Nuclear structure after slow neutron reactions at ILL

Caterina Michelagnoli Institut Laue-Langevin Université Grenoble-Alpes

> NuBall Workshop 2024 3-5 July 2024

Contents

2 Fission mechanism and dynamics

The ILL high-flux reactor

world's highest neutron flux for in-beam experiments

- $\hfill\square$ up to 1.5 $10^{15}\ n/s/cm^2$
- in-pile irradiation of radioisotopes
- guided with little losses over hundreds of meters

The ILL user facility

pprox40 instruments, 10 scientific areas, pprox4000 users/year

Thermal neutron-induced reactions

thermal-neutron capture reactions

- □ Structure of nuclei close to stability
- □ Structure at low spin (below S_n)
- Cross-sections (applications)
- □ ${}^{27}\text{Al}(n,\gamma)$: σ =0.2 b; ${}^{157}\text{Gd}$: 2.5 10^5b

Neutron number N

neutron-induced fission

- Structure of n-rich nuclei abel=(far from stability)
- □ Fission yields and dynamics

□
235
U: σ_f =585 b;
 245 Cm: σ_f =2141 b

Nuclear Fission: how does it work?

Ichikawa et al, Phys. Rev. C 40, 770 (1989)

Fission: generation of angular momentum

J. Randrup et al., EPJ WoC, 284,04004 (2023)

G. Scamps, Phys. Rev. C 106, 054614 (2022)

Measurement of isomeric fission yields: the Lohengrin fission fragment separator

Measurement of isomeric fission yields: experimental setup

Courtesy of A. Chebboubi

Kinetic energy dependence of fission fragment isomeric ratios for spherical nuclei ¹³²Sn

A. Chebboubi et al., Phys. Lett. B 775 (2017) 190

C. Michelagnoli [ILL]

NuBall Workshop 2024

2024-07-05

Kinetic energy dependence of fission fragment isomeric ratios for spherical nuclei ¹³²Sn

A. Chebboubi et al., Phys. Lett. B 775 (2017) 190

C. Michelagnoli [ILL]

NuBall Workshop 2024

2024-07-05

Neutron-rich nuclei produced in fission

Neutron number N

C. Freiburghaus et al., Astrophys. J. 516 (1999) 381

$\gamma\text{-}\mathsf{ray}$ spectroscopy is a challenge!

S. Leoni, C. Michelagnoli and J. Wilson, Riv. Nuovo Cim. 45 (2022) 461

C. Michelagnoli [ILL]

NuBall Workshop 2024

2024-07-05

In n-beam γ -ray spectroscopy at ILL: FIPPS

More beam and more space

Neutron beam characterization

L. Domenichetti, ILL

FIPPS HPGe array efficiency

G. Colombi et al., in preparation

Angular correlation analysis+radioactive target

Shape coexistence at zero spin in Ni isotopes

Adapted from N. Marginean at al., Phys. Rev. Lett. 118 (2017) 162502

NuBall Workshop 2024

Nuclear structure input for $\beta\beta$ studies

L. Domenichetti, ILL

Nuclear structure input for $\beta\beta$ studies

L. Domenichetti, ILL

Statistical analysis of 75 As(n, γ) 76 As data

Full Geant4 simulation including DICEBOX input

L. Domenichetti, ILL

Selection of fission events using an active target

Selection of fission events using an active target

Lifetime determination via lineshape analysis

G. Colombi, PhD Thesis, Univ. Grenoble-Alpes, ILL and Univ. Milan, 2023

A plunger setup for a neutron beam

G. Colombi, PhD Thesis, Univ. Grenoble-Alpes, ILL and Univ. Milan, 2023

C. Michelagnoli [ILL]

NuBall Workshop 2024

Simulations for the plunger setup at FIPPS

G. Colombi, PhD Thesis, Univ. Grenoble-Alpes, ILL and Univ. Milan, 2023

²⁴⁵Cm fission campaign

Diamond-based FF identification setup

Thermal neutrons: how and why? Fission mechanism and dynamics Nuclear structure Future perspectives Conclusions 25/27

The puzzle of the astrophysical origin of ¹⁸⁰Ta

the rarest isotope found in the solar system 0.012% abundance; $J^{\pi} = 9^{-}$ isomeric state at 77 keV, $t_{1/2} = 10^{15}$ y Possible s-process scenario: missing information on ¹⁸⁰Ta *intermediate states*

Phys. Rev. Lett. 83 (1999) 5242, Phys. Rev. C 75 (2007) 015804

A multi-messenger approach using a ¹⁷⁹Ta radioactive target

Production via the ¹⁸⁰Hf(p,2n)¹⁷⁹Ta reaction + radioch. Hf/Ta sep. Thermal neutron capture reactions at FIPPS+fast neutron capture reactions at DANCE \Rightarrow intermediate states new s-process cross-section measurements at nTOF

Project in collaboration with LANSCE and CERN

NuBall Workshop 2024

Conclusions

Many activities and projects are going on at ILL to study fission and nuclear structure:

 \Box (n, γ) reactions (stable and radioactive targets)

- \Box data available from n-induced fission on ^{233,235}U
- □ plunger setup, commissioning soon with Cf source
- □ project for a diamond-based fission fragment separator

□ Possibility to handle "all targets"

□ Next ILL proposal deadline on September 15th

Acknowledgements

G. Colombi, L. Domenichetti, A. Saracino, M. Zanol, D. Reygadas, J.-M. Daugas, R. Pommier, M. Jenstchel, U. Köster, H. Faust, F. Kandzia, et al. ILL

- J. Dudouet et al. IP2I Lyon
- N. Marginean, C. Mihai, A. Turturica et al., IFIN-HH Bucharest
- S. Leoni, S. Bottoni et al., University and INFN Milan
- O. Serot, A. Chebboubi et al., CEA Cadarache
- B. Fornal, N. Cieplicka et al., PAN Krakow
- J.M. Regis, L. Knafla et al., IKP Cologne
- H.Y. Lee, A.J. Couture, LANL
- and many many other collaborators!!!

Merci ! Thanks! Grazie! Danke! ¡Gracias! Dziękuję! ...

