Unraveling cosmology with cosmic voids

+ many collaborators, highlights: N. Hamaus (LMU, Munich), S. Contarini (MPE), G. Verza (CCA, NYU), B. Y. Wang (CMU), D. Spergel (Princeton, Flatiron), B. Wandelt (IAP), C. Kreisch (Princeton), R. Panchal (Princeton), M. Aubert (LPC), M.-C. Cousinou (CPPM), S. Escoffier (CPPM), G. Lavaux (IAP), M. Habouzit (MPIA), E. Massara (Waterloo),....

European Research Council stablished by the European Comm

Precision cosmology

CPPM Seminar

18/03/2024

— Alice Pisani

A standard model ΛCDM , to explain the accelerated expansion of the Universe.

New Physics!

Outline

Large Scale Structure/Molids and Cosmology

- How do we find voids?
- Void-galaxy cross-correlation function
- Void size function
- Voids and the rising tensions
- Void-void auto-correlation function and neutrinos

Alice Pisani

Challenges

18/03/2024

Take home messages

Galaxy maps contain information beyond the 2-point correlation function.

Alice Pisani 18/03/2024 **CPPM Seminar** _____

Established by the European

4 / 47

Voids have a unique sensitivity to cosmology.

Pisani, Massara, Spergel et al. 2019; ArXiv: <u>1903.05161</u>, B. AAS

18/03/2024

CPPM Seminar

Alice Pisani _____

- Dark energy dominated (first!)
- Sensitive to diffuse components Σm_{ν}
- Sweet spots to test gravity

Voids have a unique sensitivity to cosmology.

CPPM Seminar

Alice Pisani

- Multi-scale sensitivity (sizes 10 100 Mpc/h)
- Easier to model (traditional techniques, models
- valid down to small scales)
- Keep memory of initial conditions
- High signal-to-noise for dark matter

Arcari, Pinetti, Fornengo 2022 JCAP Arxiv: 2205.03360

It's the golden age for void cosmology!

Voids need large volume and deep, detailed maps!

CPPM Seminar

Alice Pisani _____

Hundreds of thousands of voids

Number density also plays a role!

Alice Pisani

CPPM Seminar

18/03/2024

From a practical perspective: quantities we wish to constrain

$$\Omega_m, \Omega_\Lambda$$
 Content of the Uni

$$f = \frac{d \ln \Delta}{d \ln a}$$
 Growth rate of str

$$w(z) = w_0 + w_a \frac{z}{z+1}$$
 Dark ene

Sum of neutrino masses Σm_{ν}

18/03/2024

CPPM Seminar

Alice Pisani

ergy equation of state

H_0 Hubble constant

Large Scale Structure, Voids and Cosmology

- How do we find voids?
- Void-galaxy cross-correlation function
- Void size function
- Voids and the rising tensions
- Void-void auto-correlation function and neutrinos

Alice Pisani

Challenges

18/03/2024

Take home messages

Void definition

•	Pull requests	Repositories	Projects					Q Search	
*	vide_public		🧙 Cosmic Voids / VIDE / vic Wiki	le_public					
\diamond	Source		vide_public / Home						1
¢	Commits								l
រ្វំ	Branches		VVVVVVV V:::::V	VVVVVVV V:::::V	IIIIIIIIII I:::::I	DDDDDDDDDDDD D:::::::::::	D : DDD	EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	EEEEEEE :::::E
រែ	Pull requests		V:::::V V:::::V	V:::::V V:::::V	I:::::I II:::::II	D:::::: DDD:::::DDDD	::::DD D:::::D	E:::::::::::::::::::::::::::::::::::::	:::::E EE::::E
¢	Pipelines		V:::::V V:::::V V:::::V	V:::::V V::::V V::::V	I::::I I::::I I::::T	D::::D D::::D D::::D	D:::::D D:::::[D:::::[E::::E) E::::E) F:::::FFFFFF	EEEEEE
ፍ	Deployments		V::::V V::::V	V::::V V::::V	I::::I I::::I	D::::D D::::D	D:::::[D:::::[) E::::::::::::::::::::::::::::::::::::	:::E
V	lssues		V:::::V V:::::V V:::::V::::V		I::::I I::::I II	D::::D D::::D D:::.D	D:::::[D:::::[<pre>D E:::::EEEEEE D E::::E F····F</pre>	EEEE
•	Jira issues		V:::::V V:V		II:::::II	DDD::::DDDD	D::::D	EE:::::EEEEEEE	E::::E
Φ	Security		V:::V VVV		IIIIIIII DDDDDDDDDDDD			E:::::::::::::::::::::::::::::::::::::	EEEEEEEE
F	Wiki		VIDE, the Void IDentification	and Examina	tion toolkit	is a widely us	ed void fi	nder. It has been	used or
Ð	Downloads		spectroscopic and photometric data, on simulations and mocks. VIDE is the French word for void, as h software was first developed by a group of researchers working at the Institut d'Astrophysique de Pari France). The following page lists all papers based on VIDE: Papers using VIDE.						

https://bitbucket.org/cosmicvoids/vide_public/ src/master/, Sutter et al. 2015 A&C based on ZOBOV (Neyrinck 2008)

18/03/2024

CPPM Seminar

Alice Pisani

A void definition must be well **tested**, suitable to your dataset and should enhance the S/N of the measurement we wish to do. We also wish to link it to theory!

Void IDentification and Examination

Markov Provides void detailed shape.

- Suitable for both simulations and surveys (accounts for mask).
- Widely used: BOSS (DR7, DR10, DR11, DR12), eBOSS (DR14), DES, Euclid, Roman, PFS.

Voronoi tessellation

galaxies-

Galaxy All points -

closer to the tracer than to any other point

Local density estimation

 $\rho_{local} = \frac{1}{V_{cell}}$

A tessellation with a physical meaning

Alice Pisani

VIDE:<u>https://bitbucket.org/cosmicvoids/vide_public/</u> src/master/, Sutter, Lavaux, Hamaus, Pisani, Wandelt, Warren, Villaescusa-Navarro, Zivick, Mao, and Thompson 2015 A&C ArXiv: <u>1406.1191</u> Icke & Van de Weygaert (1987) Platen et al. 2007

18/03/2024

Void definition: VIDE (Void IDentification and Examination)

No a priori on the shape. Void's shape is not regular on a one-to-one basis!

18/03/2024

Aix*Marseille Alice Pisani **CPPM Seminar** _____ université

Wang, Pisani, Villaescusa-Navarro and Wandelt 2023, ApJ 955 131, Arxiv: <u>2212.06860</u>

Void definition: VIDE (Void IDentification and Examination)

Verza, Pisani, Carbone, Hamaus, Guzzo 2019; ArXiv: <u>1906.00409</u> JCAP

18/03/2024

CPPM Seminar

Alice Pisani

We have void centers, void radii, and tracers!

Using voids means more than one application!

Many different void statistics

Pisani, Massara, Spergel et al. 2019; ArXiv: <u>1903.05161</u> , B. AAS

18/03/2024

CPPM Seminar

Alice Pisani _____

Dark energy Modified gravity

Not at the same degree of maturity !

15/47

- Large Scale Structure, Voids and Cosmology
- How do we find voids?
- Void-galaxy cross-correlation function
- Void size function
- Voids and the rising tensions
- Void-void auto-correlation function and neutrinos

Alice Pisani

Challenges

18/03/2024

Take home messages

Wang, Pisani, Villaescusa-Navarro and Wandelt 2023, ApJ 955 131, Arxiv: <u>2212.06860</u>

CPPM Seminar

Alice Pisani

Void's shape is not regular on a one-to-one basis!

<u>Ryden, B. S. 1995</u>, ApJ, 452, 25 Lavaux & Wandelt 2011; ArXiv: <u>1110.0345</u> ApJ

In a homogeneous and isotropic universe void **stacks** are spherically symmetric in real space.

radius

Our model needs many ingredients:

18/03/2024

CPPM Seminar

Alice Pisani

But... we observe voids in redshift space!

Density profile modeling Alcock-Paczynski (AP) distortions Redshift space distortion modeling

Models the profile from data

Other prescriptions model the profile from simulations(fit). Caveat: introduces simulation bias!

18/03/2024

CPPM Seminar

Alice Pisani

universite

IN2P3

European Research Counc

18/03/2024

CPPM Seminar

Alice Pisani

CPPN

Hamaus, Pisani, Choi, Lavaux, Wandelt, Weller 2020; ArXiv: <u>2007.07895</u> JCAP

18/03/2024

CPPM Seminar

Alice Pisani

18/03/2024

CPPM Seminar

Alice Pisani

 $\varepsilon = \frac{[D_A(z)H(z)]_{\text{meas}}}{[D_A(z)H(z)]_{\text{fid}}}$

Ω_m 6.4%f/b16.9%What if we still want to use

mulations?

 \mathcal{E}

Precision

indep

0.68%

Hamaus, Pisani, Choi, Lavaux, Wandelt, Weller 2020; ArXiv: 2007.07895 JCAP

Two nuisance parameters:

$$\xi^{s}(\mathbf{s}) = \mathcal{M}\left\{\xi(r) + \frac{1}{3}\frac{f}{b}\overline{\xi}(r) + \frac{f}{b}\mathcal{Q}\mu_{r}^{2}\left[\xi(r) - \overline{\xi}(r)\right]\right\}$$

Hamaus, Pisani, Choi, Lavaux, Wandelt, Weller 2020; ArXiv: 2007.07895 JCAP

18/03/2024

CPPM Seminar

— Alice Pisani

24/47

European Research Counci

The observed void-galaxy cross-correlation function ξ_{vg} How will it perform with future surveys?

Planck Planck + BOSS BAOBOSS Voids (RSD + AP)BOSS Voids (RSD + AP, cal.) Euclid Voids (RSD + AP) Euclid Voids (RSD + AP, cal.) Euclid Main Probes (pessimistic) Euclid Main Probes (optimistic)

18/03/2024

CPPM Seminar

Alice Pisani

Hamaus, Aubert, Pisani et al. 2022 Euclid collaboration paper ArXiv: <u>2108.10347</u> A&A

AkMidex

- Large Scale Structure, Voids and Cosmology
- How do we find voids?
- Void-galaxy cross-correlation function
- Void size function
- Voids and the rising tensions
- Void-void auto-correlation function and neutrinos

Alice Pisani

Challenges

18/03/2024

Take home messages

The void size function An excursion set model to predict void numbers.

 $w(z) = w_0 + w_a \frac{z}{z+1}$

Sheth and van de Weygaert 2004; Arxiv: 0311260 Jennings, Li & Hu ArXiv: <u>1304.6087</u> MNRAS; DM

Pisani, Sutter, Hamaus, Alizadeh, Biswas, Wandelt, Hirata 2015; ArXiv: 1503.07690 PRD

Verza, Pisani, Carbone, Hamaus, Guzzo 2019; ArXiv: <u>1906.00409</u> JCAP

18/03/2024

CPPM Seminar

Alice Pisani

The void size function

Predicts void numbers as spherical non-overlapping regions embedding a fixed density contrast in the biased tracer field.

$$\begin{aligned} \frac{\mathrm{d}n}{\mathrm{d}\ln r} \bigg|_{\mathrm{lin}} &= \frac{f_{\mathrm{ln}\,\sigma}(\sigma)}{V(r)} \frac{\mathrm{d}\ln\sigma^{-1}}{\mathrm{d}\ln r} \\ f_{\mathrm{ln}\,\sigma} &= 2\sum_{j=1}^{\infty} \exp\left(-\frac{(j\pi x)^2}{2}\right) j\pi x^2 \sin\left(j\pi\mathcal{D}\right) \overset{\mathrm{Multip}}{\underset{\mathrm{Universe}}{\mathrm{Universe}}} \\ \mathcal{D} &= \frac{|\delta_{\mathrm{v}}^{\mathrm{L}}|}{\delta_{\mathrm{c}}^{\mathrm{L}} + |\delta_{\mathrm{v}}^{\mathrm{L}}|}, \qquad x = \frac{\mathcal{D}}{|\delta_{\mathrm{v}}^{\mathrm{L}}|} \sigma(r), \text{ Density contrasts for dark matter halos and } \end{aligned}$$

 $\sigma(r)$ Root mean square variance of linear matter perturbations

$$\frac{\mathrm{d}n}{\mathrm{d}\ln r}\Big|_{\mathrm{Vdn}} = \frac{\mathrm{d}n}{\mathrm{d}\ln r}\Big|_{\mathrm{lin}} \frac{V(r^{\mathrm{L}})}{V(r)} \frac{\mathrm{d}\ln r^{L}}{\mathrm{d}\ln r} \qquad \mathrm{Vc}$$

Alice Pisani 18/03/2024 **CPPM** Seminar

- plicity function me fraction of the erse by cosmic voids)
- or the formation of nd cosmic voids
- dn model

$$\delta_{\rm v,DM}^{\rm NL} = \frac{\delta_{\rm v,tr}^{\rm NL}}{\mathcal{F}(b_{\rm eff},z)}, \text{ with}$$
$$\mathcal{F}(b_{\rm eff},z) = B_{\rm slope} b_{\rm eff}(z) + B_{\rm offset}$$

Large scale effective bias

Sheth and van de Weygaert 2004; Arxiv: 0311260 Jennings, Li & Hu ArXiv: <u>1304.6087</u> MNRAS; DM Pollina, Hamaus et al. ArXiv: <u>1806.06860</u> MNRAS

Contarini, Ronconi, Marulli, Moscardini, Veropalumbo, Baldi ArXiv: <u>1904.01022</u> MNRAS

Verza, Pisani, Carbone, Hamaus, Guzzo 2019; ArXiv: <u>1906.00409</u> JCAP

Contarini, Marulli, Moscardini, Veropalumbo, Giocoli, Baldi ArXiv: <u>2009.03309</u> MNRAS

18/03/2024

CPPM Seminar _____ Alice Pisani

Sofia Contarini

Giovanni Verza

Contarini, Verza, Pisani et al. 2022 Euclid collaboration paper A&A, ArXiv: <u>2205.11525</u>

The void size function: Euclid forecasted constraints

Alice Pisani

18/03/2024

The void size function: forecasted constraints *combined*

IST WL (optimistic) IST GC_s (optimistic)

Contarini, Verza, Pisani et al. 2022 Euclid collaboration paper A&A, ArXiv: <u>2205.11525</u>

18/03/2024

CPPM Seminar

Alice Pisani

The void size function: first data application

The void size function: first data application

— Alice Pisani

Contarini, Pisani, Hamaus et al. 2022a ArXiv: <u>2212.03873</u>, JCAP

18/03/2024

- Large Scale Structure, Voids and Cosmology
- How do we find voids?
- Void-galaxy cross-correlation function
- Void size function
- Voids and the rising tensions
- Void-void auto-correlation function and neutrinos

Alice Pisani

Challenges

18/03/2024

Take home messages

Voids can fill us in on rising cosmology tensions

Contarini, Pisani, Hamaus et al. 2022b ArXiv: <u>2212.07438</u> A&A

18/03/2024

CPPM Seminar

Alice Pisani

Voids can fill us in on rising cosmology tensions

Alice Pisani

Contarini, Pisani, Hamaus et al. 2022b ArXiv: <u>2212.07438</u> A&A

18/03/2024

Voids can fill us in on rising cosmology tensions

- Large Scale Structure, Voids and Cosmology
- How do we find voids?
- Void-galaxy cross-correlation function
- Void size function
- Voids and the rising tensions
- Void-void auto-correlation function and neutrinos

Alice Pisani

Challenges

18/03/2024

Take home messages

18/03/2024

The void-void autocorrelation function & neutrinos

Significant contribution but... needs large numbers.

GIGANTES void catalogs suite: power from the combination

8.0

Hints of neutrinos constraints!

18/03/2024

Other void statistics deserve attention: ellipticity

A billion voids: GIGANTES void catalogs suite

The GIGANTES void catalogs suite: 15000 VIDE void catalogs ΛCDM + 7000 cosmologies $\Omega_m, \Omega_b, h, n_s, \sigma_8, M_\nu, w$

A massive dataset for ML

Alice Pisani

Kreisch, Pisani, Villaescusa– Navarro, Spergel, Wandelt, Hamaus and Bayer ApJ, ArXiv: <u>2107.02304</u>

The void size function: void shape matters!

Kreisch, Pisani, Villaescusa-Navarro, Spergel, Wandelt, Hamaus and Bayer ApJ, ArXiv: <u>2107.02304</u>

18/03/2024

- Large Scale Structure, Voids and Cosmology
- How do we find voids?
- Void-galaxy cross-correlation function
- Void size function
- Voids and the rising tensions
- Void-void auto-correlation function and neutrinos

Alice Pisani

Challenges

18/03/2024

Take home messages

Challenges: Void statistics do not have the same degree/of maturity. Numbers Clustering Shape 2020 Kreisch, Halo Field Pisani aL. robability et al. Numbers 2019 еt **MNRAS** $r_{\rm exc} \approx 1$ Pisani Hamaus Verza, Pisani $- \Sigma m_{\nu} = 0.0 \,\mathrm{eV}$ et al. 2019 JCAP $\Sigma m_{\nu} = 0.53 \,\mathrm{eV}$ $\chi^2_{\rm red} = 1.86$ Size Distance Model Data **Spurious voids**: very conservative void selection! Verza, Carbone, Pisani et al. 2024 ArXiv: 2401.14451 Theory: robust **profile** from theory + **bias** Loss in statistics at smaller scales, needs improvement in light of denser surveys.

Controlling galaxy properties' impact down to the cosmological constraints.

18/03/2024

CPPM Seminar

— Alice Pisani

Take home messages

- Void analysis: active field of galaxy clustering!
- Many statistics, not at the same degree of maturity
- PFS, DESI, Euclid, Rubin, Roman, SPHEREx : a unique set of $> O(10^5)$ voids per survey! • Voids can independently constrain $\Omega_m, \Omega_\Lambda, w_0, w_a, f, \Sigma m_{\nu}, H_0, \sigma_8$ Voids can contribute to the tension landscape: impressive constraining power coming soon!

- There are challenges that we need to address to exploit voids' power at their best.

Alice Pisani 18/03/2024 **CPPM** Seminar

Merci beaucoup!

