Dark Matter beyond WIMPs

Nicolás BERNAL جامعـة نيويورك أبوظـبي NYU ABU DHABI

CPT & CPPM, Marseille March 11th, 2024

Dark Matter beyond (boring standard) WIMPs

Nicolás BERNAL جامعة نيويورك أبوظي NYU ABU DHABI

CPT & CPPM, Marseille March 11th, 2024

Several observations indicate the existence of non-luminous Dark Matter (*missing gravitational force*) at very different scales!

- * Galactic rotation curves
- * RC in Clusters of galaxies
- * Clusters of galaxies
- * CMB anisotropies

Several observations indicate the existence of non-luminous Dark Matter (*missing gravitational force*) at very different scales!

- * Galactic rotation curves
- * RC in Clusters of galaxies
- * Clusters of galaxies
- * CMB anisotropies

Several observations indicate the existence of non-luminous Dark Matter (*missing gravitational force*) at very different scales!

- * Galactic rotation curves
- * RC in Clusters of galaxies
- * Clusters of galaxies
- * CMB anisotropies

Dark Matter is there! :-)

But what is it? :-/

- * Neutral (electric and color)
- * Massive (non relativistic @ structure formation)
- * 'Weak' interactions with the SM
- * Stable or long-lived

Several observations indicate the existence of non-luminous Dark Matter (*missing gravitational force*) at very different scales!

- * Galactic rotation curves
- * RC in Clusters of galaxies
- * Clusters of galaxies
- * CMB anisotropies

Dark Matter is there! :-)

But what is it? :-/

- * Neutral (electric and color)
- * Massive (non relativistic @ structure formation)
- * 'Weak' interactions with the SM
- * Stable or long-lived

Dark Matter needs New Physics beyond the Standard Model!

EXPOSITION ARTISTIQUE & SCIENTIFIQUE

LA SCIENCE

TATLLE

ELLES

Aoife Bharucha Physicienne

Toucher l'intouchable, saisir l'insaisissable

What is the Dark Matter?

What is the Dark Matter?

How was Dark Matter produced in the Early Universe?

How was Dark Matter produced in the Early Universe?

Cannibal FIMP SIMP Axion WISP ALP масно рвня Asymmetric DM elder Non-thermal DM сопрозіте DM Nicolás BERNAL @ NYUAD

Dark Matter Mass

Menu of the Day

1. WIMP DM

Weakly Interacting Massive Particles

- + Entr'acte 1: Standard vs. Non-standard Cosmology
- FIMP DM
 Feebly Interacting Massive Particles
 2a. Infrared FIMPs
 2b. Ultraviolet FIMPs
- + Entr'acte 2: Testing reheating
- 3. SIMP DM

Self-interacting Massive Particles

1. WIMP DM Weakly Interacting Massive Particle

WIMP Dark Matter

WIMP Dark Matter

WIMP DM typically requires: $\langle \sigma v \rangle \sim \text{few } 10^{-26} \text{ cm}^3/\text{s}$

* GeV to TeV masses* O(1) couplings DM-SM

- Independent on initial conditions!
 - * reheating temperature
 - * coupling to the inflaton
 - * DM density after reheating
 - * cosmological evolution before freeze-out

WIMP Dark Matter

Nicolás BERNAL @ NYUAD

WIMP DM typically requires: $\langle \sigma v \rangle \sim \text{few } 10^{-26} \text{ cm}^3/\text{s}$

> * GeV to TeV masses * O(1) couplings DM-SM

→ Independent on initial conditions!

Over the last decades a huge worldwide effort to detect WIMP DM using a multi-channel and multi-messenger approach...

but no compelling detection so far! :-(19

Detecting WIMPs

WIMP Dark Matter under Tension

Nicolás BERNAL @ NYUAD

WIMP Dark Matter under Tension

WIMP Dark Matter under Tension

Entr'acte 1: Standard vs Non-standard Cosmologies

A REVIEW OF POSSIBLE EXPANSION HISTORIES OF THE EARLY UNIVERSE Rouzbeh Allahverdi¹, Mustafa A. Amin², Asher Berlin³, Nicolás Bernal⁴, Christian T. Byrnes⁵, M. Sten Delos⁶, Adrienne L. Erickcek⁶, Miguel Escudero⁷, Daniel G. Figueroa⁸, Katherine Freese^{9,10}, Tomohiro Harada¹¹, Dan Hooper^{12,13,14}, David I. Kaiser¹⁵, Tanvi Karwal¹⁶, Kazunori Kohri^{17,18}, Gordan Krnjaic¹², Marek Lewicki^{7,19}, Kaloian D. Lozanov²⁰, Vivian Poulin²¹, Kuver Sinha²², Tristan L. Smith²³, Tomo Takahashi²⁴, Tommi Tenkanen^{25,a}, James Unwin²⁶, Ville Vaskonen^{7,27,a}, and Scott Watson²⁸
24

arXiv:2006.16182v2 [astro-ph.CO]

THE FIRST THREE SECONDS:

Standard Cosmology

* We know that at BBN, $T \sim O(MeV)$, the universe was dominated by SM radiation

- * Standard cosmology
 - → extrapolation up to the reheating epoch $T \sim 10^{10}$ GeV (?)
 - → SM entropy conserved
 - \rightarrow early universe dominated by SM radiation
 - → instantaneous reheating

* We know that at BBN, $T \sim O(MeV)$, the universe was dominated by SM radiation

- * Standard cosmology
 - → extrapolation up to the reheating epoch $T \sim 10^{10}$ GeV (?)
 - → SM entropy conserved
 - \rightarrow early universe dominated by SM radiation
 - → instantaneous reheating

Standard Cosmology

 $T \sim 1/a$

This is pretty much the common lore of the particle physics community! ;-)

Nicolás BERNAL @ NYUAD

27

Non-instantaneous Reheating

Decay or annihilation of inflatons into SM radiation is a continuous process

$$\frac{d\rho_{\phi}}{dt} + 3(1+\omega) H \rho_{\phi} = -\Gamma_{\phi} \rho_{\phi}$$
$$\frac{d\rho_R}{dt} + 4 H \rho_R = +\Gamma_{\phi} \rho_{\phi}$$

Non-standard Cosmologies

* Total energy density of the Universe could have been dominated by another non-SM component
* Entropy injection

Non-standard Cosmologies

* Total energy density of the Universe could have been dominated by another non-SM component * Entropy injection

*

Multiple possible sources:

- * heavy longlived particle (moduli, GUTs, RHNs, ...)
- * Primordial black holes

Entr'acte 1: Standard vs Non-standard Cosmologies

Nicolás BERNAL @ NYUAD

Singlet scalar DM model

2. FIMP DM Feebly Interacting Massive Particle

The Dawn of FIMP Dark Matter: A Review of Models and Constraints NB, Heikinheimo, Tenkanen, Tuominen, Vaskonen '17

WIMP vs FIMP Dark Matter

$$\frac{dn_{\chi}}{dt} + 3 H n_{\chi} = -\langle v\sigma_{\chi}\rangle \left[n_{\chi}^2 - (n_{\chi}^{\rm eq})^2\right]$$

37

WIMP vs FIMP Dark Matter

$$\frac{dn_{\chi}}{dt} + 3 H n_{\chi} = -\langle v\sigma_{\chi} \rangle \left[n_{\chi}^2 - (n_{\chi}^{\rm eq})^2 \right]$$

FIMP Dark Matter

$$\frac{dn_{\chi}}{dt} + 3 H n_{\chi} = -\langle v\sigma_{\chi} \rangle \left[n_{\chi}^2 - (n_{\chi}^{\rm eq})^2 \right]$$

FIMP DM typically requires:

- * Very suppressed DM-SM interaction rates to avoid thermalization between the dark and the visible sectors
 * masses > keV (!)
- * Usually assumed a dark sector with a negligible initial population

→ Dependent of initial conditions! Nicolás BERNAL @ NYUAD

2a. Infrared FIMPs Feebly Interacting Massive Particles

IR FIMP paradigm

$$\frac{dn}{dt} + 3Hn = -\langle \sigma v \rangle \left(n^2 - n_{eq}^2 \right)$$

* chemical equilibrium never reached * **renormalizable** operators * masses: keV to $\sim M_P$ * $\lambda_{PM} \sim 10^{-11}$

*
$$T_{\rm fi} \sim m$$

 \rightarrow (mild) dependence from initial conditions

IR FIMP paradigm

$$\frac{dn}{dt} + 3Hn = -\langle \sigma v \rangle \left(p^{\mathbb{Z}} - n_{eq}^2 \right)$$

- * chemical equilibrium never reached * **renormalizable** operators * masses: keV to $\sim M_P$ * $\lambda_{DM-SM} \sim 10^{-11} \leftarrow$ "Unnaturally" small... but could be *technically natural*!
- \rightarrow (mild) dependence from initial conditions

Singlet Scalar DM - FIMP

Detecting FIMPs

By construction, very challenging to test...

Detecting FIMPs

By construction, very challenging to test...

IR FIMPs in Non-standard Cosmologies

 $\log_{10}(M_S/\text{GeV})$

Singlet scalar DM model

46

WIMPs and FIMPs with Low-temperature reheating

47

WIMPs and FIMPs in Non-standard Cosmologies

Singlet scalar DM model

Nicolás BERNAL @ NYUAD

48

2b. Ultraviolet FIMPs Feebly Interacting Massive Particles

UV FIMP paradigm

$$\frac{dn}{dt} + 3Hn = -\langle \sigma v \rangle \left(p^{\mathbb{Z}} - n_{\rm ec}^2 \right)$$

* chemical equilibrium never reached * *non-renormalizable* operators * masses: keV to $\sim M_{P}$

*
$$\land$$
 > T_{rh}
* $T_{fi} \sim T_{rh}$

 \rightarrow (strong) dependence from initial conditions

50

UV FIMP paradigm

51

UV FIMP paradigm $\langle \sigma v \rangle = \frac{T^n}{\Lambda^{2+n}}$

• Heavy mediator (M >> T_r) $\langle \sigma v \rangle \propto g^4 \frac{T^2}{M^4}$

UV FIMP paradigm $\langle \sigma v \rangle = \frac{T^n}{\Lambda^{2+n}}$

• Heavy mediator (M >> T_r) $\langle \sigma v \rangle \propto g^4 \frac{T^2}{M^4}$

Suppressed couplings (A >> ${\cal T}_{
m rh}$) $\langle \sigma v
angle \propto {T^2 \over \Lambda^4}$

UV FIMP paradigm $\langle \sigma v \rangle = \frac{T^n}{\Lambda^{2+n}}$

• Heavy mediator (M >> T_r) $\langle \sigma v \rangle \propto g^4 \frac{T^2}{M^4}$

- Suppressed couplings (A >> ${\cal T}_{
 m rh}$) $\langle \sigma v
 angle \propto {T^2 \over \Lambda^4}$
- Heavy mediator + suppressed couplings (M, $\wedge >> T_{\rm rh}$) $\langle \sigma v \rangle \propto \frac{T^6}{\Lambda^4 \, M^4}$

UV FIMP paradigm
$$\langle \sigma v \rangle = \frac{T^n}{\Lambda^{2+n}}$$

• Heavy mediator (M >> $T_{\rm rh}$) $\langle \sigma v \rangle \propto g^4 \frac{T^2}{M^4}$

Suppressed couplings ($\wedge >> T_{rh}$) $\langle \sigma v \rangle \propto \frac{T^2}{\Lambda^4} \qquad \leftarrow \text{Gravitational UV freeze-in}$

• Heavy mediator + suppressed couplings (M, $\land >> T_{rh}$) $\langle \sigma v \rangle \propto \frac{T^6}{\Lambda^4 M^4}$

Gravitational FIMPs

An example of UV FIMP, mediated by massless SM gravitons

Gravitational FIMPs

By construction, nightmare scenario to test!

The Windchime Project Gravitational Detection of Dark Matter in the Laboratory

http://windchimeproject.org/ Carney, Ghosh, Krnjaic, Taylor '19

Entr'acte 2: Testing reheating

Probing Reheating with Graviton Bremsstrahlung

Inflaton decay

Probing Reheating with Graviton Bremsstrahlung

Probing Reheating with Graviton Bremsstrahlung

Probing Reheating with Graviton Bremsstrahlung

Entr'acte 2: Testing reheating

What about possible DM self-interactions?

3. SIMP DM Self-Interacting Massive Particle

DM self-interactions

Elastic scattering

Number-changing interactions

SSS

Kinetic equilibrium: DM temperature

Chemical equilibrium: $4 \rightarrow 2$ and $2 \rightarrow 4$

SIMP DM $4 \rightarrow 2$ annihilations

$$\frac{dn}{dt} + 3Hn = -\langle \sigma v^3 \rangle_{4 \to 2} \left(n^4 - n^2 n_{\rm eq}^2 \right)$$

A Z_2 symmetry forbids $3 \rightarrow 2$ annihilations... but allows $4 \rightarrow 2$ annihilations!

Could be the dominant channel if the SM-DM portal is very suppressed...

... like in the FIMP scenario!

7

Singlet Scalar DM $4 \rightarrow 2$ annihilations

Self-interacting DM

Self-interacting dark matter

Eric D. Carlson (Harvard U.), Marie E. Machacek (Northeastern U.), Lawrence J. Hall (UC, Berkeley and LBL, Berkeley) Published in: *Astrophys.J.* 398 (1992) 43-52

Temperature evolution 103 102 101 T.T. (eV) 100 10-1 **4** → **2** 10-2 Cannibalization 10-2 10-3 <u>-</u>3 100 10-1 101 T (eV) Perturbativity implies *m* ~ *O*(100) eV

Self-interacting DM

Self-interacting dark matter

Eric D. Carlson (Harvard U.), Marie E. Machacek (Northeastern U.), Lawrence J. Hall (UC, Berkeley and LBL, Berkeley) Published in: *Astrophys.J.* 398 (1992) 43-52

* Avoid increase of temperature \rightarrow SIMP DM

Hochberg, Kuflik, Volansky, Wacker '14 NB, Garcia-Cely, Rosenfeld '15

* Control the increase of temperature \rightarrow ELDER DM

Kuflik, Perelstein, Rey-Le Lorier, Tsai '15

* Start with a colder dark sector

NB, Chu '15 NB, Chu, Garcia-Cely, Hambye, Zaldivar '15

Singlet Scalar DM Dark Freeze-out via a FIMP mechanism

Detecting SIMPs

Very challenging to test

- \rightarrow Look at the sky!
 - * Bullet cluster
 * "missing satellites"
 * "too-big-to-fail"
 * "cusp vs core"

Conclusions & Outlook

- Dark Matter exists
- The nature of Dark Matter is still unknown
- Understanding Dark Matter is one of the major problems in particle physics
- WIMP paradigm is by far the favorite scenario huge prejudice!
- Many other mechanisms on the market: FIMPs, SIMPs, QCD axions, ALPs non-standard cosmologies & low-temperature reheating PBHs...
- Continue searches for WIMPs, FIMPs, and other DM candidates

(Colliders, direct and indirect detection, astro + cosmo...)

Muchas gracias