Coulomb excitation of ⁶⁰Ni at the IJC Lab with the Nuball2+SiLCA DSSD setup

(+ a brief report on the Coulomb excitation of ⁴⁰Ca)

Kasia Hadyńska-Klęk

Heavy Ion Laboratory

University of Warsaw

Scientific Workshop on nu-Ball2 2024 - Reports from the last campaign and prospects for future experiments

Milano, 3-5 July 2024

Nuclear magicity

http://ne.phys.kyushu-u.ac.jp/seminar/MicroWorld3_E/3Part2_E/3P25_E/magic_numbers_E.htm

Magic (or semi-magic) nuclei: Z and/or N: 2, 8, 20, 28, 50, 82, 126 (N)

Spherical in their ground state

Or not?

Are the magic nuclei deformed?

Are all magic numbers "good"?

Nuclear deformation - medium mass region

- Observation of the evolution of deformation in light and medium mass region
- Rotational and deformed bands of similar properties exist in a wide range of nuclei: built on the 0⁺ states, decaying to the ground state bands with the discrete gamma transitions - mixing of configurations
- Triaxial highly-deformed vs spherical / weakly deformed structures
- Dramatic shape coexistence

⁴⁰Ca (Z=N=20) versus ⁵⁶Ni (Z=N=28)

Def	forn	natior	n abo	out ⁴⁰ Ca (Z=N=2	0)		_	đ					
isotope	0 ⁺ energy	experimental eta_2	configuration	reference	Z = 50								
40 Ca	5.2 MeV	$0.59^{+0.11}_{-0.07}$	8p-8h (SD)	E. Ideguchi et al., PRL 81 (2001) 222501		·						Y	
	3.4 MeV	0.27±0.05	4p-4h (ND)										F
³⁶ Ar	(4.3 MeV)	0.46±0.03	4p-8h	C. Svensson et al., PRL 85 (2000) 2693								N =	82
³⁸ Ar	3.4 MeV	$0.42^{+0.11}_{-0.08}$	4p-6h	R. Austin, PhD thesis (2004)	40V	41V	42V	43V	44V	45V	46V	47V	48V
40 Ar	2.1 MeV	$0.48^{+0.16}_{-0.10}{\pm}0.05$	4p-4h	E. Ideguchi et al., PLB 686 (2010) 18									
^{42}Ca	1.8 MeV	$0.43(4) (0^+_2)$	6p-4h	KHK et al., PRL 117 (2016) 062501	39Ti	40Ti	41Ti	42Ti	43Ti	44Ti	45Ti	46Ti	47Ti
		0.45(4) (2 ⁺ ₂)		KHK et al., PRC 97 (2018) 024326									
	~	Deformation	Ť	Z = 28	38Sc	39Sc	40Sc	41Sc	42Sc	43Sc	44Sc	45Sc	46Sc
		egree of triaxiality Deformation	z	N :	= 40 37 Ca	38Ca	39Ca	40Ca	41Ca	42Ca	43Ca	44Ca	45Ca
neray					36K	37K	38K	39K	40K	41K	42K	43K	44K
					35Ar	36Ar	37Ar	38Ar	39Ar	40Ar	41Ar	42Ar	43Ar
			Ζ = 8	N = 28 N = 20	34Cl	35 C l	36C1	37 C 1	38Cl	39Cl	40 C l	41Cl	42Cl
		Z	= 2	N = 8	335	34S	355	36S	375	385	395	40S	41S
			N = 2	N N									

Superdeformation in ⁴²Ca (Z=20, N=22)

 $\langle Q^2 \rangle_{SD} = \beta_{SD} = 0.43(4)$ $\langle \cos(3\delta) \rangle_{SD} = \gamma_{SD} = 13\binom{5}{6}^{\circ}$

Excited 0⁺: **Triaxial prolate - superdeformed**

3392

KHK et al., PRL 117 (2016) 062501 and PRC 97 (2018) 024326

LSSM and BMF calculations

Ground state deformation: spherical, with the large fluctuations shape invariants: $\langle Q^2 \rangle + \sigma(Q^2)$ and $\langle \cos(3d) \rangle$ $0_1^+ \bar{\beta} = 0.26(2)$ and $\bar{\gamma} = 29(2)^\circ$

First evidence for the shape coexistence in the light mass region

Nuclear deformations: COULEX of ⁴⁰Ca

Fransition	Energy [keV]	Counts/day			
N	D band transition	S			
$^+_1 \rightarrow 0^+_{GS}$	3905	115000			
$2^+_1 \rightarrow 0^+_2$	553	250			
$2^+_1 \rightarrow 2^+_1$	1375	8500			
$b_1^+ \rightarrow 4_1^+$	1653	250			
SE) band transition	S			
$f_D \rightarrow 0^+_{SD}$	417	200			
$D_D \rightarrow 2^+_{SD}$	914	1200			
$d_D \rightarrow 4^+_{SD}$	1432	50			
SE	$\rightarrow ND$ transition	S			
$^+_{SD} \rightarrow 2^+_1$	1308	70000			
$_{SD}^{\downarrow} \rightarrow 0_{2}^{\downarrow}$	2278	4000			
$^+_{SD} \rightarrow 2^+_1$	1725	1500			
$D_D \rightarrow 0^+_{GS}$	5630	17000			
$^+_{SD} \rightarrow 2^+_1$	2639	2500			
$^+_{SD} \rightarrow 4^+_1$	1264	70			

COULEX of ⁴⁰Ca - DSSD spectra

Polar coordinates scaled

COULEX of ⁴⁰Ca - selection based on the DSSD

COULEX of ⁴⁰Ca - preliminary (av. Doppler Correction)

COULEX of ⁴⁰Ca - preliminary (IJC Lab, Orsay)

⁴⁰Ca (Z=N=20) versus ⁵⁶Ni (Z=N=28)

Stable Nickel isotopes: Vibrations?

B(E2) VALUES FOR DECAY OF MULTI-PHONON STATES

B(E2) and Qs values needed Not only the level scheme but the structure

L.J. Evitts et al., Phys. Rev. C 99 (2019) 024306.

The largest $\rho^2(2_{2^+}-2_{1^+})$ values in medium and heavy nuclei reported to date BREAKING the vibrational picture

A spherical vibrator - the E0 transitions are forbidden if the change in phonon number is one -> 22+CANNOT BE a 2v STATE

Ni - theory

Ni - gamma-soft?

S. Malbrunot-Ettenauer et al., Phys. Rev. Lett. 128 (2022) 022502

⁶²Ni - IJC Lab Orsay - 2023

• Start was OK

- Then many unexpected issues with the beam
- Unstable, sparks... even with the lover E
- We decided to change the beam to ⁶⁰Ni

- ⁶²Ni beam, 233 MeV, 1 pnA
- ²⁰⁸Pb target, 1 mg/cm²
- 7 days of data taking requested
- ► DSSD (127-154^o) + NUBALL2 (4% at 1.3 MeV)

Project scheduled: June 2023

→ ⁶²Ni target + ²⁰Ne beam accepted by the HIL PAC – (HIL 113)

COULEX of ⁶⁰Ni - spectra with and without DC

- DSSD(127-154°) + NUBALL2 (4% at 1.3 MeV)
- DSSD selection (coincidence condition)

COULEX of ⁶⁰Ni - preliminary gamma spectrum (DC)

OUTLOOK

- Some data from >1 day of ⁶²Ni beam -> ⁶⁰Ni more stable
- A bonus gem ¹⁹⁷Au target used in both ⁴⁰Ca and ⁶⁰Ni a possibility to study polarisation effects in COULEX with nuball2 with two different beams – M1/E2 mixing and its influence on the COULEX XS
- Data analysis ongoing

Thank you