimental signatures can be searched for

- I. Atomic clocks: sensitive to the evolution of the constant of Nature, i.e. to φ (linear coupling) or φ^2 (quadratic coupling)
 - see A. Hees et al, PRD 2018
- 2. Universality of Free Fall (UFF) test: sensitive to the gradient of φ^i , i.e. to $\nabla \varphi$ (linear coupling) or $\varphi \nabla \varphi$ (quadratic coupling)

see A. Hees et al, PRD 2018

- 3. Atom Interferometry (AI): sensitive to a combination of both $\int \varphi^i$ and φ^i and $\nabla \varphi^i$ depending on specific AI scheme see A. Geraci and Derevianko, PRD, 201
 - see A. Geraci and Derevianko, PRD, 2016 P. Graham et al, PRD, 2016 J. Gué et al, PRD, 2024

4. LISA interferometer: sensitive to $\nabla \varphi^{i}$

5. etc...

see J-C Yu et al, PRD, 2023 J. Gué et al, in prep

Scalar field for a linear coupling $\Box \varphi + m^2 \varphi = \underbrace{-\frac{4\pi G}{c^2} \alpha_A \rho_A}$ Source term

- α_A depends on the scalar coupling d_i and on the composition of body A
- "Easy" to solve (existence of a Green function)

$$\varphi^{(1)}(t, \boldsymbol{x}) = \varphi_0 \cos\left(\boldsymbol{k} \cdot \boldsymbol{x} - \omega t + \delta\right) + s_A^{(1)} \frac{GM_A}{c^2 r} e^{-r/\lambda_{\varphi}}$$

Atomic clocks are more sensitive

Oscillations can be interpreted as DM

A fifth force generated by a body (more common in the modified gravity community)

UFF measurements are more sensitive

Independent of the DM interpretation

Scalar field for a quadratic coupling

$$\Box \varphi + \left[\left(m^2 + \frac{4\pi G}{c^2} \alpha_A \rho_A \right) \right] \varphi = 0$$

No source term (no fifth force) but effective mass that depends on the local matter density

$$\varphi = \tilde{\varphi}(r)\varphi_0 \cos mt$$

Screening for positive couplings and scalarization for negative couplings! In case of screening: space observations are highly favoured!

see A. Hees et al, PRD, 2018

similar mechanism as the one studied by G. Esposito-Farèse and T. Damour, PRL, 1993 10

Two experiments developed at SYRTE

Search for a periodic signal in Cs/Rb comparison

 Cs/Rb FO2 atomic fountain data from SYRTE: high accuracy and high stability, data used from 2008

see J. Guéna et al, Metrologia, 2012 and J. Guéna et al., IEEE UFFC, 2012

• Search for a periodic signal in the data using Scargle's method, see Scargle ApJ, 1982

A. Hees, J. Guéna, M. Abgrall, S. Bize, P. Wolf, PRL, 2016

Search for a periodic signal in a Mach-Zender interferometer

• New type of experiment proposed. Simplified principle:

- Interpretation: comparison of an atomic frequency with itself in the past
- Main advantage: explored frequency range ~ kHz-MHz while standard clocks are limited to 100 mHz

The DAMNED experiment (DArk Matter from Non Equal Delays)

- the "clock" is a laser cavity (both length and laser frequency oscillate)
- the length of the fiber oscillates
- the refractive index of the fiber oscillates
- First experiment built @SYRTE (E. Savalle's PhD with P-E Pottie, F. Franck, E. Cantin) and data analyzed taken into account the stochasticity of the signal
- no significant periodic signal is detected in the 10-200 kHz frequency band

l'Observatoire SYRTE

Systèmes de Référence Temps-Espa

Constraints on the linear couplings

Assuming the DM density to be constant over the whole Solar System (0.4 GeV/cm³)

Update from Hees et al, PRD, 2018

Results from:

- Rb/Cs: Hees et al, PRL, 2016
- BACON: Nature, 2021
- JILA: Kennedy et al, PRL, 2020
- Eöt-Wash: Wagner et al, CQG, 2012
- MICROSCOPE: Bergé et al, PRL, 2018
- DAMNED: Savalle et al, PRL 2021
- GEO600:Vermeulen et al, Nature, 2021

Constraints on the quadratic couplings

Impact of amplification

Being in space is favorable ! Scalar field tends to vanish at the Earth surface

Constraints on the quadratic couplings have been reinterpreted as constraints on axion coupling

the axion-gluon coupling induces a quadratic coupling to EM at 1-loop

Figure from C. Beadle et al, PRD 110, 035019, 2024

see C. Beadle et al, PRD, 2024

H. Kim et al, PRD, 2024

Atom interferometers are sensitive to such DM candidates as well

see J. Gué et al, PRD, 2024

 Calculations performed following method from Storey and Cohen-Tannoudji, J. Phys, 1994. Exemple for a Mach-Zender:

- Dilaton DM field impacts:
 - Classical trajectories of atoms
 - Rest mass/transition energy (Lagrangian + recoil velocity kick)
 - Laser frequency

Extends previous calculations

see A. Geraci and A. Derevianko, PRD 2016 P. Graham et al, PRD 2016 L. Badurina et al, PRD 2022

Future AI setup will be very competitive to search for scalar DM candidates

work from J. Gué, ex PhD student

SPID = Single Photon Isotope Differential (variation of AION more sector synthesis)
 scalar DM or axion)

Conclusion

- Nature of Dark Matter remains one major challenge of modern physics
- In recent years (2015+): precision metrology has pushed the search for Dark Matter of mass < 1 eV (bosonic)
- Several models exist: scalar field, axion, dark photon, ... with different phenomenology: oscillations (possible screening), topological default, ...
- In this talk: some results on scalar ULDM and axions
- Others and on-going: work
 - search for Dark Photon/axions with dish antenna (CEA P. Brun)
 - search for Dark Photon using cavities and Rydberg atoms
 - re-interpretation of MICROSCOPE in light of axions (pions mass)
 - exploration of LISA to search for such DM candidates
 - space test of UFF: STE-QUEST mission?
 - astrophysical searches (stars around SgrA*)

- ...

 Hunt for new ideas inspired by experimental progress and possibilities, led by theoretical models and plausibility

Can laboratory experiments and spacebased experiments help in understanding DM?

The field has a frequency distribution due to the DM velocity distribution

• The oscillation frequency depends on the velocity

See Centers et al, arXiv1905.13650 and Foster et al, PRD, 2018 Savalle et al, PRL 2021

MICROSCOPE

collaboration between CNES, ONERA, CNRS, ESA, ZARM, PTB

 Launched on April 25th, 2016 ; life-time: ~ 2 yr (12% of the time used for UFF tests)

- Drag-free satellite, two cylindrical test masses:
 Pt/Ti. Measurement of the diff. acceleration along the symmetry axis
- Final results published in September 2022

 $\eta = (-1.5 \pm 2.3 \text{ [stat]} \pm 1.5 \text{ [syst]}) \times 10^{-15}$

Touboul et al, PRL, 2022

 Independent analysis in the time domain @SYRTE: verification + other scientific objectives (Lorentz invariance "Standard Model Extension": search for a preferred frame UFF violation)

Expected phase shift in Mach-Zehnder Al

The oscillating acceleration implies a modification of the atom EoM \rightarrow the atom oscillates in the interferometer The differential phase shift between two atoms A and B at the end of the sequence is

$$\begin{cases} \Delta \phi_{AB}^{MZ} \propto \frac{\rho_{DM} v_{DM}}{\omega_a^3} \left(k_{eff}^A \left(\left[Q_M^A \right]_a - \left[Q_M^M \right]_a \right) - k_{eff}^B \left(\left[Q_M^B \right]_a - \left[Q_M^M \right]_a \right) \right) \sin^2(\omega_a T) \\ \Delta \phi_{AB}^{MZ} \propto \frac{\sqrt{\rho_{DM}} v_{DM}}{\omega_\phi^2} \left(k_{eff}^A \left(\left[Q_M^A \right]_\phi - \left[Q_M^M \right]_\phi \right) - k_{eff}^B \left(\left[Q_M^B \right]_\phi - \left[Q_M^M \right]_\phi \right) \right) \sin^2\left(\frac{\omega_\phi T}{2} \right) \end{cases} \end{cases}$$

Expected phase shift in gradiometers

Signal is limited by the small time the atom lasts in the excited state ($\sim \omega L/c \ll 1$) (+ sensitivity to Q_M^A at 2nd order in $\omega L/c$)

Can we do better ? Modified AI setup proposal

→ Signal not limited anymore by small factor $\omega L/c$ However, EOM comes with an additional noise...

Phase shift induced by DM in various AI setup and sensitivity of various experiments

work from J. Gué, PhD student

 Standard Mach-Zender: used in Standford with ⁸⁵Rb and ⁸⁷Rb and for a gravimeter in Wuhan using ⁸⁷Rb

see P.Asenbaum et al, PRL, 2020 for standford and Z. Hu et al, PRA, 2020 for Wuhan

 Future AION10 gradiometer: 2 Mach-Zender with Large Momentum Transfer stacked at different elevations

see e.g. Badurina et al, PRD, 2022

 Future MAGIS-like experiment: 2 colocated Mach-Zender with Large Momentum Transfer using 2 isotopes: advantageous for **UFF** tests

see e.g. Abe et al, Quantum Sc. and Tech., 2021

Linear and quadratic couplings have a different phenomenology

• Linear coupling

$$\varphi^{(1)}(t, \boldsymbol{x}) = \varphi_0 \cos\left(\boldsymbol{k} \cdot \boldsymbol{x} - \omega t + \delta\right) - s_A^{(1)} \frac{GM_A}{c^2 r} e^{-r/\lambda_{\varphi}}$$

DM, atomic sensors are more sensitive A fifth force generated by a body - UFF tests are more sensitive

Quadratic coupling: no more Yukawa interaction, richer phenomenology

Can be screened or enhanced (scolarisation)

Both atomic sensors and UFF tests are sensitive to this behaviour

Linear and quadratic couplings have a different phenomenology

• Linear coupling

$$\varphi^{(1)}(t, \boldsymbol{x}) = \varphi_0 \cos\left(\boldsymbol{k} \cdot \boldsymbol{x} - \omega t + \delta\right) - \left(s_A^{(1)} \frac{GM_A}{c^2 r} e^{-r/\lambda_{\varphi}}\right)$$

DM, atomic sensors are more sensitive A fifth force generated by a body - UFF tests are more sensitive

Quadratic coupling: no more Yukawa interaction, richer phenomenology

$$\varphi = \tilde{\varphi}(r)\varphi_0 \cos mt$$

Can be screened or enhanced (scolarisation)

Both atomic sensors and UFF tests are sensitive to this behaviour

Screening for positive couplings and scalarization for negative couplings!

This leads to a rich phenomenology

Comparison of atomic frequencies:

$$Y(t, \boldsymbol{x}) = K + \left(\Delta \kappa^{(2)} \frac{\varphi_0^2}{2} \left(1 - s_A^{(2)} \frac{GM_A}{c^2 r}\right)^2 + \left(\Delta \kappa^{(2)} \frac{\varphi_0^2}{2} \cos\left(2\omega t + 2\delta\right) \left(1 - s_A^{(2)} \frac{GM_A}{c^2 r}\right)^2 + \left(\Delta \kappa^{(2)} \frac{\varphi_0^2}{2} \cos\left(2\omega t + 2\delta\right) \left(1 - s_A^{(2)} \frac{GM_A}{c^2 r}\right)^2 + \left(\Delta \kappa^{(2)} \frac{\varphi_0^2}{2} \cos\left(2\omega t + 2\delta\right) \left(1 - s_A^{(2)} \frac{GM_A}{c^2 r}\right)^2 + \left(\Delta \kappa^{(2)} \frac{\varphi_0^2}{2} \cos\left(2\omega t + 2\delta\right) \left(1 - s_A^{(2)} \frac{GM_A}{c^2 r}\right)^2 + \left(\Delta \kappa^{(2)} \frac{\varphi_0^2}{2} \cos\left(2\omega t + 2\delta\right) \left(1 - s_A^{(2)} \frac{GM_A}{c^2 r}\right)^2 + \left(\Delta \kappa^{(2)} \frac{\varphi_0^2}{2} \cos\left(2\omega t + 2\delta\right) \left(1 - s_A^{(2)} \frac{GM_A}{c^2 r}\right)^2 + \left(\Delta \kappa^{(2)} \frac{\varphi_0^2}{2} \cos\left(2\omega t + 2\delta\right) \left(1 - s_A^{(2)} \frac{GM_A}{c^2 r}\right)^2 + \left(\Delta \kappa^{(2)} \frac{\varphi_0^2}{2} \cos\left(2\omega t + 2\delta\right) \left(1 - s_A^{(2)} \frac{GM_A}{c^2 r}\right)^2 + \left(\Delta \kappa^{(2)} \frac{\varphi_0^2}{2} \cos\left(2\omega t + 2\delta\right) \left(1 - s_A^{(2)} \frac{GM_A}{c^2 r}\right)^2 + \left(\Delta \kappa^{(2)} \frac{\varphi_0^2}{2} \cos\left(2\omega t + 2\delta\right) \left(1 - s_A^{(2)} \frac{GM_A}{c^2 r}\right)^2 + \left(\Delta \kappa^{(2)} \frac{\varphi_0^2}{2} \cos\left(2\omega t + 2\delta\right) \left(1 - s_A^{(2)} \frac{GM_A}{c^2 r}\right)^2 + \left(\Delta \kappa^{(2)} \frac{\varphi_0^2}{2} \cos\left(2\omega t + 2\delta\right) \left(1 - s_A^{(2)} \frac{GM_A}{c^2 r}\right)^2 + \left(\Delta \kappa^{(2)} \frac{\varphi_0^2}{2} \cos\left(2\omega t + 2\delta\right) \left(1 - s_A^{(2)} \frac{GM_A}{c^2 r}\right)^2 + \left(\Delta \kappa^{(2)} \frac{\varphi_0^2}{2} \cos\left(2\omega t + 2\delta\right) \left(1 - s_A^{(2)} \frac{GM_A}{c^2 r}\right)^2 + \left(\Delta \kappa^{(2)} \frac{\varphi_0^2}{2} \cos\left(2\omega t + 2\delta\right) \left(1 - s_A^{(2)} \frac{GM_A}{c^2 r}\right)^2 + \left(\Delta \kappa^{(2)} \frac{\varphi_0^2}{2} \cos\left(2\omega t + 2\delta\right) \left(1 - s_A^{(2)} \frac{GM_A}{c^2 r}\right)^2 + \left(\Delta \kappa^{(2)} \frac{GM_A}{c^2$$

Position dependent: clocks on elliptic orbit? Comparison clock in space versus clock on ground?

oscillation, amplitude depends on position

• UFF measurements

$$[\Delta \boldsymbol{a}]_{A-B} = \Delta \bar{\alpha}^{(2)} \frac{\varphi_0^2}{2} \left(1 - s_C^{(2)} \frac{GM_c}{c^2 r} \right) \left(-\frac{GM_c}{r^3} \boldsymbol{x} \, s_C^{(2)} \right) - \left(\frac{GM_c}{r^3} \boldsymbol{x} \, s_C^{(2)} \right) \cos \left(2\omega t + 2\delta \right) \\ + \left(\left(1 - s_C^{(2)} \frac{GM_c}{c^2 r} \right) \omega \boldsymbol{v} \sin \left(2\omega t + 2\delta \right) \right) \left(-\frac{GM_c}{r^3} \boldsymbol{x} \, s_C^{(2)} \right) + \left(\frac{GM_c}{r^3} \boldsymbol{x} \, s_C^{(2)} \right) \cos \left(2\omega t + 2\delta \right) \\ + \left(\frac{GM_c}{r^3} \boldsymbol{x} \, s_C^{(2)} \right) \left(-\frac{GM_c}{r^3} \boldsymbol{x} \, s_C^{(2)} \right) \left(-\frac{GM_c}{r^3} \boldsymbol{x} \, s_C^{(2)} \right) \left(-\frac{GM_c}{r^3} \boldsymbol{x} \, s_C^{(2)} \right) \right) \left(-\frac{GM_c}{r^3} \boldsymbol{x} \, s_C^{(2)} \right) \left($$

 η that depends on r (directly related to Eöt-Wash and MICROSCOPE results)

2 terms that oscillate, amplitude depends on position

See A. Hees et al, PRD, 2018

They are all sensitive to screening/scalarization

Constraints on the quadratic couplings

Impact of screening

Impact of scalarization

Being in space is favorable ! Scalar field tends to vanish at the Earth surface

A vector DM will interact with electromagnetism

• An effective Lagrangian for the vector-matter coupling

$$\mathcal{L}_{\text{mat}}\left[\Psi, g_{\mu\nu}, X_{\mu}\right] = \mathcal{L}_{\text{SM}}\left[\Psi, g_{\mu\nu}\right] - \frac{\chi}{2} F^{\mu\nu} X_{\mu\nu} + \dots$$

see Horns et al, JCAP, 2013 and references therein

- Kinetic mixing coupling χ characterises the coupling with EM
- Other couplings with matter can be considered like to the B-L current: leads to a violation of the UFF
- The hidden photon X^{μ} will mix with the usual photon A^{μ}

$$\Box A^{\mu} = -\chi \Box X^{\mu}$$
$$\Box X^{\mu} + m^2 X^{\mu} = -\chi \Box A^{\mu}$$

A hidden photon field will generate a small EM field and vice versa

An oscillating DM vector field will generate a small electric field

• Oscillating DM vector field $\vec{X} = \vec{X}_0 \cos mt$ will generate an EM field

$$\vec{A} = -\chi \vec{X}$$

and in particular a small electric field

$$\vec{E}_{\rm DM} = -\partial_t \vec{A} = -m\chi \vec{X}_0 \sin mt$$

• As a reminder: the amplitude of oscillation is related to the DM energy density $a \mid \vec{z} \mid^2$

$$\rho = \frac{m^2 \left| \vec{X}_0 \right|^2}{2}$$

In a DM vector field, a dish antenna will generate an EM field that will be focused in its center

- the electric field // to a conductor surface vanishes (boundary condition)
- The surface of the dish will generate a propagating electric field to vanish the DM electric field
- For a spherical dish, the electric field will be focused at the center + nonrelevant electric field will be focused at the focal point
- Sensitivity

S

center