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Onset of deformation below neutron-rich Ni isotopes
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*J. Ljungvall et al., Phys. Rev. C 81 (2010) 061301.
*S. M. Lenzi, F. Nowacki, A. Poves and K. Sieja, Phys. Rev. C 82 (2010) 054301.

58Fe (Z=26) is placed at the border of a region 
of the nuclear chart where a development of 
collectivity has been observed and predicted*.

+
Proximity to the Z=28, N=40 doubly-magic 
nucleus 68Ni.
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58Fe (Z=26) is placed at the border of a region 
of the nuclear chart where a development of 
collectivity has been observed and predicted*.

+
Proximity to the Z=28, N=40 doubly-magic 
nucleus 68Ni.

Contrast between two opposite behaviors:

● Collectivity: nuclear states can be described 
as the collective motion (the interaction) 
between many valence nucleons.

→ easy to excite

● Single-particle: only few nucleons are 
involved on the definition of the nuclear 
states wave functions

→ pretty stable over excitation
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Fingerprints of collectivity in nuclei:
● Small E(2+) 
● Large B(E2) 0+

2+
E(21

+)

B(E2; 0+→ 2+)

COLLECTIVITY
COLLECTIVITY
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Microscopic explanation :
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Removing 2 protons from the f7/2 orbital 
implies a re-distribution of neutron orbitals in 
the fp shell with the lowering of the g9/2 orbital

→ increased collectivity
→ enhancement of correlations between neutrons and protons
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Microscopic explanation :
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To study this mechanism and understand its microscopic 
origin, other than the energy of the first excited state, 
more sensitive probes needs to be investigated, such as 
reduced transition probabilities.
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This region is accessible by different theoretical models, e.g. 
by the interacting shell model (ISM) and the interacting 
boson model (IBM-2)*.

The calculated energy of the first excited states for iron 
isotopes are supported by experimental data.

Low-lying energies in Cr and Fe isotopes

*J. Kotila and S. M. Lenzi, Phys. Rev. C 89 (2014) 064304. 
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This region is accessible by different theoretical models, e.g. 
by the interacting shell model (ISM) and the interacting 
boson model (IBM-2)*. 

The calculated energy of the first excited states for iron 
isotopes are supported by experimental data.

The value of transition probabilities show the
increase of collectivity going towards N=40.

Experimental data support the model predictions, 
however…

Large disagreement for the B(E2; 41
+→21

+) at N=32. 

Low-lying energies in Cr and Fe isotopes

*J. Kotila and S. M. Lenzi, Phys. Rev. C 89 (2014) 064304. 
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The 58Fe case: B(E2; 4+ ⟶ 2+) value 4/12

*Andrew Stuchbery, Honours Thesis, University of Melbourne (1977).

Two possible scenarios:
● The adopted value is wrong.

● The B(E2; 4+ → 2+) has been obtained only via lifetime measurements. 
τ = 0.53(9) ps using the 55Mn(α, p)58Fe reaction, is the closest to the one predicted

● Something not included in the calculations is at play for this state.



  

The 58Fe case: B(E2; 4+ ⟶ 2+) value

Two possible scenarios:
● The adopted value is wrong.

● The B(E2; 4+ → 2+) has been obtained only via lifetime measurements. 
τ = 0.53(9) ps using the 55Mn(α, p)58Fe reaction, is the closest to the one predicted

● Something not included in the calculations is at play for this state.

The B(E2; 4+ → 2+) can be studied via multi-step Coulomb excitation.

→ 58Fe has been already studied in Coulomb excitation, but limiting excitation to the 2+ state.
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*Andrew Stuchbery, Honours Thesis, University of Melbourne (1977).



  

Coulomb-excitation experiments 5/12

How does it work?

What can we measure?

● the reduced transition probability B(E2; 41
+→ 21

+).
● Measure the quadrupole moment of the 21

+ state.
● Measure the β2, γ deformation parameters to infer 

the shape of the g.s.

The matrix elements ˂Jf||E2||Ji> 
describe the excitation and decay 
process.

→ they are directly related to γ-ray 
intensities observed in the spectra.

01
+

21
+

E2

Energy [keV]

21+ → 01+

excitation of 
projectile/target

EM



  

Coulomb-excitation experiments 5/12

How does it work?

What can we measure?

● the reduced transition probability B(E2; 41
+→ 21

+).
● Measure the quadrupole moment of the 21

+ state.
● Measure the β2, γ deformation parameters to infer 

the shape of the g.s.

ground state 
band 0+, 2+, 4+, 
etc., built on top 
of a triaxial-
prolate state

Tomás R. Rodríguez

SCCM : Simmetry Conserving 
Configuration Mixing model



  

Experimental setup :

● nuBall2 :
2 rings of 12+12 Compton-
suppressed clovers of HPGe.

● HIL-Warsaw DSSSD : 
highly-segmented Si detector at 
backward angles.

Proposed experiment : multi-step Coulomb excitation 

target
208Pb

 beam line 58Fe

DSSD

nuBall2

R2 R3

Beam: 58Fe, energy 220 MeV.
Beam prepared with a high enrichment of 58Fe.
→ The beam energy respects the Cline safe-energy criteria 

Target: 208Pb, 2 mg/cm2, self supporting.
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The HIL-Warsaw DSSSD (Double-Sided Stripped Silicon Detector) 7/12

Sector 1, channel 2

tri-alpha source 
energy spectrum

Sector 1, channel 2

in-beam 58Fe 
energy spectrum 
(not calibrated)

in-beam 58Fe energy spectra

sector 1                      sector 2                                    rings



  

Data presorting – Energy calibration of HPGe 8/12

Linear correction for all runs using the 152Eu source + correction of the gain shift using the most intense 
peaks in the spectra for each run.
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Data presorting – Time alignment 9/12

Time alignment is performed individually for each run using a reference detector (LaBr).
The time window in the event building is chosen in order to enhance the signal to background ratio

Energy [keV]

Time 
window

1500
100 



  

Data presorting – Doppler correction 10/12

The gamma rays detected by nuBall are emitted in-flight, when the scattered 58Fe is in motion with a 
velocity beta from the target to the DSSD. A Doppler correction is needed to create proper energy spectra

Energy [keV]
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1

1

1
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The gamma rays detected by nuBall are emitted in-flight, when the scattered 58Fe is in motion with a 
velocity beta from the target to the DSSD. A Doppler correction is needed to create proper energy spectra
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Data presorting – Doppler correction 10/12

For the Doppler correction….
● DSSD segment position (32x16)
● Crystal position (96)
● Clover rotation (4)
● Recoil velocity



  

Data presorting – Final spectrum : preliminary vs final 11/12

Energy [keV]



  

Preliminary results using the GOSIA code 12/12

Level scheme used for 
the GOSIA analysis Preliminary results from 

the all-statistics analysis
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Thanks for your attention!

NuBall2
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