

Laboratoire de Physique des 2 Infinis

Characterization of the de-excitation path of fission fragments during the spontaneous fission of 252Cf **N-SI-125 data analysis status**

- ^{*a*} Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory, Orsay, France
- ^b European Commission, Belgium
- ^c Atomic Energy Commission (CEA), France

<u>B. Pertille</u>^{*a***}, M. Lebois^{***a***}, M. Mehdi^{***a***}, S. Oberstedt^{***b***}, J. Guillot^{***a***}, D. Thisse^{***c***}, A. Göök^{***b***} et al.**

Physics motivation for the FRØZEN project

Adapted from: M. Bender, et al. Future of nuclear fission theory. Journal of Physics G: Nuclear and Particle Physics, 47(11):113002, oct 2020.

04/07/2024

Gamma detection energy and multiplicity

24 High-Purity Germanium clovers (HPGe)

PARIS array 72 phoswhiches La(Ce)Br₃:Nal

Thalia LaBr3

Neutron detection energy and multiplicity

PARIS array Thalia LaBr3

Fission fragments detection

Ionisation chamber

PARIS array

04/07/2024

Scientific workshop on ν -Ball2 2024

04/07/2024

Scientific workshop on ν -Ball2 2024

Calibration is ongoing...

24 HPGe clovers => 96 channels

PARIS array 72 phoswhiches La(Ce)Br₃:Nal

Scientific workshop on ν -Ball2 2024

More than 200 channels

Calibration with ${}^{152}Eu$, ${}^{60}Co$, ${}^{137}Cs$ and AmBe

Double Frisch-Grid Ionisation Chamber (dFGIC)

Adapted from: A. Göök, et al. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 830:366–374, 2016.

$$t_n = \frac{1}{Q_{max}} \cdot \sum_{k=k_0}^{k_0+n} (q_{k+1} - q_k)(k - k_0) \cdot \frac{1}{f_s}$$

* CFD: Constant Fraction Discrimination

Double Frisch-Grid Ionisation Chamber (dFGIC)

04/07/2024

How do we know if the method works?

THALIA LaBr₃ data stored as a trace:

-150

-149

Scientific workshop on ν -Ball2 2024

14

-147

-146

-145

-148

Double Frisch-Grid Ionisation Chamber (dFGIC)

Double Frisch-Grid Ionisation Chamber (dFGIC)

Adapted from: A. Göök, et al. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 830:366–374, 2016.

Energy vs. Electron drift time

Scientific workshop on ν -Ball2 2024

600

800

Back Anode Sum signal

tn-shaped signa

- Moving average algorithm;
- RC filter;
- Signal baseline correction;
- CR-RC and CR-RC4 shaping filters; UNIC
- Trapezoidal shaping filter
- Signal integration (deposited charge)
- Constant Fraction Discrimination (CFD)

Trace analysis takes ~2s per 1k fission events 3 weeks of data acquisition -> 600M events 300 h or 13 days to process the traces

=> yes, we are working with an optimized multi-threading algorithm

- Moving average algorithm;
- RC filter;
- Signal baseline correction;
- CR-RC and CR-RC4 shaping filters; UNIC
- Trapezoidal shaping file,
- Signal integration (deposited charge)
- Constant Fraction Discrimination (CFD)

Trace analysis takes ~2s per 1k fission events 3 weeks of data acquisition -> 600M events 300 h or 13 days to process the traces

=> yes, we are working with an optimized multi-threading algorithm

A virtual trigger based on an unsupervised hierarchical cluster algorithm selects the relevant data to reconstruct the physics event

Regression vs. classification model

Hyperparameters

- Activation function
- Batch size
- Epochs
- Learning rate
- Loss function
- Number of hidden layers
- Number of neurons per layer

Parameters

Weights and biases

$$Y = \sum_{i} (weight_i \cdot input_i) + bias$$

Fully Connected Neural Networks (FCNN)

Taken from: https://math.stackexchange.com/q/2048722

Regression vs. classification model

Hyperparameters

- Activation function
- Batch size
- Epochs
- Learning rate
- Loss function
- Number of hidden layers
- Number of neurons per layer

Parameters

Weights and biases

$$Y = \sum_{i} (weight_i \cdot input_i) + bias$$

FCNN models for trace analysis

04/07/2024

FCNN models for trace analysis

04/07/2024

04/07/2024

FCNN models for trace analysis

04/07/2024

Regression vs. classification model

Hyperparameters

- Activation function
- Batch size
- Epochs
- Learning rate
- Loss function
- Number of hidden layers
- Number of neurons per layer

Parameters

Weights and biases

$$Y = \sum_{i} (weight_i \cdot input_i) + bias$$

Fully Connected Neural Networks (FCNN)

Taken from: https://math.stackexchange.com/q/2048722

Regression vs. classification model

Hyperparameters

- Activation function
- Batch size
- Epochs
- Learning rate
- Loss function
- Number of hidden layers
- Number of neurons per layer

Parameters

Regression vs. classification model

Hyperparameters

- Activation function
- Batch size
- Epochs
- Learning rate
- Loss function

Number of hidd

Number of neur

М-1 N-1 С-1 $Y_{i,j,k} = \sum \sum \sum \sum (X_{i+m,j+n,c} \cdot W_{m,n,c,k}) + bias_k$ m=0 n=0 c=0

Parameters

Weights and biases

$$Y = \sum_{i} (weight_i \cdot input_i) + bias$$

04/07/2024

Regression vs. classification model

Hyperparameters

- Activation function
- Batch size
- Epochs
- Learning rate
- Loss function

Number of hidd

Number of neur

М-1 N-1 С-1 $Y_{i,j,k} = \sum \sum \sum (X_{i+m,j+n,c} \cdot W_{m,n,c,k}) + bias_k$ m=0 n=0 c=0

Parameters

Weights and biases

$$Y = \sum_{i} (weight_i \cdot input_i) + bias$$

04/07/2024

NN

1D-CNN

Parameters

Weights and biases

$$Y_{i,j,k} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \sum_{c=0}^{C-1} (X_{i+m,j+n,c} \cdot W_{m,n,c,k}) + bias_k$$

Kernel size vs. filters

Weights and biases

$$Y_{i,j,k} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \sum_{c=0}^{C-1} (X_{i+m,j+n,c} \cdot W_{m,n,c,k}) + bias_k$$

 S_{i-1}

 S_i

 S_{i+1}

Kernel size vs. filters

- Kernel size $K_{(n,m)}$
- Number of filters

Weights and biases

$$Y_{i,j,k} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \sum_{c=0}^{C-1} (X_{i+m,j+n,c} \cdot W_{m,n,c,k}) + bias_k$$

Kernel size vs. filters

- Kernel size $K_{(n,m)}$
- Number of filters

04/07/2024

Weights and biases

$$Y_{i,j,k} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \sum_{c=0}^{C-1} (X_{i+m,j+n,c} \cdot W_{m,n,c,k}) + bias_k$$

Kernel size vs. filters

- Kernel size $K_{(n,m)}$
- Number of filters

04/07/2024

Weights and biases

$$Y_{i,j,k} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \sum_{c=0}^{C-1} (X_{i+m,j+n,c} \cdot W_{m,n,c,k}) + bias_k$$

Kernel size vs. filters

- Kernel size $K_{(n,m)}$
- Number of filters

04/07/2024

CNN 1D models for trace analysis

04/07/2024

CNN 1D models for trace analysis

04/07/2024

04/07/2024

Short term

- Converge for a more robust NN model for trace analysis
- Implement the model for dFGIC adapting the hyperparameters
- Detailed evaluation of computational costs
 - Prediction time
 - Number and complexity of operations ...
- ν -Ball2 finish calibration and get resolutions/efficiencies

Long term

- Develop new AI algorithms for fission trigger based on ν -Ball2 response function
- Evaluate the correlation between fission observables such as energy and multiplicity of neutrons and gammas for fission recognition

Short term

- Converge for a more robust NN model for trace analysis
- Implement the model for dFGIC adapting the hyperparameters
- Detailed evaluation of computational costs
 - Prediction time
 - Number and complexity of operations ...
- ν -Ball2 finish calibration and get resolutions/efficiencies

Long term

- Develop new AI algorithms for fission trigger based on ν -Ball2 response function
- Evaluate the correlation between fission observables such as energy and multiplicity of neutrons and gammas for fission recognition

