N-SI-134 and N-SI-121

Scientific Workshop on ν -Ball2

Krzysztof Miernik

July 3-5, 2024

- 9.05.2022 16.05.2022
- 10×phase-I-Ge + 24×Clover detectors
- 6×LaBr₃ (ALTO) + 6×LaBr₃ (Madrid) + 2×LaBr₃ (Warsaw) detectors

- 9.05.2022 16.05.2022
- 10×phase-I-Ge + 24×Clover detectors
- 6×LaBr₃ (ALTO) + 6×LaBr₃ (Madrid) + 2×LaBr₃ (Warsaw) detectors
- ¹⁸O beam (111 MeV) on thick ¹⁹⁷Au target
- Compound nucleus: ${}^{18}\text{O} + {}^{197}\text{Au} \rightarrow {}^{215}\text{Fr}$

- 9.05.2022 16.05.2022
- 10×phase-I-Ge + 24×Clover detectors
- 6×LaBr₃ (ALTO) + 6×LaBr₃ (Madrid) + 2×LaBr₃ (Warsaw) detectors
- ¹⁸O beam (111 MeV) on thick ¹⁹⁷Au target
- Compound nucleus: $^{18}\mathrm{O} + \,^{197}\mathrm{Au} \rightarrow \,^{215}\!\mathrm{Fr}$
- Main reaction channels

- 9.05.2022 16.05.2022
- 10×phase-I-Ge + 24×Clover detectors
- 6×LaBr₃ (ALTO) + 6×LaBr₃ (Madrid) + 2×LaBr₃ (Warsaw) detectors
- ¹⁸O beam (111 MeV) on thick ¹⁹⁷Au target
- Compound nucleus: $^{18}\mathrm{O} + \,^{197}\mathrm{Au} \rightarrow \,^{215}\!\mathrm{Fr}$
- · Main reaction channels

[•] Fission $E^* = 61.0 \pm 6.2 \text{ MeV}$

- 9.05.2022 16.05.2022
- 10×phase-I-Ge + 24×Clover detectors
- 6×LaBr₃ (ALTO) + 6×LaBr₃ (Madrid) + 2×LaBr₃ (Warsaw) detectors
- ¹⁸O beam (111 MeV) on thick ¹⁹⁷Au target
- Compound nucleus: ${}^{18}\text{O} + {}^{197}\text{Au} \rightarrow {}^{215}\text{Fr}$
- Main reaction channels

- Fission $E^* = 61.0 \pm 6.2 \text{ MeV}$
- K. M. et al., PRC 108 (2023) "Fission of 215 Fr studied with γ spectroscopic methods"

• Self-consisted results, independent light/heavy fragment detection

- Self-consisted results, independent light/heavy fragment detection
- Surprising asymmetric component (~ 12%)

- Self-consisted results, independent light/heavy fragment detection
- Surprising asymmetric component (~ 12%)
- Asymmetric peaks in the location predicted by micro-macroscopic models

- Self-consisted results, independent light/heavy fragment detection
- Surprising asymmetric component (~ 12%)
- Asymmetric peaks in the location predicted by micro-macroscopic models
- Heavy fragment Z ≈ 54 56 known in this region - but ^{206-212,217-218}Fr have only symmetric peak

- Self-consisted results, independent light/heavy fragment detection
- Surprising asymmetric component (~ 12%)
- Asymmetric peaks in the location predicted by micro-macroscopic models
- Heavy fragment Z ≈ 54 56 known in this region - but ^{206-212,217-218}Fr have only symmetric peak
- Unknown role of multi-chance fission, angular momentum or microscopic structure influence

N-SI-134

N-SI-134 experiment

- 2.05.2023 9.05.2023 \rightarrow 35 TB raw data
- 24×Clover detectors
- PARIS, Warsaw DSSD, 1×LaBr₃

N-SI-134 experiment

- 2.05.2023 9.05.2023 \rightarrow 35 TB raw data
- 24×Clover detectors
- PARIS, Warsaw DSSD, 1×LaBr₃
- ¹²C beam (87.5 MeV) on thick ¹⁸²W target
- Target prepared by group at Faculty of Chemistry Univ. of Warsaw
- Compound nucleus: $^{12}\mathrm{C} + ~^{182}\mathrm{W} \rightarrow ~^{194}\mathrm{Hg}$
- A very stable beam of about 3 enA, limited by Clover counting rate

N-SI-134 experiment

- 2.05.2023 9.05.2023 → 35 TB raw data
- 24×Clover detectors
- PARIS, Warsaw DSSD, 1×LaBr₃
- ¹²C beam (87.5 MeV) on thick ¹⁸²W target
- Target prepared by group at Faculty of Chemistry Univ. of Warsaw
- Compound nucleus: $^{12}\mathrm{C} + ~^{182}\mathrm{W} \rightarrow ~^{194}\mathrm{Hg}$
- A very stable beam of about 3 enA, limited by Clover counting rate
- Main reaction channels

Fission E^{*} = 60.9 ± 3.8 MeV

Goals

• Fission of some of the isotopes of mercury was studied before (^{178,180,182,183,190,198}Hg)

Goals

- Fission of some of the isotopes of mercury was studied before (^{178,180,182,183,190,198}Hg)
- Between ¹⁹⁸Hg and ¹⁹⁰Hg fragment distribution changes from symmetric to asymmetric, even at high excitation energies

¹⁹⁸Hg: M.G. Itkis et al., Yad. Fiz. 52 (1990) (p, f) ¹⁹⁰Hg: K. Nishio et al., Phys. Lett. B 748 (2015) (³⁶Ar + ¹⁵⁴Sm)

Goals

- Fission of some of the isotopes of mercury was studied before (^{178,180,182,183,190,198}Hg)
- Between ¹⁹⁸Hg and ¹⁹⁰Hg fragment distribution changes from symmetric to asymmetric, even at high excitation energies

 198 Hg: M.G. Itkis et al., Yad. Fiz. 52 (1990) (p, f) 190 Hg: K. Nishio et al., Phys. Lett. B 748 (2015) (36 Ar + 154 Sm) 90 Models do not agree in predictions for 194 Hg

• Irradiated target was transported to Warsaw after 171 days from the end of the experiment

Irradiated target

- Irradiated target was transported to Warsaw after 171 days from the end of the experiment
- For 146 days we have measured the radiation in a low-background shielding with an HPGe detector

Decay data examples

 Lead+copper shielding reduces background by 1-2 orders of magnitude (depending on energy)

Long-lived isotopes

• By means of γ -ray energy and half-life we have identified 12 long-lived isotopes, including 7 originating from fission

Energy (keV)	Half-life (d)	Source	Origin
84.6, 162.1, 107.9,			
109.9, 245.5, 291.1	66(2)	¹⁸³ Re (70.0 d)	¹⁸² W(¹² C, ¹¹ B)
792.0, 903.3	50(5)	¹⁸⁴ Re (38.0 d)	¹⁸² W(¹² C, ¹⁰ B)
117.9, 125.2, 592.2,			
645.9, 717.4, 874.8, 880.3	90(2)	¹⁸⁵ Re (93.6 d)	¹⁸² W(¹² C, ⁹ B)
96.8, 264.5,			
279.3, 303.9, 400.4	120(1)	⁷⁵ Se (119.8 d)	⁶⁵ Cu(¹² C, pn)
1115.3	286(3)	⁶⁵ Zn (244.3 d)	⁶⁵ Cu(¹² C, ¹² B)
724.1, 756.8	61(2)	⁹⁵ Zr (64.032 d)	FF
765.6	69(1)	⁹⁵ Nb (30.0 d)	FF + ⁹⁵ Zr decay
497.1	40(1)	¹⁰³ Ru (39.2 d)	FF
520.4	-	⁸⁵ Kr (86.2 d)	FF
1836.1	-	⁸⁸ Y (106.6 d)	FF
621.9	-	¹⁰⁶ Rh (30.1 s)	FF 106 Ru (371.8 d) $ ightarrow$
602.7	-	¹²⁴ Sb (60.2 d)	FF

- After the beam was stopped the acquisition was running for about 8 hours
- Activity in the range of minutes to hours can be analyzed using that data

- After the beam was stopped the acquisition was running for about 8 hours
- Activity in the range of minutes to hours can be analyzed using that data

• After 7 hours the *ν*-ball was opened!

Line 142 keV appears in the decay of ¹⁹⁰Hg (20 min) and ¹⁸⁹Pt (10.89 h).

After identification, the on-line data can be combined to access detailed decay information (delayed coincidences).

Bands in ¹⁹⁰Hg

- One of the main reaction channels ¹⁸²W (¹²C, 4nγ),
- High-spin structure of this nucleus was studied before in similar reactions $^{160}\text{Gd} \left({}^{34}\text{S}, 4n\gamma \right)$, $^{170}\text{Er} \left({}^{24}\text{Mg}, 4n\gamma \right)$, $^{181}\text{Ta} \left({}^{14}\text{N}, 5n\gamma \right)$

$\gamma-\gamma-\gamma$ tests with ¹⁹⁰Hg

• $\gamma - \gamma$ gate on 416-625 keV transitions in ¹⁹⁰Hg

$\gamma - \gamma - \gamma$ tests with ¹⁹⁰Hg

• $\gamma - \gamma$ gate on 416-625 keV transitions in ¹⁹⁰Hg

• Prompt gate (±15 ns) and coincidence window (20 ns) was too restrictive!

$$\frac{N_{\gamma\gamma\gamma}}{N_{\gamma\gamma}} = 0.6$$

• With prompt gate (±20 ns) and coincidence window (40 ns)

$$\frac{N_{\gamma\gamma\gamma}}{N_{\gamma\gamma}} = 1.0$$

• A new scan of the whole dataset is ongoing!

$\gamma - \gamma$ analysis

Isotope yields can be determined by finding all possible cascades leading to the ground state or by coincidence of the lowest transitions between the fission partners.

Prompt neutrons

Experimental number of emitted neutrons based on partners detection (n
 = 4.3(4))

Prompt neutrons

Experimental number of emitted neutrons based on partners detection (n
 = 4.3(4))

• Using yield of identified isotopes (internal cascades only, 26 isotopes): $N/Z = 1.366 \Rightarrow 4.7 \text{ n}$

Charge yield (preliminary)

Charge yield distribution shows asymmetric component (flat-top?)

- GEF model combined with fission E^{*} distribution (HIVAP) and J distribution (PACE4):
 - Symmetric fission
 - Prompt neutron emission $N/Z = 1.336 \Rightarrow 7 \text{ n}$
 - Multi-chance fission (35%-20%-19%-8%)

Decay calculations

- Time evolution of fission fragment distribution was calculated (including β-decays and β-delayed neutron emission).
- Results can be compared with the experimental medium- and long-lived activity measurements.
- This method can give independent confirmation of the method based on the prompt γ radiation (is immune to the issue of the g.s. feeding).

Decay data

 Activity of fragments after 171 days, starting from the GEF model results, can be compared with the experimental data (both normalized to the activity of ⁹⁵Zr)

- GEF underpredicts asymmetric fragment (¹⁰³₄₄Ru) compared to the symmetric (⁹⁵₄₀Zr)
- β⁻ isotopes are generally in agreement, but overpredicted number of prompt neutrons results in disagreement for β⁺-decaying isotopes.

N-SI-134 - Summary

- Both experiments were focused on fission studies with γ -spectroscopy methods
- $\gamma \gamma (\gamma)$ coincidences were tested with high statistics fusion-evaporation data.
- Too restrictive timing conditions reduced significantly coincidence data (new scan is ongoing).
- First results from gamma spectroscopy of fission fragment analysis indicate an important influence of asymmetric fission components.
- Results do not agree with the GEF model (higher number of prompt neutrons, only symmetric mode)
- The role of multi-chance fission, angular momentum or microscopic structure influence is again unclear
- Analysis is not finished but shows promising results!
- Another experiment was performed at Warsaw Cyclotron in March 2024 $(^{32}S+^{112}Sn \rightarrow ^{144}Dy)$

N-SI-134 - Summary

- Both experiments were focused on fission studies with γ -spectroscopy methods
- $\gamma \gamma (\gamma)$ coincidences were tested with high statistics fusion-evaporation data.
- Too restrictive timing conditions reduced significantly coincidence data (new scan is ongoing).
- First results from gamma spectroscopy of fission fragment analysis indicate an important influence of asymmetric fission components.
- Results do not agree with the GEF model (higher number of prompt neutrons, only symmetric mode)
- The role of multi-chance fission, angular momentum or microscopic structure influence is again unclear
- Analysis is not finished but shows promising results!
- Another experiment was performed at Warsaw Cyclotron in March 2024 $(^{32}S+^{112}Sn \rightarrow ^{144}Dy)$

Participants of N-SI-121 and N-SI-134

A. Algora, J.A. Briz, G. Charles, S. Czajkowski, P. Czyż, N. Dzysiuk, A. Fijałkowska, L.M. Fraile, P. Garczyński, K. Hauschild, C. Hiver, A. Korgul, T. Kurtukian-Nieto, M. Lebois, M. Llanos, A. Lopez-Martens, K.M. Deby Treasa, J. Ljungvall, I. Matea, L. Mathiew, J. Mielczarek, J.R. Murias, G. Pasqualato, W. Poklepa, H.A. Rösch-Kabadayi, A. Skruch, K. Solak, K. Szlezak, K. Stoyachev, I. Tsekhanovich, J.N. Wilson, S. Zajda