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DM needed to explain astro/cosmo 
observations but not direct detection so far

3Fig. from US cosmic vision: new idea for Dark Matter, 2017

• DM needed at: galactic scales (rotation curves, …), galaxy cluster (bullet 
cluster, …), cosmo (CMB, structure formation, …)

see also presentation from Silvia Manconi



UltraLight Dark Matter needs to be a boson 
and it behaves classically

4

Calculation inspired from Tourrenc et al, arXiv:quantum-ph/0407187, 2004

• Occupation number (number of particles per volume of phase-space)
<latexit sha1_base64="D3nPT//q4YeYz8s51h/qgayZAn8="></latexit>
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• Around the Sun

• This occupation number is larger than 1 if the DM mass is lower than 
~ 10 eV: Dark Matter lighter than 10 eV can only be made of boson
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⇢DM ⇡ 0.4GeV/cm3

- a bosonic scalar particle (i.e. a scalar field) 
      - a bosonic pseudo-scalar particle (i.e. an axion) 
     - a boson vector particle (i.e. a hidden photon)

• For m << eV: the occupation number is huge and such a bosonic field 
can be treated classically (no quantization)



A massive scalar field or a massive vector field 
oscillates at its Compton frequency

• Cosmological evolution
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', Xi ⇠ cosmt

• The averaged stress-energy tensor: 
<latexit sha1_base64="/Lv+hMG8T1Byqi7aDzva7EpZ2Rk="></latexit>
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• The galactic DM distribution: specific spectral distribution 
- complex data analysis (for long dataset, the oscillation is not coherent) 
- use to distinguish from systematics 
- stochastic evolution: allows to probe 
   large masses with low freq. searches

see G. Centers et al, Nat. Comm., 2021 
       E. Savalle et al, PRL, 2021 
       V. Flambaum and Samsonov, PRD, 2023



A scalar DM is expected to break the 
equivalence principle
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• An effective Lagrangian for the scalar-matter coupling 

• This leads to a space-time dependance of some constants of Nature to 
the scalar field

see Damour and Donoghue, PRD, 2010
• Couplings usually considered: 

  - linear in 𝜑: lowest order expansion (cfr Damour-Donoghue) 
  - quadratic in 𝜑: lowest order if there is a Z2 symmetry (cfr Stadnik et al)

Can be interpreted as a signature of a violation of the Einstein Equivalence 
Principle: oscillations of the constants of Nature!
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for j = e, u, d

see also Arvanitaki et al, PRD 2015, Hees et al, PRD, 2018



Axion and ALP are effectively leading to 
quadratic couplings
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• At tree level, the axion/ALP couples through terms like 

BUT

see H. Kim and G. Perez, PRD, 2024
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• the axion-gluon coupling induces a quadratic coupling to the pion mass

or

<latexit sha1_base64="4+LFLqqJvIkyZ+ABdx2B/EeGZnY="></latexit>
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• the axion-gluon coupling induces a quadratic coupling to EM at 1-loop
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see  C. Beadle et al, PRD, 2024 
       H. Kim et al, PRD, 2024

=> induces a dependency on atom rest-mass and atomic transitions
see  J. Gué, etl al, PRD, 2024



Various experimental signatures can be searched for
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1. Atomic clocks: sensitive to the evolution of the constant of Nature, i.e. 
to 𝜑 (linear coupling) or 𝜑2 (quadratic coupling)

2. Universality of Free Fall (UFF) test: sensitive to the gradient of 𝜑i, i.e.    
to 𝛁𝜑 (linear coupling) or 𝜑 𝛁𝜑 (quadratic coupling)

3. Atom Interferometry (AI): sensitive to a combination of both ∫𝜑i and 𝜑i 
and 𝛁𝜑i depending on specific AI scheme 

4. LISA interferometer: sensitive to 𝛁𝜑i

5. etc…

see A. Geraci and Derevianko, PRD, 2016 
       P. Graham et al, PRD, 2016 
       J. Gué et al, PRD, 2024 
       

see A. Hees et al, PRD 2018

see A. Hees et al, PRD 2018

see   J-C Yu et al, PRD, 2023 
         J. Gué et al, in prep       



Scalar field for a linear coupling
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• “Easy” to solve (existence of a Green function)

4

way to parametrize a possible variation of any atomic
frequency X to variations of the constants of Nature is
to use the following parametrization (see e.g. [41, 42])

d lnX = [k↵]X d ln↵+ [kµ]X d lnµ+ [kq]X d lnmq/⇤3 ,
(12)

where µ = me/mp is the ration of the electron mass over
the proton mass, mq is the mass of the light quarks (as-
sumed to be equals), and ki are the sensitivity coe�cients
of the specific transition X. The atomic and nuclear cal-
culations to derive these sensitivity coe�cients have been
achieved in [40, 41, 43, 44] and the obtained numerical
values can be found in Table I from [42].

While the parametrization (12) is widely used, another
equivalent parametrization is useful since closer to the
form of the interaction Lagrangian from Eq. (2)

d lnX = [k↵]X d ln↵+ [kµ]X d lnme/⇤3

+
⇥
k0q
⇤
X
d lnmq/⇤3 , (13)

with k0q = kq � 0.049(8)(3) [45]. These sensitivity coe�-
cients play a role equivalent to the ones of the dilatonic
charges introduced in the previous section.

The coupling of the scalar field to a clock working on
the transition X is then encoded in the coupling function
X which is defined by

d lnX = (i)
X d

�
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�
, (14)

and can be expressed as
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IV. SOLUTIONS FOR THE SCALAR FIELD

The space-time evolution of the scalar field depends
on the distribution of matter. In this manuscript, we
will consider spherically symmetric extended bodies that
will be characterized by a radius RA and by a constant
matter density ⇢A. The reason for this simplification be-
comes obvious when considering the case of the quadratic
coupling: the non-linearity of this case complexifies the
derivations and the solutions (see Appendix B). Never-
theless, the case of a two-layers spherical body is also
considered in Appendix B.

At first order, we model usual matter as a pressureless
perfect fluid whose stress-energy tensor is given by Tµ⌫ =
c2⇢uµu⌫ , where ⇢ is the matter density and u⌫ the 4-
velocity of the fluid 4. For this matter modeling, the

4 Corrections due to the pressure will arise at the post-Newtonian
order and can safely be neglected here.

source term in the Klein-Gordon equation (5b)) writes
as

� = �↵(')⇢c2 , (16)

where ↵ is given by Eq. (7).
Having in mind that the scalar field’s perturbation

must be small if it depicts dark matter (see SEC. IVC),
equation (5b) can be written at leading order as

1

c2
'̈(t,x)��'(t,x) = �

4⇡G

c2
↵A(')⇢A(x)�

c2m2
'

~2 '(t,x) ,

(17)
where the dot denotes a derivative with respect to the
coordinate time t and � is the 3-dimensional flat Lapla-
cian. In this equation, we have neglected terms that are
of the order of O(|hµ⌫ |) (with hµ⌫ = gµ⌫ � ⌘µ⌫). Indeed,
a linearized version of the Einstein equation (5a) shows
that the metric will be generated by sources that will
contribute as ⇠ GMA

c2r ⌧ 1 and by terms that are propor-
tional to '2

0 ('0 being the typical amplitude of the scalar
field). If the scalar field is associated to DM, one can
show that '0 ⇠ 6 ⇥ 10�31 eV/m' [37, 38] which shows
that '2

0 ⌧ 1 for scalar field masses above 10�30 eV. Un-
der this assumption, the space-time behavior of the scalar
field will be governed by Eq. (17) whose solution will be
given in this section. Nevertheless, the explicit limit at
which this assumption breaks down has been carefully
taken into account when deriving the constraints on the
parameters di in Section VI.

A. Linear coupling

In the case of a linear coupling, the function ↵A(') =

↵̃(1)
A appearing in Eq. (17) is independent of the scalar

field and the general solution is a sum of free waves and a
Yukawa-type scalar field generated by the central body.
Details about the derivation of the results are given in
Appendix B. The general expression of the scalar field is
given by

'(1)(t,x) = '0 cos (k.x� !t+ �)� s(1)A

GMA

c2r
e�r/�' ,

(18)

where |k|2 + c2m2
'/~2 = !2/c2 and

�' =
~

cm'
. (19)

The constant s(1)A is the e↵ective scalar charge of the ex-
tended body and is given by

s(1)A = ↵̃(1)
A I

✓
RA

�'

◆
, (20)

with the function I(x) given by

I(x) = 3
x coshx� sinhx

x3
.

Oscillations can be interpreted as DM

A fifth force generated by a 
body (more common in the 
modified gravity community)

Atomic clocks are more 
sensitive

UFF measurements are more 
sensitive

Independent of the DM 
interpretation

Source term

<latexit sha1_base64="XdSx+fBF3WjH1NSbO2Wux6zQvjs="></latexit>

⇤'+m2' = �4⇡G

c2
↵A⇢A

• 𝛼A depends on the scalar coupling di and on the composition 
of body A



Scalar field for a quadratic coupling

10see A. Hees et al, PRD, 2018
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' = '̃(r)'0 cosmt

Screening for positive couplings and scalarization for negative couplings!

In case of screening: space observations are highly favoured!

𝛼A>0

𝛼A<0

No source term (no fifth force) 
but effective mass that depends 

on the local matter density

similar mechanism as the one studied by G. Esposito-Farèse and T. Damour, PRL, 1993



Two experiments developed at SYRTE
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Search for a periodic signal in Cs/Rb 
comparison
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• Cs/Rb FO2 atomic fountain data from SYRTE: high accuracy and high 
stability, data used from 2008

• Search for a periodic signal in the data

A. Hees, J. Guéna, M. Abgrall, S. Bize, P. Wolf, PRL, 2016

using Scargle’s method, see Scargle ApJ, 1982

No positive detection

see J. Guéna et al, Metrologia, 2012 and J. Guéna et al., IEEE UFFC, 2012
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⌫ (~r , t)� ⌫ (~r , t)

⌫(~r , t )� ⌫(~r , t )

Search for a periodic signal in a Mach-
Zender interferometer
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• New type of experiment proposed. Simplified principle:

see Savalle et al, PRL 2021

A

�⌫A
⌫A

= (i)
A 'i
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Fiber 
delay T0

⌫A(t� T0)
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<latexit sha1_base64="jt1YgKi9MMolTlXp+IPxVSpPH24=">AAACDnicbVDLSgMxFM3UV62vUXHlJliEdtEyIwV1V3XjskJf0A5DJs20oUlmSDJCGfoP/oJb3bsTt/6CW7/EtJ2Fth64cO4593IvJ4gZVdpxvqzc2vrG5lZ+u7Czu7d/YB8etVWUSExaOGKR7AZIEUYFaWmqGenGkiAeMNIJxnczv/NIpKKRaOpJTDyOhoKGFCNtJN8+6YvEvynpStN3ypWsKft20ak6c8BV4makCDI0fPu7P4hwwonQmCGleq4Tay9FUlPMyLTQTxSJER6jIekZKhAnykvn70/huVEGMIykKaHhXP29kSKu1IQHZpIjPVLL3kz81wv40mUdXnkpFXGiicCLw2HCoI7gLBs4oJJgzSaGICyp+R3iEZIIa5NgwYTiLkewStoXVbdWvX6oFeu3WTx5cArOQAm44BLUwT1ogBbAIAXP4AW8Wk/Wm/VufSxGc1a2cwz+wPr8AVKQmrQ=</latexit>

Oscillations of the 
scalar field

• Interpretation: comparison of an atomic frequency with itself in the past
• Main advantage: explored frequency range ~ kHz-MHz while standard 

clocks are limited to 100 mHz



AOM

Bobine de fibre 54 km

3937

Signal

Référence

. µ

kHz

The DAMNED experiment (DArk 
Matter from Non Equal Delays)
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• In practice:

- the “clock” is a laser cavity (both length and laser frequency oscillate)
- the length of the fiber oscillates
- the refractive index of the fiber oscillates

see Savalle et al, PRL, 2021

Fiber - 54km

Cavity

• First experiment built @SYRTE (E. Savalle’s PhD with P-E Pottie, F. Franck, 
E. Cantin) and data analyzed taken into account the stochasticity of the 
signal

• no significant periodic signal is detected in the 10-200 kHz frequency band



Constraints on the linear couplings
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Update from Hees et al, PRD, 2018

Results from:
- Rb/Cs: Hees et al, PRL, 2016
- BACON: Nature, 2021
- JILA: Kennedy et al, PRL, 2020
- Eöt-Wash: Wagner et al, CQG, 2012
- MICROSCOPE: Bergé et al, PRL, 2018
- DAMNED: Savalle et al, PRL 2021
- GEO600: Vermeulen et al, Nature, 2021

Assuming the DM density to be constant over the whole Solar System (0.4 GeV/cm3)
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Constraints on the quadratic couplings
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see A. Hees et al, PRD, 2018
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Impact of amplification
Being in space is favorable ! Scalar field 

tends to vanish at the Earth surface



Constraints on the quadratic couplings have been 
reinterpreted as constraints on axion coupling

17

Figure from C. Beadle et al, PRD 110, 035019, 2024

• the axion-gluon coupling induces a quadratic coupling to EM at 1-loop
<latexit sha1_base64="h4JYz7XLzOS/Pkg4REtJorLPzs4="></latexit>
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       H. Kim et al, PRD, 2024

violations of the weak equivalence principle, and direct
searches for ultralight dark matter. Our results are sum-
marized in Fig. 1 for the QCD axion, and in Fig. 2
for ALPs.

II. GENERATING THE QUADRATIC AXION-
PHOTON COUPLING

In the standard lore, the shift symmetry of the axion
implies that a basis can be found such that it is derivatively
coupled to SM fields. In this case, the naive expectation is
that the first order at which a quadratic axion-photon
coupling is generated will be Oðð∂μaÞ2f−4a Þ, and will
therefore be vanishingly small. However, since axions have
a small mass due to a breaking of the shift symmetry, a
much larger quadratic axion-photon coupling can be
generated. Below we will explore this coupling, first for
the QCD axion, and subsequently for an ALP.

A. The QCD axion

The coupling of the QCD axion to SM fields can be
consistently treated in chiral perturbation theory (χPT)

associated to the breaking of the approximate SUðNfÞL ×
SUðNfÞR flavor symmetry of the Nf light SM quarks.2 Our
guide to understanding the coupling of axions to SM fields
is then the neutral pion, which shares the same quantum
numbers as the axion.3

In χPT, the first order at which an operator appears
leading to a tree-level coupling of neutral pions to F2 ≡
FμνFμν is Oðp6Þ. However, the process γγ → π0π0 is
experimentally observed to have a cross section that is
only ∼102 smaller than that of γγ → πþπ−, a tree-level
Oðp2Þ effect, at

!!!
s

p
∼ 0.4 GeV [61,62]. In χPT, the large

γγ → π0π0 cross section is explained by the observation

FIG. 1. New constraints on the decay constant fa as a function of the massma for axion dark matter, which rely on the existence of the
quadratic coupling, are shown in various colors. Preexisting constraints (relying on axion-photon linear coupling and axion-nucleon
coupling) are given in gray with dark shades indicating dark matter axion and lighter shades indicating that the bound does not rely
on the axion being dark matter. The new constraints from atomic clocks are shown in shades of red [13–18], as well as from Eöt-Wash
(EW) [19,20] and MICROSCOPE (labeled by EPV) [20,21] in shades of purple, which search for fifth forces and violations of the
equivalence principle respectively. Finally, new constraints from BBN [22] are shown in blue. In addition to these new constraints, we
show projections for future atom interferometer experiments AION-100/MAGIS, AION-km, and AEDGE [23–25], as well as from a
nuclear clock [26] with sensitivity jδαj=α ¼ 10−22, as colored lines. Also shown are existing constraints on tuned QCD axions, such as
searches for EDMs (HfFþ [27] and n [28]), Rb clocks [14], BBN from the coupling to nucleons [29], in-medium effects on the tuned
QCD axion potential from the Sun [30] and white dwarfs [31], SN1987A [32], cosmology [33], and from GW170817 [34]. We also
show exclusions from black hole superradiance [35–37] as dashed gray lines. Analysis of ultrafaint dwarf (UFD) galaxies [38] and of the
Lyman-α forest [39] excludes wavelike DM with very low masses.

2We will take Nf ¼ 2 for simplicity, but our results hold for
Nf ¼ 3.

3In a particular axion coupling parametrization, there is tree-
level mixing between a and π0. Since observables should not be
parametrization dependent, we should already conclude that the
axion will have all the same couplings as a π0. Owing to its
transformation properties under the chiral symmetry, the ηð0Þ is an
even better guide, and also possesses a quadratic coupling to
photons [60].

BEADLE, ELLIS, QUEVILLON, and VUONG PHYS. REV. D 110, 035019 (2024)

035019-2

Atomic clocks

UFF tests

Impact of screening



Atom interferometers are sensitive to such 
DM candidates as well

18

• Calculations performed following method from Storey and Cohen-Tannoudji, J. Phys, 
1994. Exemple for a Mach-Zender:

• Dilaton DM field impacts:

• Classical trajectories of atoms

• Rest mass/transition energy (Lagrangian + recoil velocity kick)

• Laser frequency

Extends previous calculations 
see  A. Geraci and A. Derevianko, PRD 2016 
       P. Graham et al, PRD 2016 
       L. Badurina et al, PRD 2022 

see J. Gué et al, PRD, 2024



Future AI setup will be very competitive to 
search for scalar DM candidates

19

work from J. Gué, ex PhD studentSensitivities

26

Axion

Dilaton
SPID = Single Photon Isotope Differential

• SPID = Single Photon Isotope Differential (variation of AION more sensitive to 
scalar DM or axion)



Space-based GW detectors (LISA) will also be 
very competitive to search for ULMD

20

• Monitor the distance 
between 3 free falling test 
masses 2.5E6 km apart

• ULDM will make the 
position of these masses 
oscillate with time

work from J. Gué, ex PhD student

28

 Taking into account correlations, less sensitivity
as predicted by previous studies

In both cases, LISA will be able to probe 
unconstrained regions of the parameter space 

New experimental strategies for the detection of ultralight dark matterJordan Gué

Realistic limit on LISA sensitivity

In preparation

In preparation

𝑄𝑀 =𝑑𝑖𝑄𝑀,𝑖

𝑇𝑜𝑏𝑠 = 1 year

(From cajohare.github.io/AxionLimits/)

𝑓(𝐴, 𝑍)

M. Yu et al., PRD 108 (2023)
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• Preliminary: it is possible to disentangle 
a possible ULDM signal from GWs

28

 Taking into account correlations, less sensitivity
as predicted by previous studies

In both cases, LISA will be able to probe 
unconstrained regions of the parameter space 

New experimental strategies for the detection of ultralight dark matterJordan Gué

Realistic limit on LISA sensitivity

In preparation

In preparation

𝑄𝑀 =𝑑𝑖𝑄𝑀,𝑖

𝑇𝑜𝑏𝑠 = 1 year
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𝑓(𝐴, 𝑍)

M. Yu et al., PRD 108 (2023)



Conclusion
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• Nature of Dark Matter remains one major challenge of modern physics

• In recent years (2015+): precision metrology has pushed the search for Dark 
Matter of mass < 1 eV (bosonic) 

• Several models exist: scalar field, axion, dark photon, … with different 
phenomenology: oscillations (possible screening), topological default, … 

• In this talk: some results on scalar ULDM and axions

• Others and on-going: work 
- search for Dark Photon/axions with dish antenna (CEA - P. Brun) 
- search for Dark Photon using cavities and Rydberg atoms 
- re-interpretation of MICROSCOPE in light of axions (pions mass) 
- exploration of LISA to search for such DM candidates  
- space test of UFF: STE-QUEST mission? 
- astrophysical searches (stars around SgrA*) 
- …

• Hunt for new ideas inspired by experimental progress and possibilities, led by 
theoretical models and plausibility



Can laboratory experiments and space-
based experiments help in 

understanding DM? 

22

Astronomy & cosmology
(gravitational waves, SNIa, CMB, 
structure formation, galactic dynamics, 
…)

Quantum 
Gravity

Unification
DM and DE

Local physics

(Solar System, lab tests, 
GNSS, … )

V
ite
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ro
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tio
n

Distance

sans matière noire
observations

High energy
(particle physics: CERN-
LHC, Fermilab, DESY, …)

Picture inspired by Altschul et al, Adv, in Space Res. 55, 501, 2015
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FIG. 2. Top: DM velocity distribution from Eq. (12). Bottom: DM frequency distribution from Eq. (14). The green filled area
has a width of 3 FWHM and its range is given by Eq. (19) with a = 3. This is the frequency domain over which the scalar
field is modeled in Eq. (16).

The number of terms involved in the sum depends on the frequency resolution of the experiment �f = 1
Texp

and of

the typical width of the frequency distribution. As can be noticed from Fig. 2, the full width half max (FWHM) of the
frequency distribution, a good estimator of its width, is given by ⇠ 10�6m'c2/h. In practice, we use a sampling of the
DM frequency distribution that covers a FWHM starting at the cut-o↵ frequency. In other words, the frequencies fj
included in the sum from Eq. (16) are the Fourier frequencies (i.e. fj = j�f = jfs/N with fs the sampling frequency
and N the number of measurements) contained in the range


m'c2

h
,
m'c2

h

�
1 + a⇥ 10�6

��
, (19)

where in practice we use a = 3. The frequency region covered by this sampling is indicated by the green shaded area
in Fig. 2.

The energy density for a scalar field is given by

⇢' =
c2

8⇡G


'̇2 +

c4m2

~2 '2

�
. (20)

For the scalar field from Eq. (16), this quantity is a stochastic quantity. We can perform an ensemble average of the
energy density for the scalar field using the distribution from Eqs. (18) to demonstrate that average energy density
for the scalar field is the local DM energy density, i.e. h⇢'i = ⇢DM.

Modeling of the phase measurements

Eq. (4) from the main part of the paper gives the relationship between the phase measurement and the scalar field.
If we take into account the fact that the scalar field has several frequencies (see Eq. (16)) and taking into account
only the contribution from de and dme , the phase measurements are modeled as

��(t) = !0T0 +
X

j

↵j

⇣
deÃj + dmeĀj

⌘
cos

⇣
!jt+ �j + �̃j

⌘
, (21)

The field has a frequency distribution due to 
the DM velocity distribution 

• The oscillation frequency depends on the velocity

• DM velocity distribution - Stochastic distribution 
- Coherence time ~ 106 osc.
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• Low-mass spin-0 particles form a coherently oscillating 

classical field 𝜑𝜑 𝑡𝑡 = 𝜑𝜑0cos 𝑚𝑚𝜑𝜑𝑐𝑐2𝑡𝑡/ℏ , with energy density   

𝜌𝜌𝜑𝜑 ≈ 𝑚𝑚𝜑𝜑
2𝜑𝜑02/2 (𝜌𝜌DM,local ≈ 0.4 GeV/cm3)

• Coherently oscillating field, since cold (𝐸𝐸𝜑𝜑 ≈ 𝑚𝑚𝜑𝜑𝑐𝑐2)

• ⁄Δ𝐸𝐸𝜑𝜑 𝐸𝐸𝜑𝜑 ~ ⁄𝑣𝑣𝜑𝜑2 𝑐𝑐2~ 10−6 ⇒ 𝜏𝜏coh~ ⁄2π Δ𝐸𝐸𝜑𝜑 ~ 106𝑇𝑇osc
Probability distribution function of 𝝋𝝋𝟎𝟎

(Rayleigh distribution)

𝜑𝜑0

Evolution of 𝝋𝝋𝟎𝟎 with time

⁄𝑡𝑡 τcoh

Low-mass Spin-0 Dark Matter
• Low-mass spin-0 particles form a coherently oscillating 

classical field 𝜑𝜑 𝑡𝑡 = 𝜑𝜑0cos 𝑚𝑚𝜑𝜑𝑐𝑐2𝑡𝑡/ℏ , with energy density   

𝜌𝜌𝜑𝜑 ≈ 𝑚𝑚𝜑𝜑
2𝜑𝜑02/2 (𝜌𝜌DM,local ≈ 0.4 GeV/cm3)

• Coherently oscillating field, since cold (𝐸𝐸𝜑𝜑 ≈ 𝑚𝑚𝜑𝜑𝑐𝑐2)

• ⁄Δ𝐸𝐸𝜑𝜑 𝐸𝐸𝜑𝜑 ~ ⁄𝑣𝑣𝜑𝜑2 𝑐𝑐2~ 10−6 ⇒ 𝜏𝜏coh~ ⁄2π Δ𝐸𝐸𝜑𝜑 ~ 106𝑇𝑇osc
Probability distribution function of 𝝋𝝋𝟎𝟎

(Rayleigh distribution)

𝜑𝜑0

Evolution of 𝝋𝝋𝟎𝟎 with time

⁄𝑡𝑡 τcoh

Low-mass Spin-0 Dark Matter

Stochastic modelling important 
for the data analysisSee Centers et al, arXiv1905.13650 and Foster et al, PRD, 2018 

        Savalle et al, PRL 2021
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MICROSCOPE
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MICROSCOPE
MICRO-Satellite pour l’Observation du Principe d’Equivalence

An Equivalence Principle test in space on the way to launch 

Manuel Rodrigues, ONERA project manager
On behalf of the Microscope team

manuel.rodrigues@onera.fr

• Launched on April 25th, 2016 ; life-time: ~ 2 yr 

(12% of the time used for UFF tests)

• Drag-free satellite,  two cylindrical test masses:  

Pt/Ti. Measurement of the diff. acceleration along the symmetry axis

• Final results published in September 2022

collaboration between CNES, 
ONERA, CNRS, ESA, ZARM, PTB

Touboul et al, PRL, 2022

• Independent analysis in the time domain @SYRTE: verification + other 

scientific objectives (Lorentz invariance “Standard Model Extension”: search 

for a preferred frame UFF violation) Pihan-Le Bars et al, PRL, 2019

𝜂 = (-1.5 ± 2.3 [stat] ± 1.5 [syst] ) x 10-15 



Expected phase shift in Mach-Zehnder AI

The oscillating acceleration implies a modification of the atom EoM à the atom oscillates in the interferometer 
The differential phase shift between two atoms A and B at the end of the sequence is

Δ"!"#$ ∝ %!"&!"
'#$

$())! %#A *
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sin+ -*.
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Phase shift induced by DM in various AI setup 
and sensitivity of various experiments 

28

work from J. Gué, PhD student

• Standard Mach-Zender: used in Standford with 85Rb and 87Rb 
and for a gravimeter in Wuhan using 87Rb

• Future AION10 gradiometer: 2 Mach-Zender with Large 
Momentum Transfer stacked at different elevations

see P. Asenbaum et al, PRL, 2020 for standford and Z. Hu et al, PRA, 2020 for Wuhan

see e.g. Badurina et al, PRD, 2022

• Future MAGIS-like experiment: 2 colocated Mach-Zender with 
Large Momentum Transfer using 2 isotopes: advantageous for 
UFF tests 

see e.g. Abe et al, Quantum Sc. and Tech., 2021



Linear and quadratic couplings have a different phenomenology
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• Linear coupling

4

way to parametrize a possible variation of any atomic
frequency X to variations of the constants of Nature is
to use the following parametrization (see e.g. [41, 42])

d lnX = [k↵]X d ln↵+ [kµ]X d lnµ+ [kq]X d lnmq/⇤3 ,
(12)

where µ = me/mp is the ration of the electron mass over
the proton mass, mq is the mass of the light quarks (as-
sumed to be equals), and ki are the sensitivity coe�cients
of the specific transition X. The atomic and nuclear cal-
culations to derive these sensitivity coe�cients have been
achieved in [40, 41, 43, 44] and the obtained numerical
values can be found in Table I from [42].

While the parametrization (12) is widely used, another
equivalent parametrization is useful since closer to the
form of the interaction Lagrangian from Eq. (2)

d lnX = [k↵]X d ln↵+ [kµ]X d lnme/⇤3

+
⇥
k0q
⇤
X
d lnmq/⇤3 , (13)

with k0q = kq � 0.049(8)(3) [45]. These sensitivity coe�-
cients play a role equivalent to the ones of the dilatonic
charges introduced in the previous section.

The coupling of the scalar field to a clock working on
the transition X is then encoded in the coupling function
X which is defined by

d lnX = (i)
X d

�
'i
�
, (14)

and can be expressed as

(i)
X =

1

i
[k↵]X d(i)e +

1

i
[kµ]X

⇣
d(i)me

� d(i)g

⌘

+
1

i

⇥
k0q
⇤
X

⇣
d(i)m̂ � d(i)g

⌘
. (15)

IV. SOLUTIONS FOR THE SCALAR FIELD

The space-time evolution of the scalar field depends
on the distribution of matter. In this manuscript, we
will consider spherically symmetric extended bodies that
will be characterized by a radius RA and by a constant
matter density ⇢A. The reason for this simplification be-
comes obvious when considering the case of the quadratic
coupling: the non-linearity of this case complexifies the
derivations and the solutions (see Appendix B). Never-
theless, the case of a two-layers spherical body is also
considered in Appendix B.

At first order, we model usual matter as a pressureless
perfect fluid whose stress-energy tensor is given by Tµ⌫ =
c2⇢uµu⌫ , where ⇢ is the matter density and u⌫ the 4-
velocity of the fluid 4. For this matter modeling, the

4 Corrections due to the pressure will arise at the post-Newtonian
order and can safely be neglected here.

source term in the Klein-Gordon equation (5b)) writes
as

� = �↵(')⇢c2 , (16)

where ↵ is given by Eq. (7).
Having in mind that the scalar field’s perturbation

must be small if it depicts dark matter (see SEC. IVC),
equation (5b) can be written at leading order as

1

c2
'̈(t,x)��'(t,x) = �

4⇡G

c2
↵A(')⇢A(x)�

c2m2
'

~2 '(t,x) ,

(17)
where the dot denotes a derivative with respect to the
coordinate time t and � is the 3-dimensional flat Lapla-
cian. In this equation, we have neglected terms that are
of the order of O(|hµ⌫ |) (with hµ⌫ = gµ⌫ � ⌘µ⌫). Indeed,
a linearized version of the Einstein equation (5a) shows
that the metric will be generated by sources that will
contribute as ⇠ GMA

c2r ⌧ 1 and by terms that are propor-
tional to '2

0 ('0 being the typical amplitude of the scalar
field). If the scalar field is associated to DM, one can
show that '0 ⇠ 6 ⇥ 10�31 eV/m' [37, 38] which shows
that '2

0 ⌧ 1 for scalar field masses above 10�30 eV. Un-
der this assumption, the space-time behavior of the scalar
field will be governed by Eq. (17) whose solution will be
given in this section. Nevertheless, the explicit limit at
which this assumption breaks down has been carefully
taken into account when deriving the constraints on the
parameters di in Section VI.

A. Linear coupling

In the case of a linear coupling, the function ↵A(') =

↵̃(1)
A appearing in Eq. (17) is independent of the scalar

field and the general solution is a sum of free waves and a
Yukawa-type scalar field generated by the central body.
Details about the derivation of the results are given in
Appendix B. The general expression of the scalar field is
given by

'(1)(t,x) = '0 cos (k.x� !t+ �)� s(1)A

GMA

c2r
e�r/�' ,

(18)

where |k|2 + c2m2
'/~2 = !2/c2 and

�' =
~

cm'
. (19)

The constant s(1)A is the e↵ective scalar charge of the ex-
tended body and is given by

s(1)A = ↵̃(1)
A I

✓
RA

�'

◆
, (20)

with the function I(x) given by

I(x) = 3
x coshx� sinhx

x3
.

A fifth force generated by a 
body - UFF tests are more 

sensitive

DM, atomic sensors are 
more sensitive

see A. Hees et al, PRD, 2018

• Quadratic coupling: no more Yukawa interaction, richer 
phenomenology

Can be screened or 
enhanced (scolarisation)

Both atomic sensors and UFF tests are sensitive 
to this behaviour
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• Linear coupling
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frequency X to variations of the constants of Nature is
to use the following parametrization (see e.g. [41, 42])
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sumed to be equals), and ki are the sensitivity coe�cients
of the specific transition X. The atomic and nuclear cal-
culations to derive these sensitivity coe�cients have been
achieved in [40, 41, 43, 44] and the obtained numerical
values can be found in Table I from [42].

While the parametrization (12) is widely used, another
equivalent parametrization is useful since closer to the
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The space-time evolution of the scalar field depends
on the distribution of matter. In this manuscript, we
will consider spherically symmetric extended bodies that
will be characterized by a radius RA and by a constant
matter density ⇢A. The reason for this simplification be-
comes obvious when considering the case of the quadratic
coupling: the non-linearity of this case complexifies the
derivations and the solutions (see Appendix B). Never-
theless, the case of a two-layers spherical body is also
considered in Appendix B.

At first order, we model usual matter as a pressureless
perfect fluid whose stress-energy tensor is given by Tµ⌫ =
c2⇢uµu⌫ , where ⇢ is the matter density and u⌫ the 4-
velocity of the fluid 4. For this matter modeling, the

4 Corrections due to the pressure will arise at the post-Newtonian
order and can safely be neglected here.

source term in the Klein-Gordon equation (5b)) writes
as

� = �↵(')⇢c2 , (16)

where ↵ is given by Eq. (7).
Having in mind that the scalar field’s perturbation

must be small if it depicts dark matter (see SEC. IVC),
equation (5b) can be written at leading order as

1

c2
'̈(t,x)��'(t,x) = �

4⇡G

c2
↵A(')⇢A(x)�

c2m2
'

~2 '(t,x) ,

(17)
where the dot denotes a derivative with respect to the
coordinate time t and � is the 3-dimensional flat Lapla-
cian. In this equation, we have neglected terms that are
of the order of O(|hµ⌫ |) (with hµ⌫ = gµ⌫ � ⌘µ⌫). Indeed,
a linearized version of the Einstein equation (5a) shows
that the metric will be generated by sources that will
contribute as ⇠ GMA

c2r ⌧ 1 and by terms that are propor-
tional to '2

0 ('0 being the typical amplitude of the scalar
field). If the scalar field is associated to DM, one can
show that '0 ⇠ 6 ⇥ 10�31 eV/m' [37, 38] which shows
that '2

0 ⌧ 1 for scalar field masses above 10�30 eV. Un-
der this assumption, the space-time behavior of the scalar
field will be governed by Eq. (17) whose solution will be
given in this section. Nevertheless, the explicit limit at
which this assumption breaks down has been carefully
taken into account when deriving the constraints on the
parameters di in Section VI.

A. Linear coupling

In the case of a linear coupling, the function ↵A(') =

↵̃(1)
A appearing in Eq. (17) is independent of the scalar

field and the general solution is a sum of free waves and a
Yukawa-type scalar field generated by the central body.
Details about the derivation of the results are given in
Appendix B. The general expression of the scalar field is
given by

'(1)(t,x) = '0 cos (k.x� !t+ �)� s(1)A

GMA

c2r
e�r/�' ,

(18)

where |k|2 + c2m2
'/~2 = !2/c2 and

�' =
~

cm'
. (19)

The constant s(1)A is the e↵ective scalar charge of the ex-
tended body and is given by

s(1)A = ↵̃(1)
A I

✓
RA

�'

◆
, (20)

with the function I(x) given by

I(x) = 3
x coshx� sinhx

x3
.

A fifth force generated by a 
body - UFF tests are more 

sensitive

DM, atomic sensors are 
more sensitive

see A. Hees et al, PRD, 2018

• Quadratic coupling: no more Yukawa interaction, richer 
phenomenology
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• Comparison of atomic frequencies:

• UFF measurements

7

2. Quadratic coupling

The signature produced by the scalar field in the case of
a quadratic coupling between the scalar field and matter
is richer, it reads

Y (t,x) = K +�(2)'
2
0

2

✓
1� s(2)A

GMA

c2r

◆2

(30)

+�(2)'
2
0

2
cos (2!t+ 2�)

✓
1� s(2)A

GMA

c2r

◆2

where ! = m'c2/~. This signature is quite unique and
is the combination of two distinct terms. The first one is
space-dependent and could be searched for by comparing
spatial and terrestrial clocks located at various positions,
and/or by monitoring the evolution of the frequency of
a given clock with respect to the position of the Earth
in the gravitional field of the Sun. The second term is
an oscillating term whose amplitude depends on the lo-
cation in the gravitational field. In particular, if one
considers two clocks located at the surface of the Earth
(r = R�), the oscillating part of the signal becomes (from
Eqs. (B21), (B26) and (B27c))

Ỹ (t) =
�(2)

↵̃(2)
�

c2R�
6GM�

'2
0 tanh

2

 s

3↵̃(2)
�

GM�
c2R�

!
(31)

⇥ cos (2!t+ 2�) .

B. Tests of the Universality of Free Fall

The motion of a test mass can be derived from the
action (6), or equivalently from the Lagrangian

LT = �mT (')c

r
�gµ⌫

dxµ

dt

dx⌫

dt
. (32)

In this section, we are interested in UFF experiments for
which the acceleration of two test masses located at the
same location are compared. Therefore, we are only in-
terested in the first order part of the acceleration that is
composition dependent. We can therefore use the follow-
ing approximation for the Lagrangian

LT = �mT (')c
2

r
1�

v2

c2
⇡ �mT (')c

2

✓
1�

v2

2c2

◆
,

(33)
where, as for the Klein-Gordon equation, we neglect
terms that are of the order of O (|hµ⌫ |). A simple Euler-
Lagrange derivation gives the first order contribution to
the violation of the UFF:

[aT ]EEP = �↵T (')
⇥
c2r'+ v'̇

⇤
, (34)

where ↵T is the coupling defined by Eq. (7). The di↵er-
ential acceleration between two bodies A and B located
at the same position is therefore given by

[�a]A�B = aA(t,x)� aB(t,x)

= � (↵A(')� ↵B('))
⇥
c2r'+ v'̇

⇤
. (35)

1. Linear coupling

In the case of a linear coupling, the di↵erential accel-
eration between two bodies A and B located in the same
location, in the gravitational field generated by a central
body C can be determined from Eq. (18) and is given by

[�a]A�B = �↵̄(1)'0

�
c2k � !v

�
sin (k.x� !t+ �)

��↵̄(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
GMC

r3
x , (36)

where �↵̄(1) =
⇣
↵̄(1)
A � ↵̄(1)

B

⌘
with ↵̄(1) given in Eq. (11).

The first line represents an oscillating variation of the
di↵erential acceleration of the two bodies. This oscilla-
tion is induced by the oscillating DM. The amplitude of
this UFF violation is linearly proportional to the cou-

pling constant d(1)i . The second line is a regular fifth
force di↵erential acceleration that is due to the coupling
of the two bodies to the scalar field generated by the cen-
tral body. The amplitude of the violation of the UFF is

proportional to the square of the d(1)i coe�cients. This
term can be identified from standard UFF measurements
by using the Eötvös parameter ⌘ defined as

⌘ = 2
|aA � aB |

|aA + aB |
, (37)

by (see also [35])

⌘ = �↵̃(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
. (38)

2. Quadratic coupling

The di↵erential acceleration between two bodies in the
case of a quadratic coupling can be determined from
Eq. (21) and is given by

[�a]A�B = �↵̄(2)'
2
0

2
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GMc
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◆"
�
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r3
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where �↵̄(2) =
⇣
↵̄(2)
A � ↵̄(2)

B

⌘
with ↵̄(2) given in Eq. (11).

The first line correspond to a di↵erential acceleration pro-
portional to the Newtonian acceleration. This term can
be identified from standard UFF measurements by using
the Eötvös parameter ⌘ defined by Eq. (37) with

⌘ = s(2)C �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆
. (40)
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2. Quadratic coupling

The signature produced by the scalar field in the case of
a quadratic coupling between the scalar field and matter
is richer, it reads

Y (t,x) = K +�(2)'
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where ! = m'c2/~. This signature is quite unique and
is the combination of two distinct terms. The first one is
space-dependent and could be searched for by comparing
spatial and terrestrial clocks located at various positions,
and/or by monitoring the evolution of the frequency of
a given clock with respect to the position of the Earth
in the gravitional field of the Sun. The second term is
an oscillating term whose amplitude depends on the lo-
cation in the gravitational field. In particular, if one
considers two clocks located at the surface of the Earth
(r = R�), the oscillating part of the signal becomes (from
Eqs. (B21), (B26) and (B27c))
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c2R�
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'2
0 tanh

2
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B. Tests of the Universality of Free Fall

The motion of a test mass can be derived from the
action (6), or equivalently from the Lagrangian

LT = �mT (')c

r
�gµ⌫

dxµ

dt

dx⌫

dt
. (32)

In this section, we are interested in UFF experiments for
which the acceleration of two test masses located at the
same location are compared. Therefore, we are only in-
terested in the first order part of the acceleration that is
composition dependent. We can therefore use the follow-
ing approximation for the Lagrangian

LT = �mT (')c
2

r
1�

v2

c2
⇡ �mT (')c

2

✓
1�

v2

2c2

◆
,

(33)
where, as for the Klein-Gordon equation, we neglect
terms that are of the order of O (|hµ⌫ |). A simple Euler-
Lagrange derivation gives the first order contribution to
the violation of the UFF:

[aT ]EEP = �↵T (')
⇥
c2r'+ v'̇

⇤
, (34)

where ↵T is the coupling defined by Eq. (7). The di↵er-
ential acceleration between two bodies A and B located
at the same position is therefore given by

[�a]A�B = aA(t,x)� aB(t,x)

= � (↵A(')� ↵B('))
⇥
c2r'+ v'̇

⇤
. (35)

1. Linear coupling

In the case of a linear coupling, the di↵erential accel-
eration between two bodies A and B located in the same
location, in the gravitational field generated by a central
body C can be determined from Eq. (18) and is given by

[�a]A�B = �↵̄(1)'0

�
c2k � !v

�
sin (k.x� !t+ �)

��↵̄(1)s(1)C e�r/�'
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where �↵̄(1) =
⇣
↵̄(1)
A � ↵̄(1)

B

⌘
with ↵̄(1) given in Eq. (11).

The first line represents an oscillating variation of the
di↵erential acceleration of the two bodies. This oscilla-
tion is induced by the oscillating DM. The amplitude of
this UFF violation is linearly proportional to the cou-

pling constant d(1)i . The second line is a regular fifth
force di↵erential acceleration that is due to the coupling
of the two bodies to the scalar field generated by the cen-
tral body. The amplitude of the violation of the UFF is

proportional to the square of the d(1)i coe�cients. This
term can be identified from standard UFF measurements
by using the Eötvös parameter ⌘ defined as

⌘ = 2
|aA � aB |

|aA + aB |
, (37)

by (see also [35])

⌘ = �↵̃(1)s(1)C e�r/�'
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2. Quadratic coupling

The di↵erential acceleration between two bodies in the
case of a quadratic coupling can be determined from
Eq. (21) and is given by

[�a]A�B = �↵̄(2)'
2
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GMc
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where �↵̄(2) =
⇣
↵̄(2)
A � ↵̄(2)

B

⌘
with ↵̄(2) given in Eq. (11).

The first line correspond to a di↵erential acceleration pro-
portional to the Newtonian acceleration. This term can
be identified from standard UFF measurements by using
the Eötvös parameter ⌘ defined by Eq. (37) with

⌘ = s(2)C �↵̄(2)'
2
0

2

✓
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GMc
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. (40)
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2. Quadratic coupling

The signature produced by the scalar field in the case of
a quadratic coupling between the scalar field and matter
is richer, it reads

Y (t,x) = K +�(2)'
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where ! = m'c2/~. This signature is quite unique and
is the combination of two distinct terms. The first one is
space-dependent and could be searched for by comparing
spatial and terrestrial clocks located at various positions,
and/or by monitoring the evolution of the frequency of
a given clock with respect to the position of the Earth
in the gravitional field of the Sun. The second term is
an oscillating term whose amplitude depends on the lo-
cation in the gravitational field. In particular, if one
considers two clocks located at the surface of the Earth
(r = R�), the oscillating part of the signal becomes (from
Eqs. (B21), (B26) and (B27c))
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0 tanh

2
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B. Tests of the Universality of Free Fall

The motion of a test mass can be derived from the
action (6), or equivalently from the Lagrangian

LT = �mT (')c

r
�gµ⌫

dxµ

dt

dx⌫

dt
. (32)

In this section, we are interested in UFF experiments for
which the acceleration of two test masses located at the
same location are compared. Therefore, we are only in-
terested in the first order part of the acceleration that is
composition dependent. We can therefore use the follow-
ing approximation for the Lagrangian

LT = �mT (')c
2

r
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v2

c2
⇡ �mT (')c

2
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2c2
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,

(33)
where, as for the Klein-Gordon equation, we neglect
terms that are of the order of O (|hµ⌫ |). A simple Euler-
Lagrange derivation gives the first order contribution to
the violation of the UFF:

[aT ]EEP = �↵T (')
⇥
c2r'+ v'̇

⇤
, (34)

where ↵T is the coupling defined by Eq. (7). The di↵er-
ential acceleration between two bodies A and B located
at the same position is therefore given by

[�a]A�B = aA(t,x)� aB(t,x)

= � (↵A(')� ↵B('))
⇥
c2r'+ v'̇

⇤
. (35)

1. Linear coupling

In the case of a linear coupling, the di↵erential accel-
eration between two bodies A and B located in the same
location, in the gravitational field generated by a central
body C can be determined from Eq. (18) and is given by

[�a]A�B = �↵̄(1)'0

�
c2k � !v
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where �↵̄(1) =
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↵̄(1)
A � ↵̄(1)

B

⌘
with ↵̄(1) given in Eq. (11).

The first line represents an oscillating variation of the
di↵erential acceleration of the two bodies. This oscilla-
tion is induced by the oscillating DM. The amplitude of
this UFF violation is linearly proportional to the cou-

pling constant d(1)i . The second line is a regular fifth
force di↵erential acceleration that is due to the coupling
of the two bodies to the scalar field generated by the cen-
tral body. The amplitude of the violation of the UFF is

proportional to the square of the d(1)i coe�cients. This
term can be identified from standard UFF measurements
by using the Eötvös parameter ⌘ defined as

⌘ = 2
|aA � aB |

|aA + aB |
, (37)

by (see also [35])
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2. Quadratic coupling

The di↵erential acceleration between two bodies in the
case of a quadratic coupling can be determined from
Eq. (21) and is given by
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where �↵̄(2) =
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A � ↵̄(2)

B

⌘
with ↵̄(2) given in Eq. (11).

The first line correspond to a di↵erential acceleration pro-
portional to the Newtonian acceleration. This term can
be identified from standard UFF measurements by using
the Eötvös parameter ⌘ defined by Eq. (37) with

⌘ = s(2)C �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆
. (40)
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2. Quadratic coupling

The signature produced by the scalar field in the case of
a quadratic coupling between the scalar field and matter
is richer, it reads

Y (t,x) = K +�(2)'
2
0

2
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1� s(2)A

GMA

c2r

◆2

(30)

+�(2)'
2
0

2
cos (2!t+ 2�)

✓
1� s(2)A

GMA

c2r

◆2

where ! = m'c2/~. This signature is quite unique and
is the combination of two distinct terms. The first one is
space-dependent and could be searched for by comparing
spatial and terrestrial clocks located at various positions,
and/or by monitoring the evolution of the frequency of
a given clock with respect to the position of the Earth
in the gravitional field of the Sun. The second term is
an oscillating term whose amplitude depends on the lo-
cation in the gravitational field. In particular, if one
considers two clocks located at the surface of the Earth
(r = R�), the oscillating part of the signal becomes (from
Eqs. (B21), (B26) and (B27c))

Ỹ (t) =
�(2)

↵̃(2)
�

c2R�
6GM�

'2
0 tanh

2

 s

3↵̃(2)
�

GM�
c2R�

!
(31)

⇥ cos (2!t+ 2�) .

B. Tests of the Universality of Free Fall

The motion of a test mass can be derived from the
action (6), or equivalently from the Lagrangian

LT = �mT (')c

r
�gµ⌫

dxµ

dt

dx⌫

dt
. (32)

In this section, we are interested in UFF experiments for
which the acceleration of two test masses located at the
same location are compared. Therefore, we are only in-
terested in the first order part of the acceleration that is
composition dependent. We can therefore use the follow-
ing approximation for the Lagrangian

LT = �mT (')c
2

r
1�

v2

c2
⇡ �mT (')c

2

✓
1�

v2

2c2

◆
,

(33)
where, as for the Klein-Gordon equation, we neglect
terms that are of the order of O (|hµ⌫ |). A simple Euler-
Lagrange derivation gives the first order contribution to
the violation of the UFF:

[aT ]EEP = �↵T (')
⇥
c2r'+ v'̇

⇤
, (34)

where ↵T is the coupling defined by Eq. (7). The di↵er-
ential acceleration between two bodies A and B located
at the same position is therefore given by

[�a]A�B = aA(t,x)� aB(t,x)

= � (↵A(')� ↵B('))
⇥
c2r'+ v'̇

⇤
. (35)

1. Linear coupling

In the case of a linear coupling, the di↵erential accel-
eration between two bodies A and B located in the same
location, in the gravitational field generated by a central
body C can be determined from Eq. (18) and is given by

[�a]A�B = �↵̄(1)'0

�
c2k � !v

�
sin (k.x� !t+ �)

��↵̄(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
GMC

r3
x , (36)

where �↵̄(1) =
⇣
↵̄(1)
A � ↵̄(1)

B

⌘
with ↵̄(1) given in Eq. (11).

The first line represents an oscillating variation of the
di↵erential acceleration of the two bodies. This oscilla-
tion is induced by the oscillating DM. The amplitude of
this UFF violation is linearly proportional to the cou-

pling constant d(1)i . The second line is a regular fifth
force di↵erential acceleration that is due to the coupling
of the two bodies to the scalar field generated by the cen-
tral body. The amplitude of the violation of the UFF is

proportional to the square of the d(1)i coe�cients. This
term can be identified from standard UFF measurements
by using the Eötvös parameter ⌘ defined as

⌘ = 2
|aA � aB |

|aA + aB |
, (37)

by (see also [35])

⌘ = �↵̃(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
. (38)

2. Quadratic coupling

The di↵erential acceleration between two bodies in the
case of a quadratic coupling can be determined from
Eq. (21) and is given by

[�a]A�B = �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆"
�

GMc

r3
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xs(2)C cos (2!t+ 2�) (39)
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#

where �↵̄(2) =
⇣
↵̄(2)
A � ↵̄(2)

B

⌘
with ↵̄(2) given in Eq. (11).

The first line correspond to a di↵erential acceleration pro-
portional to the Newtonian acceleration. This term can
be identified from standard UFF measurements by using
the Eötvös parameter ⌘ defined by Eq. (37) with

⌘ = s(2)C �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆
. (40)
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2. Quadratic coupling

The signature produced by the scalar field in the case of
a quadratic coupling between the scalar field and matter
is richer, it reads

Y (t,x) = K +�(2)'
2
0

2
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c2r

◆2

(30)

+�(2)'
2
0

2
cos (2!t+ 2�)
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c2r
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where ! = m'c2/~. This signature is quite unique and
is the combination of two distinct terms. The first one is
space-dependent and could be searched for by comparing
spatial and terrestrial clocks located at various positions,
and/or by monitoring the evolution of the frequency of
a given clock with respect to the position of the Earth
in the gravitional field of the Sun. The second term is
an oscillating term whose amplitude depends on the lo-
cation in the gravitational field. In particular, if one
considers two clocks located at the surface of the Earth
(r = R�), the oscillating part of the signal becomes (from
Eqs. (B21), (B26) and (B27c))

Ỹ (t) =
�(2)

↵̃(2)
�

c2R�
6GM�

'2
0 tanh

2

 s

3↵̃(2)
�

GM�
c2R�

!
(31)

⇥ cos (2!t+ 2�) .

B. Tests of the Universality of Free Fall

The motion of a test mass can be derived from the
action (6), or equivalently from the Lagrangian

LT = �mT (')c

r
�gµ⌫

dxµ

dt

dx⌫

dt
. (32)

In this section, we are interested in UFF experiments for
which the acceleration of two test masses located at the
same location are compared. Therefore, we are only in-
terested in the first order part of the acceleration that is
composition dependent. We can therefore use the follow-
ing approximation for the Lagrangian

LT = �mT (')c
2

r
1�

v2

c2
⇡ �mT (')c

2

✓
1�

v2

2c2

◆
,

(33)
where, as for the Klein-Gordon equation, we neglect
terms that are of the order of O (|hµ⌫ |). A simple Euler-
Lagrange derivation gives the first order contribution to
the violation of the UFF:

[aT ]EEP = �↵T (')
⇥
c2r'+ v'̇

⇤
, (34)

where ↵T is the coupling defined by Eq. (7). The di↵er-
ential acceleration between two bodies A and B located
at the same position is therefore given by

[�a]A�B = aA(t,x)� aB(t,x)

= � (↵A(')� ↵B('))
⇥
c2r'+ v'̇

⇤
. (35)

1. Linear coupling

In the case of a linear coupling, the di↵erential accel-
eration between two bodies A and B located in the same
location, in the gravitational field generated by a central
body C can be determined from Eq. (18) and is given by

[�a]A�B = �↵̄(1)'0

�
c2k � !v

�
sin (k.x� !t+ �)

��↵̄(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
GMC

r3
x , (36)

where �↵̄(1) =
⇣
↵̄(1)
A � ↵̄(1)

B

⌘
with ↵̄(1) given in Eq. (11).

The first line represents an oscillating variation of the
di↵erential acceleration of the two bodies. This oscilla-
tion is induced by the oscillating DM. The amplitude of
this UFF violation is linearly proportional to the cou-

pling constant d(1)i . The second line is a regular fifth
force di↵erential acceleration that is due to the coupling
of the two bodies to the scalar field generated by the cen-
tral body. The amplitude of the violation of the UFF is

proportional to the square of the d(1)i coe�cients. This
term can be identified from standard UFF measurements
by using the Eötvös parameter ⌘ defined as

⌘ = 2
|aA � aB |

|aA + aB |
, (37)

by (see also [35])

⌘ = �↵̃(1)s(1)C e�r/�'

✓
1 +

r

�'

◆
. (38)

2. Quadratic coupling

The di↵erential acceleration between two bodies in the
case of a quadratic coupling can be determined from
Eq. (21) and is given by

[�a]A�B = �↵̄(2)'
2
0

2
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where �↵̄(2) =
⇣
↵̄(2)
A � ↵̄(2)

B

⌘
with ↵̄(2) given in Eq. (11).

The first line correspond to a di↵erential acceleration pro-
portional to the Newtonian acceleration. This term can
be identified from standard UFF measurements by using
the Eötvös parameter ⌘ defined by Eq. (37) with

⌘ = s(2)C �↵̄(2)'
2
0

2

✓
1� s(2)C

GMc

c2r

◆
. (40)

 that depends on r (directly 
related to Eöt-Wash and 
MICROSCOPE results)

⌘ 2 terms that oscillate, amplitude 
depends on position

oscillation, amplitude depends 
on position 

 Position dependent: clocks on 
elliptic orbit? Comparison clock 
in space versus clock on ground?

 They are all sensitive to screening/scalarization
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Constraints on the quadratic couplings

32
see A. Hees et al, PRD, 2018

Impact of screening

Impact of scalarization
Being in space is favorable ! Scalar field 

tends to vanish at the Earth surface



A vector DM will interact with 
electromagnetism

33

• An effective Lagrangian for the vector-matter coupling 

see Horns et al, JCAP, 2013 and references therein

• Kinetic mixing coupling 𝜒 characterises the coupling with EM

• Other couplings with matter can be considered like to the B-L current: 
leads to a violation of the UFF

<latexit sha1_base64="aCu7XhQVSon1Acy3bhv2QueYxWU="></latexit>

Lmat [ , gµ⌫ , Xµ] = LSM [ , gµ⌫ ]�
�

2
Fµ⌫Xµ⌫ + . . .

see e.g. Fayet, PRD, 2018

• The hidden photon X𝜇 will mix with the usual photon A𝜇

A hidden photon field will generate a small EM field and vice versa

<latexit sha1_base64="VioGA6n4YrXpVEpHCvkutoMNjUw="></latexit> ⇤Aµ = ��⇤Xµ

⇤Xµ +m2Xµ = ��⇤Aµ



• As a reminder: the amplitude of oscillation is related to the DM energy 
density

An oscillating DM vector field will 
generate a small electric field

34

• Oscillating DM vector field                              will generate an EM field

and in particular a small electric field

see Horns et al, JCAP, 2013 and references therein

<latexit sha1_base64="8EVsjkmzYbgZ6y8Om8Mrnh3nABU=">AAACEnicbVDLSgMxFM3UV62vUVfiJlgEV2VGiroRim5cVrAP6AxDJs20oUlmSDKFMhR/wl9wq3t34tYfcOuXmGlnoa0HLvdwzr3c5IQJo0o7zpdVWlldW98ob1a2tnd29+z9g7aKU4lJC8cslt0QKcKoIC1NNSPdRBLEQ0Y64eg29ztjIhWNxYOeJMTnaCBoRDHSRgrsI29MMOzC63kPHOjhWEGuK4FddWrODHCZuAWpggLNwP72+jFOOREaM6RUz3US7WdIaooZmVa8VJEE4REakJ6hAnGi/Gz2hSk8NUofRrE0JTScqb83MsSVmvDQTHKkh2rRy8V/vZAvXNbRlZ9RkaSaCDw/HKUM6hjm+cA+lQRrNjEEYUnN2yEeIomwNinmobiLESyT9nnNvajV7+vVxk0RTxkcgxNwBlxwCRrgDjRBC2DwCJ7BC3i1nqw36936mI+WrGLnEPyB9fkDIL2cMA==</latexit>

~X = ~X0 cosmt
<latexit sha1_base64="F/gmm5KGFEHICQEnAdOW22CXYlU=">AAACDnicbVDLSsNAFJ34rPUVFVduBovgxpJIUTdC1Y3LCvYBTSmT6U07dDIJM5NCCf0Hf8Gt7t2JW3/BrV/iNM1CWw9cOPece7mX48ecKe04X9bS8srq2npho7i5tb2za+/tN1SUSAp1GvFItnyigDMBdc00h1YsgYQ+h6Y/vJv6zRFIxSLxqMcxdELSFyxglGgjde1DbwQU3+BrfObRAcNZ2+raJafsZMCLxM1JCeWode1vrxfRJAShKSdKtV0n1p2USM0oh0nRSxTEhA5JH9qGChKC6qTZ+xN8YpQeDiJpSmicqb83UhIqNQ59MxkSPVDz3lT81/PDucs6uOqkTMSJBkFnh4OEYx3haTa4xyRQzceGECqZ+R3TAZGEapNg0YTizkewSBrnZfeiXHmolKq3eTwFdISO0Sly0SWqontUQ3VEUYqe0Qt6tZ6sN+vd+piNLln5zgH6A+vzBx2ZmpM=</latexit>

~A = �� ~X

<latexit sha1_base64="ecsQpx4+ThNHaC74OFr4sG+sKx8="></latexit>

~EDM = �@t ~A = �m� ~X0 sinmt

<latexit sha1_base64="O18Ru1H0TX8mqnIJ2LZqoeTMPwI=">AAACJnicbZDLSgMxFIYzXmu9VV26CRbBjWWmFHUjFN24VLC20GlLJj3TBpOZITkjlLFP4Uv4Cm51707EnfgkppeFVn8I/PznHM7JFyRSGHTdD2dufmFxaTm3kl9dW9/YLGxt35g41RxqPJaxbgTMgBQR1FCghEaigalAQj24PR/V63egjYijaxwk0FKsF4lQcIY26hQOfd2PKT2lfqgZz1S7TH0JId77d8Bpo+P6WvT6eN8uD7PysFMouiV3LPrXeFNTJFNddgpffjfmqYIIuWTGND03wVbGNAouYZj3UwMJ47esB01rI6bAtLLxt4Z03yZdGsbavgjpOP05kTFlzEAFtlMx7JvZ2ij8txaomc0YnrQyESUpQsQni8NUUozpiBntCg0c5cAaxrWwt1PeZ5YXWrJ5C8WbRfDX3JRL3lGpclUpVs+meHJkl+yRA+KRY1IlF+SS1AgnD+SJPJMX59F5dd6c90nrnDOd2SG/5Hx+AxHCpT8=</latexit>

⇢ =
m2

��� ~X0

���
2
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In a DM vector field, a dish antenna will generate 
an EM field that will be focused in its center 

35

• the electric field // to a conductor surface vanishes (boundary condition)

• The surface of the dish will generate a propagating electric field to vanish 
the DM electric field

see Horns et al, JCAP, 2013 and references therein
Figure 6: Situation where a dish is located in an oscillating electric field induced by an oscillation Hidden
Photon field. Each infinitesimal small part of the dish will generate an outgoing plane wave whose wve
vector is perpendicular to the surface of the mirror, whose polarisation is parallel to the dish and whose
amplitude is such that the total electric field parallel to the surface of the mirror is vanishing. The total
electric field generated by the dish is therefore amplifified at the center of the dish.

area of the dish will generate an outgoing wave whose wave-vector is given by~kD = �wêr. The
outgoing electric wave generated by this small area of the dish is given by Eq. (51), i.e.

~Eout,D = �icw~Xk,De�i(wt�~kD ·(~x�~xD)) , (53)

with ~Xk,D the component parallel to the small area such that the electric field parallel to the dish
vanishes at the mirror’s surface. One has

~Xk,D = ~X �

⇣
~X · êr

⌘
êr =

 
Xx(1 � cos2 j sin2 q � cos j sin j sin2 q � cos j sin q cos q), (54)

Xy(1 � cos j sin j sin2 q � sin2 j sin2 q � sinj sin q cos q),

Xz(1 � cos j sin q cos q � sin j sin q cos q � cos2 q)

!
, (55)

where we have used the notation ~X = (Xx, Xy, Xz). At the center of the dish, ~x �~xD = �Rêr such
that~kD · (~x � ~xD) = wR (which is the same for all the elements of the dish). The total outgoing
electric field at the center of the dish is given by

~Eout(~x = 0, t) =
ZZ

dish
~Eout,D = R2

Z 2p

0
dj
Z qA

0
dq sin q~Eout,D , (56)

where qA is the apperture of the dish. This seems intuitive but not correct from a dimensional
point of view. The integration with respect to j is easy and leads to

~Eout(~x = 0, t) = �icwe�iw(t�kR) pR2

2

Z qA

0
dq sin q

 
X(3 + cos 2q), XY(3 + cos 2q), 4XZ sin2 q

!
.

(57)
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• For a spherical dish, the electric field 
will be focused at the center + non-
relevant electric field will be focused at 
the focal point

• Sensitivity

JCAP04(2013)016

detector. Of course, to reduce avoidable background it is surely best to put the whole setup,
dish and detector in the centre in a shielding box.7 It should be stressed that although the
experiment performs a broadband search the signal from HP dark matter would be a very
narrow peak which should be easily distinguishable from background sources.

For a first experiment one could take a standard dish antenna and simply move the
receiver/detector from the focal point to twice the distance.

Finally an important (perhaps the most important) feature of this technique is that it
is broadband. Given a detector with a suitably low background and high enough sensitivity,
we can do a search for hidden photon over the whole frequency/mass range to which the
detector is sensitive without the need to adjust the experiment. This is in stark contrast
to a cavity experiment which achieves its Q factor enhanced sensitivity only in a tiny range
⇠ !/Q around the resonance frequency and for which one has to slowly scan through the
desired mass range.

Let us now estimate the sensitivity of such an experiment. In principle the concentration
mechanism is e↵ective as long as di↵raction is small, i.e. as long as the wavelength is much
smaller than the size of the dish antenna (this is also the limit when the ray-approximation
is reasonable). This limits us to masses

m�0 & few ⇥ 1µeV

✓
m

rdish

◆
. (2.22)

Aside from this the only limitations are:

• The dish should indeed provide a boundary condition of a vanishing electric field, i.e.
it has to be a good reflector. For radio frequencies this can be achieved by using
metal dishes. In the IR to near UV mirrors are obvious examples of reflective surfaces.
Therefore we can easily cover a wide range of masses with this technique.

• The surface of the dish has to be smooth and well focused to the centre at length
scales of the wavelength we want to probe, i.e. it can be taken as spherical to a good
approximation.

• Thermal emission from the mirror provides a background for our measurement. In
contrast to our signal it has a broad spectrum. Thermal emission is highly suppressed
by the high reflectivity of the mirror and moreover it can be reduced by cooling the
dish. Moreover, thermal radiation is emitted isotropically and will not be focused on
the detector. This translates into a relative suppression with respect to the signal of
the order of the detector area divided by the dish area.

In the radio frequency regime very small powers can be detected. Powers as low as
10�26W seem feasible and 10�23W are certainly possible. Using eq. (2.19) this can easily be
translated into a sensitivity to the kinetic mixing parameter,

�sens = 4.5⇥ 10�14

✓
Pdet

10�23W

◆ 1
2
✓
0.3GeV/cm3

⇢CDM,halo

◆ 1
2
✓
1m2

Adish

◆ 1
2

 p
2/3

↵

!
. (2.23)

7Note that the shielding itself can get excited by the HP dark matter field and emit electromagnetic
radiation which can interfere with our measurements. We will briefly consider these e↵ects in section 4, but
from what we learned so far (this radiation will also be perpendicular to the box surface) we can already
conclude that we can arrange the geometry in such a way that interference is minimized.

– 7 –

coeff. characterising the polarization 
of the DM field wrt the dish


