

Searching for UltraLight Dark Matter: from the lab to space

J. Gué, E. Savalle, A. Hees, P. Wolf

LNE-SYRTE, CNRS,Paris Obs., Université PSL, Sorbonne Univ. ex PhD students (now at IFAE, Barcelona and at CEA respectively)

Atelier Théorie, Univers, Gravitation Annecy, November 7th, 2024

Systèmes de Référence Temps-Espace

in collaboration with

- SYRTE: M. Abgrall, S. Bize, E. Cantin, F. Florian, R. Le Targat, J. Lodewyck, P-E. Pottie, …
- CEA: P. Brun, L. Chevalier, H. Deschamps, P. Polovodov, E. Savalle
- CSM and OCA: O. Minazzoli
- OCA/Grasse Station: J. Chabé, C. Courde
- ROB: B. Bertrand, P. Defraigne
- U. Sidney: Y. Stadnik
- U. Queensland: B. Roberts
- …

DM needed to explain astro/cosmo observations but not direct detection so far

DM needed at: galactic scales (rotation curves, ...), galaxy cluster (bullet cluster, …), cosmo (CMB, structure formation, …)

UltraLight Dark Matter needs to be a boson and it behaves classically

• Occupation number (number of particles per volume of phase-space)

$$
\frac{n}{n_k} \sim \frac{6\pi^2 \hbar^3 \rho_{\rm DM}}{m^4 c^2 v_{\rm max}^3}
$$

Calculation inspired from Tourrenc et al, arXiv:quantum-ph/0407187, 2004

- Around the Sun $\rho_{\rm DM} \approx 0.4 {\rm GeV/cm}$ 3
- This occupation number is larger than 1 if the DM mass is lower than ~ 10 eV: Dark Matter lighter than 10 eV can only be made of boson
	- a bosonic scalar particle (i.e. a scalar field)
	- a bosonic pseudo-scalar particle (i.e. an axion)
	- a boson vector particle (i.e. a hidden photon)
- For m $<<$ eV: the occupation number is huge and such a bosonic field can be treated classically (no quantization)

A massive scalar field or a massive vector field oscillates at its Compton frequency

Cosmological evolution

$$
\varphi,X^i\sim\cos mt
$$

 T^i_i *j*

 \setminus

 $\Leftarrow 0$

The averaged stress-energy tensor:

$$
\boxed{\rho \sim \left\langle T_0^0 \right\rangle = \frac{m^2 \varphi_0^2}{2}} \qquad p_{ij} \not\sim \left\langle
$$

- complex data analysis (for long dataset, the oscillation is not coherent)
- use to distinguish from systematics
- stochastic evolution: allows to probe large masses with low freq. searches
- see G. Centers et al, Nat. Comm., 2021 E. Savalle et al, PRL, 2021 V. Flambaum and Samsonov, PRD, 2023

A scalar DM is expected to break the equivalence principle

An effective Lagrangian for the scalar-matter coupling

$$
\mathcal{L}_{\text{mat}}\left[g_{\mu\nu},\Psi,\varphi\right] = \mathcal{L}_{SM}\left[g_{\mu\nu},\Psi\right] + \varphi^i\left[\frac{d_e^{(i)}}{4e^2}F_{\mu\nu}F^{\mu\nu} - \frac{d_g^{(i)}\beta_3}{2g_3}F_{\mu\nu}^A F_{A}^{\mu\nu} - \sum_{j=e,u,d}\left(d_{m_j}^{(i)} + \gamma_{m_j}d_g^{(i)}\right)m_j\bar{\psi}_j\psi_j\right]
$$

- Couplings usually considered:
	- linear in φ : lowest order expansion (cfr Damour-Donoghue)
	- quadratic in φ : lowest order if there is a Z_2 symmetry (cfr Stadnik et al)
- This leads to a space-time dependance of some constants of Nature to the scalar field $\alpha(\varphi) = \alpha$ $\sqrt{2}$ $1+d^{(i)}_e\varphi^i$ \setminus

$$
m_j(\varphi) = m_j \left(1 + d_{m_j}^{(i)} \varphi^i \right) \qquad \text{for } j = e, u, d
$$

$$
\Lambda_3(\varphi) = \Lambda_3 \left(1 + d_g^{(i)} \varphi^i \right)
$$

Can be interpreted as a signature of a violation of the Einstein Equivalence Principle: oscillations of the constants of Nature!

see also Arvanitaki et al, PRD 2015, Hees et al, PRD, 2018

see Damour and Donoghue, PRD, 2010

Axion and ALP are effectively leading to quadratic couplings

At tree level, the axion/ALP couples through terms like

$$
\sim \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{a\mu\nu} \quad \text{or} \quad \sim \frac{a}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu}
$$

the axion-gluon coupling induces a quadratic coupling to the pion mass

$$
\frac{\delta m_{\pi}^2}{m_{\pi}^2} = -\frac{m_u m_d}{2\left(m_u + m_d\right)^2} \left(\frac{a}{f_a}\right)^2
$$

see H. Kim and G. Perez, PRD, 2024

=> induces a dependency on atom rest-mass and atomic transitions

see J. Gué, etl al, PRD, 2024

the axion-gluon coupling induces a quadratic coupling to EM at 1-loop

$$
\frac{\delta \alpha}{\alpha} = c_{F^2} \frac{\alpha}{4\pi^2} \left(\frac{a}{f_a}\right)^2
$$

see C. Beadle et al, PRD, 2024 H. Kim et al, PRD, 2024

Various experimental signatures can be searched for

- 1. Atomic clocks: sensitive to the evolution of the constant of Nature, i.e. to φ (linear coupling) or φ^2 (quadratic coupling)
	- see A. Hees et al, PRD 2018
- 2. Universality of Free Fall (UFF) test: sensitive to the gradient of φ^i , i.e. to $\nabla \varphi$ (linear coupling) or $\varphi \nabla \varphi$ (quadratic coupling)

see A. Hees et al, PRD 2018

- 3. Atom Interferometry (AI): sensitive to a combination of both $\int \varphi^i$ and φ^i and $\nabla \varphi$ depending on specific AI scheme see A. Geraci and Derevianko, PRD, 2016
	- P. Graham et al, PRD, 2016
	- J. Gué et al, PRD, 2024
	- see J-C Yu et al, PRD, 2023 J. Gué et al, in prep

5. etc…

4. LISA interferometer: sensitive to $\nabla\varphi^i$

Scalar field for a linear coupling *^A* appearing in Eq. (17) is independent of the scalar $\Box \varphi + m^2 \varphi \neq \overbrace{-\frac{4\pi G}{c^2}} \alpha_A \rho_A$ Source term $\frac{a}{c^2} \alpha_A \rho_A$

- α_{λ} depends on the scalar coupling deand on the composity of the details are defined to the results are designed to the results are given in the results are given in the results are designed to the results and the results are designed to the results are designed to the results ar appendix B. The general expression of the scalar field is seen that \mathcal{A} is seen the scalar field is seen to the scalar field is seen • α_A depends on the scalar coupling d_i and on the composition of body A
- "Easy" to solve (existence of a Green function)

$$
\varphi^{(1)}(t,\boldsymbol{x}) = \underbrace{\varphi_0 \cos(k.\boldsymbol{x} - \omega t + \delta)}_{\mathcal{C}^2(\boldsymbol{x})} + \underbrace{s_A^{(1)} \frac{GM_A}{c^2 r} e^{-r/\lambda \varphi}}
$$

 λ *k*omie Atomic clocks are more sensitive

A fifth force generated by a body (more common in the modified gravity community)

 \overline{a} = \overline{a} Oscillations can be interpreted as DM *LIFF* measurements are UFF measurements are more sensitive

A independent of the DM interpretation

Scalar field for a quadratic coupling

$$
\Box\varphi+\Bigg[\!\!\Big(m^2+\frac{4\pi G}{c^2}\alpha_A\rho_A\Bigg)\!\!\Big]\varphi=0
$$

No source term (no fifth force) but effective mass that depends on the local matter density

$$
\varphi=\tilde{\varphi}(r)\varphi_0\cos mt
$$

Screening for positive couplings and scalarization for negative couplings! In case of screening: space observations are highly favoured!

see A. Hees et al, PRD, 2018 similar mechanism as the one studied by G. Esposito-Farèse and T. Damour, PRL, 1993

Two experiments developed at SYRTE

Search for a periodic signal in Cs/Rb comparison

• Cs/Rb FO2 atomic fountain data from SYRTE: high accuracy and high stability, data used from 2008

see J. Guéna et al, Metrologia, 2012 and J. Guéna et al., IEEE UFFC, 2012

Search for a periodic signal in the data using Scargle's method, see Scargle ApJ, 1982

A. Hees, J. Guéna, M. Abgrall, S. Bize, P. Wolf, PRL, 2016

Z ender interferometer Search for a periodic signal in a Mach-

• New type of experiment proposed. Simplified principle:

- Interpretation: comparison of an atomic frequency with itself in the past
- Main advantage: explored frequency range \sim kHz-MHz while standard clocks are limited to 100 mHz

Systèmes de Référence Temps-Espace

The DAMNED experiment (DArk Matter from Non Equal Delays)

- *. µ* - the "clock" is a laser cavity (both length and laser frequency oscillate)
- the length of the fiber oscillates
- the refractive index of the fiber oscillates
- First experiment built @SYRTE (E. Savalle's PhD with P-E Pottie, F. Franck, E. Cantin) and data analyzed taken into account the stochasticity of the signal
- no significant periodic signal is detected in the 10-200 kHz frequency band

l'Observatoire SYRTE

Systèmes de Référence Temps-Espa

Constraints on the linear couplings

Assuming the DM density to be constant over the whole Solar System (0.4 GeV/cm3)

Update from Hees et al, PRD, 2018

Results from:

- Rb/Cs: Hees et al, PRL, 2016
- BACON: Nature, 2021
- JILA: Kennedy et al, PRL, 2020
- Eöt-Wash: Wagner et al, CQG, 2012
- MICROSCOPE: Bergé et al, PRL, 2018
- DAMNED: Savalle et al, PRL 2021
- GEO600: Vermeulen et al, Nature, 2021

Constraints on the quadratic couplings

Impact of amplification

Being in space is favorable! Scalar field tends to vanish at the Earth surface

Constraints on the quadratic couplings have been reinterpreted as constraints on axion coupling

the axion-gluon coupling induces a quadratic coupling to EM at 1-loop

 α

✓ *a*

 \setminus^2

 $\delta \alpha$

 $=c_{F^2}$

Figure from C. Beadle et al, PRD 110, 035019, 2024 FIG. 1. New constant fa as a function of the mass matter, which rely on the mass matter, which rely on the existence of the existence of

see C. Beadle et al, PRD, 2024

H. Kim et al, PRD, 2024

Atom interferometers are sensitive to such DM candidates as well

see J. Gué et al, PRD, 2024

• Calculations performed following method from Storey and Cohen-Tannoudji, J. Phys, 1994. Exemple for a Mach-Zender:

- Dilaton DM field impacts:
	- Classical trajectories of atoms
	- Rest mass/transition energy (Lagrangian + recoil velocity kick)
	- Laser frequency

Extends previous calculations

see A. Geraci and A. Derevianko, PRD 2016 P. Graham et al, PRD 2016 L. Badurina et al, PRD 2022

Future AI setup will be very competitive to search for scalar DM candidates

Sensitivitieswork from J. Gué, ex PhD student

• SPID = Single Photon Isotope Differential (variation of AION more Deservitiver to scalar DM or axion)Systèmes de Référence Temps-Espace

Conclusion

- Nature of Dark Matter remains one major challenge of modern physics
- In recent years (2015+): precision metrology has pushed the search for Dark Matter of mass < 1 eV (bosonic)
- Several models exist: scalar field, axion, dark photon, ... with different phenomenology: oscillations (possible screening), topological default, …
- In this talk: some results on scalar ULDM and axions
- Others and on-going: work
	- search for Dark Photon/axions with dish antenna (CEA P. Brun)
	- search for Dark Photon using cavities and Rydberg atoms
	- re-interpretation of MICROSCOPE in light of axions (pions mass)
	- exploration of LISA to search for such DM candidates
	- space test of UFF: STE-QUEST mission?
	- astrophysical searches (stars around SgrA*)

- …

• Hunt for new ideas inspired by experimental progress and possibilities, led by theoretical models and plausibility

Can laboratory experiments and spacebased experiments help in understanding DM?

The field has a frequency distribution due to the DM velocity distribution y alstribution aue to **AUSTRIDULI** 20 (DM, Local ≈ 0.4 GeV/cm3)
Local ≈ 0.4 GeV/cm3 cy distribution due to distribution and distribution

• The oscillation frequency depends on the velocity 2 city

See Centers et al, arXiv1905.13650 and Foster et al, PRD, 2018. Savalle et al, PRL 2021

MICROSCOPE *manuel.rodrigues@onera.fr*

collaboration between CNES, ONERA, CNRS, ESA, ZARM, PTB

Launched on April 25th, 2016 ; life-time: \sim 2 yr (12% of the time used for UFF tests)

- Drag-free satellite, two cylindrical test masses: Pt/Ti. Measurement of the diff. acceleration along the symmetry axis
- Final results published in September 2022

 $\eta = (-1.5 \pm 2.3 \text{ [stat]} \pm 1.5 \text{ [syst]}) \times 10^{-15}$

Touboul et al, PRL, 2022

Independent analysis in the time domain $@$ SYRTE: verification + other scientific objectives (Lorentz invariance "Standard Model Extension": search for a preferred frame UFF violation) Fihan-Le Bars et al, PRL, 2019

Expected phase shift in Mach-Zehnder Al

The oscillating acceleration implies a modification of the atom EoM \rightarrow the atom oscillates in the interferometer The differential phase shift between two atoms A and B at the end of the sequence is

 ϵ

$$
\begin{cases}\n\Delta \phi_{AB}^{MZ} \propto \frac{\rho_{DM} v_{DM}}{\omega_a^3} \left(k_{eff}^A \left(\left[Q_M^A \right]_a - \left[Q_M^M \right]_a \right) - k_{eff}^B \left(\left[Q_M^B \right]_a - \left[Q_M^M \right]_a \right) \right) \sin^2(\omega_a T) \\
\Delta \phi_{AB}^{MZ} \propto \frac{\sqrt{\rho_{DM}} v_{DM}}{\omega_\phi^2} \left(k_{eff}^A \left(\left[Q_M^A \right]_\phi - \left[Q_M^M \right]_\phi \right) - k_{eff}^B \left(\left[Q_M^B \right]_\phi - \left[Q_M^M \right]_\phi \right) \right) \sin^2\left(\frac{\omega_\phi T}{2} \right)\n\end{cases}
$$

Expected phase shift in gradiometers

Signal is limited by the small time the atom lasts in the excited state ($\sim\omega L/c\ll1$) (+ sensitivity to $Q_M^{\rm A}$ at 2nd order in $\omega L/c$)

Can we do better? Modified AI setup proposal

 \rightarrow Signal not limited anymore by small factor $\omega L/c$ However, EOM comes with an additional noise...

Phase shift induced by DM in various AI setup and sensitivity of various experiments

work from J. Gué, PhD student

• Standard Mach-Zender: used in Standford with ⁸⁵Rb and ⁸⁷Rb and for a gravimeter in Wuhan using 87Rb

see P. Asenbaum et al, PRL, 2020 for standford and Z. Hu et al, PRA, 2020 for Wuhan

• Future AION10 gradiometer: 2 Mach-Zender with Large Momentum Transfer stacked at different elevations

see e.g. Badurina et al, PRD, 2022

• Future MAGIS-like experiment: 2 colocated Mach-Zender with Large Momentum Transfer using 2 isotopes: advantageous for UFF tests
see e.g. Abe et al, Quantum Sc. and Tech., 2021

Linear and quadratic couplings have a different phenomenology Appendix B. The general expression of the scalar field is

• Linear coupling

$$
\varphi^{(1)}(t,\boldsymbol{x}) = \underbrace{\varphi_0 \cos(\boldsymbol{k}.\boldsymbol{x} - \omega t + \delta)}_{\text{max}} + \underbrace{s_A^{(1)} \frac{GM_A}{c^2 r} e^{-r/\lambda \varphi}}
$$

where *|k|* atomic sensors are
more sensitive DM, atomic sensors are

A fifth force generated by a body - UFF tests are more sensitive

nol ~ *cm*' • Quadratic coupling: no more Yukawa interaction, richer phenomenology

tended body and is given by enhanced (scolarisation) *,* (20) Can be screened or

 $\overline{}$ with the function $\overline{I}(X)$ is the function of $\overline{I}(X)$ is the functi Both atomic sensors and UFF tests are sensitive to this behaviour

 \overline{A} is the e \overline{A}

Linear and quadratic couplings have a different phenomenology Appendix B. The general expression of the scalar field is

• Linear coupling

$$
\varphi^{(1)}(t,\boldsymbol{x}) = \underbrace{\varphi_0 \cos(\boldsymbol{k}.\boldsymbol{x} - \omega t + \delta)}_{\text{max}} + \underbrace{s_A^{(1)} \frac{GM_A}{c^2 r} e^{-r/\lambda \varphi}}
$$

where *|k|* atomic sensors are
more sensitive DM, atomic sensors are

A fifth force generated by a body - UFF tests are more sensitive

nol ~ *cm*' • Quadratic coupling: no more Yukawa interaction, richer phenomenology

$$
\varphi = \left(\tilde{\varphi}(r)\right)_{0} \cos mt
$$

enhanced (scolarisation) *,* (20) Can be screened or

 $\overline{}$ with the function $\overline{I}(X)$ is the function of $\overline{I}(X)$ is the functi Both atomic sensors and UFF tests are sensitive to this behaviour

Screening for positive couplings and scalarization for negative couplings!

This leads to a rich phenomenology 1. La quich phonomonology . I ICH PI this UFF violation is linearly proportional to the cou-*This loads to a* force di la coupling di 3^2 *c*²*R GM* (31) ⇥ cos (2!*t* + 2) *.* ⌘ = 2*|a^A ^aB[|]* <u>**, (37), (3</u>** ↵˜(2) 6*GM c*²*R* ⇥ cos (2!*t* + 2) *.* ⌘ = 2*|a^A ^aB[|] |a^A* + *aB| ,* (37)

• Comparison of atomic frequencies: is richer, it reads *<u>A (<i>x*) = *X* + (*x*) = *X* + (*x*) = *x*) </u> • Comparison of atomic fre term can be in the state of the state in the state of the UFF measurements B. Tests of the Universality of Free Fall parison of atomic frequen

$$
Y(t, x) = K + \left(\Delta \kappa^{(2)} \frac{\varphi_0^2}{2} \left(1 - s_A^{(2)} \frac{GM_A}{c^2 r}\right)^2 + \Delta \kappa^{(2)} \frac{\varphi_0^2}{2} \cos(2\omega t + 2\delta) \left(1 - s_A^{(2)} \frac{GM_A}{c^2 r}\right)^2\right)
$$

 \mathbf{r} depen ndent: clocks on ✓ empuc orbit: Companison clock in space versus clock on ground? The acceleration of the space versus clock on ground? $\mathcal{S}^{\mathcal{S}}_{\mathcal{S}}$ (see also $\mathcal{S}^{\mathcal{S}}_{\mathcal{S}}$). *lintic orbit[?] Co* **c** $\mathsf m$ *.* (38) *dx^µ dt dx*⌫ *ition depen* **EINDUC OF DIC: CO** same location are compared. Therefore, we are only inin space versus clock on ground? *dt* Position dependent: clocks on which the acceleration of the acceleration of the set o simple didn't dompared. Therefore, we are $\frac{1}{2}$ composition dependent. We can therefore use the followelliptic orbit? Comparison clock

oscillation, amplitude depend where $⊥†$ ⇣ ↵¯(1) where ! = *m*'*c*²*/*~. This signature is quite unique and **ks on distinguish of the control control control of the first one is a control on the first one is a control o** spectrum and construction and containing the search of behavior of the search of t The division of the division o oscillation, amplitude depends case of a position on position

• UFF measurements \overline{c} of a measurements coupling coupling coupling \overline{c} composition dependent. We can the following $\sum_{i=1}^{n}$ *L*_T *L*
L
L
L ment

• **UFL measurements**
\n
$$
[\Delta a]_{A-B} = \Delta \bar{\alpha}^{(2)} \frac{\varphi_0^2}{2} \left(1 - s_C^{(2)} \frac{GM_c}{c^2 r} \right) \left(- \frac{GM_c}{r^3} x s_C^{(2)} \right) \left(\frac{GM_c}{r^3} x s_C^{(2)} \right) \cos (2\omega t + 2\delta) + \left(1 - s_C^{(2)} \frac{GM_c}{c^2 r} \right) \omega v \sin (2\omega t + 2\delta) \right)
$$

 $\frac{1}{2}$, that depends on r (directly equal depends on F (direction **MICROSC** $\overline{}$ **p**
PPF 6*GM* $MICROSCOPE$ results) s **P** ^{it depend
.} *C c*²*r* !*v* sin (2!*t* + 2) η that depends on r (dir $MICROSCOPE$ results) Lagrange derivation gives the first order contribution to \mathbf{S} \mathbf{I} and \mathbf{I} T first line correspond to a di T erential acceleration prothat depends on r (directly related to Eöt-Wash and ential acceleration between two bodies *A* and *B* located MICROSCOPE results) η that depends on r (directly η terms that oscillate, amplitude

(31) proportional to the square of the *d*(1) at Oscinate, amplitude depends on position *^Y*˜ (*t*) = (2) *c*²*R* nac oscinaco, a illat depends on position mpili 2 terms that oscillate, amplitu ms that oscillate amplitude portional to the Newtonian acceleration. The Newtonian acceleration acceleration. The Newtonian acceleration is the E¨otv"os parameter and English and Eq. (37) with the Eq. (37) with the Eq. (37) with the Eq. (37) with the depends on position

See A. Hees et al, PRD, 2018 **Iney are all** : \mathcal{A} the same position is th

They are all ⇥ cos (2!*t* + 2) *.* portional to the Newtonian acceleration. This term can where **⊥T** $is the coupling defined by Eq. (7). The di⊻er$ are all sensitive to screening/scalarizatio $\mathbf C$ defined by Eq. (37) with $\mathbf C$ \mathbf{F} **b** \mathbf{a} \mathbf{a} $_{018}$ They are all sensitive to ⌘ = *s* (2) calari<mark>z</mark>at f \overline{a} ✓ They are all sensitive to screening/scalarization

Constraints on the quadratic couplings

Impact of screening

Impact of scalarization

Being in space is favorable ! Scalar field tends to vanish at the Earth surface

A vector DM will interact with electromagnetism

An effective Lagrangian for the vector-matter coupling

$$
\mathcal{L}_{\text{mat}}\left[\Psi,g_{\mu\nu},X_{\mu}\right]=\mathcal{L}_{\text{SM}}\left[\Psi,g_{\mu\nu}\right]-\frac{\chi}{2}F^{\mu\nu}X_{\mu\nu}+\ldots
$$

see Horns et al, JCAP, 2013 and references therein

- Kinetic mixing coupling χ characterises the coupling with EM
- Other couplings with matter can be considered like to the B-L current: leads to a violation of the UFF see e.g. Fayet, PRD, 2018
- The hidden photon X^{μ} will mix with the usual photon A^{μ}

$$
\Box A^{\mu} = -\chi \Box X^{\mu}
$$

$$
\Box X^{\mu} + m^2 X^{\mu} = -\chi \Box A^{\mu}
$$

A hidden photon field will generate a small EM field and vice versa

An oscillating DM vector field will generate a small electric field

• Oscillating DM vector field $\;\vec{X}=\vec{X}_{0}\cos mt\;$ will generate an EM field $\bar{\vec{X}}$ $=X$ $\bar{\vec{X}}$ $\frac{1}{0} \cos mt$

$$
\vec{A} = -\chi \vec{X}
$$

and in particular a small electric field

$$
\vec{E}_{\rm DM} = -\partial_t \vec{A} = -m\chi \vec{X}_0 \sin mt
$$

• As a reminder: the amplitude of oscillation is related to the DM energy density

$$
\rho=\frac{m^2\left|\vec{X}_0\right|^2}{2}
$$

In a DM vector field, a dish antenna will generate an EM field that will be focused in its center ||
|
| S
| C
| ic fi *^r*dish ◆ Aside from this the only limitations are:

- the electric field // to a conductor surface vanishes (boundary condition)
- The surface of the dish will generate a propagating electric field to vanish the DM electric field *•* The surface of the dish has to be smooth and well focused to the centre at length • The surface of the dish will generate a propagating ele
	- For a spherical dish, the electric field will be focused at the center + nonrelevant electric field will be focused at the focal point $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ contrast to our signal it has a broad spectrum. Thermal emission is highly suppressed \bullet for a spherical dish, the electric field and more in the mirror \bullet the detector. This translates into a relative suppression with respect to the signal of relevant electric field will be focus

• Thermal emission from the mirror provides a background for our measurement. In

• Sensitivity to the sensitivity 1026 M seem feasible and 1023 W are certainly possible. Using eq. (2.19) this can easily be a simple \mathcal{P}

$$
\chi_{\rm sens} = 4.5 \times 10^{-14} \left(\frac{P_{\rm det}}{10^{-23} \, \text{W}}\right)^{\frac{1}{2}} \left(\frac{0.3 \, \text{GeV/cm}^3}{\rho_{\rm CDM, halo}}\right)^{\frac{1}{2}} \left(\frac{1 \, \text{m}^2}{A_{\rm dish}}\right)^{\frac{1}{2}} \left(\frac{\sqrt{2/3}}{\alpha}\right)
$$
\n
$$
\text{coeff. characterising the polarization of the DM field wrt the dish}
$$

center