Lifetime measurements of neutron- rich Xe isotopes applying the fast-timing technique

TECHNISCHE UNIVERSITÄT DARMSTADT

Topics:

- Motivation
- Theoretical background and experimental setup
- Data calibration
- Contaminations
- Lifetime analysis and reduced transition strengths

¹⁴⁰Ba

¹³⁹Cs

¹³⁸Xe

137

β-

¹³⁶Te

B-

¹⁴¹Ba

140Cs

¹³⁹Xe

138

β-

¹³⁷Te

139

β-

¹³⁸Te

140

β-

¹³⁹Te

141

β-

¹⁴⁰Te

Motivation

- Electromagnetic properties like B(E2) values \rightarrow probing into the degree of collectivity of nuclear excitations.
- Disagreement between fast timing and Coulomb excitation in ¹⁴²Xe:
 - > Coulex: τ_{4+} = 37(9) ps calculated from B(E2) value [1]
 - > Fast-Timing: $\tau_{4+} = 54(10) \text{ ps} [2]$
- Confirm τ_{4+} in ¹⁴²Xe with different • target in ²³⁸U(n,f) than in Ref. [2] (with $^{235}U(n,f)) \rightarrow different background$

[1] C. Henrich et al. PhD thesis (2021), to be published [2] S. Ilieva et al., PRC 94, 034302 (2016).

https://people.physics.anu.edu.au/~ecs103/chart/, online 02.03.2024

¹⁴²Ba ¹⁴³Ba ¹⁴⁴Ba ¹⁴⁷Ba ¹⁴⁹B ¹⁴⁶Ba ¹⁴⁵Ba ¹⁴⁸Ba 145**Cs** 146Cs 148C 141Cs ¹⁴³Cs 147Cs ¹⁴²Cs ¹⁴⁴Cs ¹⁴⁰Xe ¹⁴¹Xe ¹⁴³Xe ¹⁴⁶Xe ¹⁴²Xe ¹⁴⁴Xe ¹⁴⁵Xe 147X

142

B-

¹⁴¹**Te**

143

142**Te**

Primary Decay Mode

Long-lived Estimated Unknown

Experimental setup and theoretical basics

v-Ball2 campaign 2022 @Alto (IJCLAB,Orsay)

<u>Goal of the campaign:</u> γ-ray spectroscopy of fission fragments produced by the ²³⁸U(n,f) reaction

v-Ball2 spectrometer:

4 rings
20 LaBr₃(Ce) FATIMA detectors
24 HPGe Clover detectors (24*4 HPGe detectors).

v-Ball2 setup LICORNE

²³⁸U splinter instead of disks

•

private conversation Pulsed Li-beam \rightarrow pulsed neutron beam from inverse kinematic ⁷Li(p,n) reaction.

Monoenergetic neutrons (~ 1.7MeV)

Fast timing technique

Time-difference distribution D(t) is a convolution between Prompt response P(t) and Decay rate N(t)

$$D(t) = n\lambda \int_{-\infty}^{t} P(t' - t_0) e^{-\lambda(t - t')}$$

with $\lambda = 1/\tau$, $C^D = \langle t \rangle = \frac{\int t D(t) dt}{\int D(t) dt}$

$$\Rightarrow C^{D}(E_{\text{feeder}}, E_{\text{decay}}) = C^{P}(E_{\text{feeder}}, E_{\text{decay}}) + \tau$$

Data calibration

Event building of data

DAQ takes triggerless data (~ 41TB of raw data)

- Neutron pulse
 - With LaBr₃(Ce)-LaBr₃(Ce)-HPGe
 - With HPGe-HPGe

Reconvert event built data (~ 1.1 TB)

Increase in performance and correction of data

- LaBr₃(Ce): Include gain shift calibration
- LaBr₃(Ce): Include time difference offsets TD (time alignment)
- HPGe: Include Compton suppression
- HPGe: Include Addback correction
- Branch: Add branch time relative to pulse
- Branch: Add branch detector type
- Throw out: Bad detector channels / pileup subevents

Supression of Contamination

Contaminations

- LaBr₃(Ce) gate on $4^+ \rightarrow 2^+$ transition (404 keV) of ¹⁴²Xe
- HPGe gate on $6^+ \rightarrow 4^+$ (490 keV) or $8^+ \rightarrow 6^+$ (551 keV) transition of ¹⁴²Xe
 - \rightarrow Energy time matrix of LaBr₃(Ce) events

Contamination inelastic neutron scattering in $LaBr_{3}(Ce)$

- HPGe gate on $4^+ \rightarrow 2^+$ transition (404 keV) of ¹⁴²Xe
- LaBr₃(Ce) gate on $2^+ \rightarrow 0^+$ transition (287 keV) of ${}^{142}Xe \rightarrow$ events rel. to pulsetime

Contamination inelastic neutron scattering in $LaBr_{3}(Ce)$

- LaBr₃(Ce) gate on $4^+ \rightarrow 2^+$ transition (404 keV) of ¹⁴²Xe
- HPGe gate on $6^+ \rightarrow 4^+$ (490 keV) or $8^+ \rightarrow 6^+$ (551 keV) transition of ¹⁴²Xe
- Time gate of 35-46ns

\rightarrow LaBr₃(Ce) spectrum with suppressed neutron lines

TECHNISCHE UNIVERSITÄT

DARMSTADT

Lithium line contamination (time resolution)

- LaBr₃(Ce) gate (\pm 2keV) around ⁷Li peak (477 keV) \rightarrow Events rel. to pulsetime
- HPGe gate (± 2keV) on $6^+ \rightarrow 4^+$ transition (582 keV) of ¹⁴⁰Xe
- LaBr₃(\check{Ce}) gate (± 7keV) on 2⁺ \rightarrow 0⁺ transition (376 keV) of ¹⁴⁰Xe \rightarrow Events rel. to pulsetime

Lithium line contamination (detector gate)

 \rightarrow LaBr₃(Ce) spectra of ring 1 and ring 4 (timegate 25-37 ns, Singles)

Analysis of lifetimes and reduced transition strengths

 ^{140}Xe determination of $\tau_{_{2+}}$

TECHNISCHE UNIVERSITÄT DARMSTADT

LaBr₃(Ce) gates (± 7 keV) for feeder (457 keV) and decay (376 keV)

HPGe gates (± 2 keV) for $8^+ \rightarrow 6^+$ and $6^+ \rightarrow 4^+$ transitions of ¹⁴⁰Xe

No HPGe gates on fission partners 94,95,96 Sr (contamination $13/2^{-} \rightarrow 9/2^{-}$ of 141 Xe at 370 keV)

Time gate between 35-50 ns

⁷Li contamination in feeder \rightarrow only Ring 4 statistics for feeder

Multiplicity	3	4	5	6	7
P/B feeder peak	0.77	0.73	0.65	0.57	statistics to low
P/B decay peak	1.21	1.14	0.90	0.82	statistics to low

Best P/B ratio at multiplicity value of ≥ 3

¹⁴⁰Xe determination of τ_{2+} (background centroid of feeder peak)

Transition	Centroid exp.	PRC value	Peak to background	Background Centroid	t _{cor}
Feeder		-13.6 (40)	0.77 (3)	-6.0 (157)	77.8 (221)
	55.8 (89)				
Decay		-4.6(40)	1.21(3)	17.9 (83)	32.3 (103)

[1] J.M. Régis et al. NIM Phys. Res. A, 897, p. 38 (2018)

04.06.2024 | Milan | IKP TU Darmstadt | AG Kröll | Andi Messingschlager

¹⁴⁰Xe determination of τ_{2+} (background centroid of decay peak)

Transition	Centroid exp.	PRC value	Peak to background	Background Centroid	t _{cor}
Feeder		-13.6 (40)	0.77 (3)	-6.0 (157)	77.8 (221)
	55.8 (89)				
Decay		-4.6(40)	1.21(3)	17.9 (83)	32.3 (103)

[1] J.M. Régis et al. NIM Phys. Res. A, 897, p. 38 (2018)

04.06.2024 | Milan | IKP TU Darmstadt | AG Kröll | Andi Messingschlager

¹⁴⁰Xe lifetimes

Lifetime ¹⁴⁰ Xe	$ au_{2^+}$ in ps	$ au_{4^+}$ in ps	$ au_{6^+}$ in ps
A. Lindroth et al. [1]	102(29)	20(33)	< 12
S. Ilieva et al. [2]	102(7)	17(5)	
This work	106(17)	24(16)	≤ 27

• Lifetime τ_{6+} of this work is 14(13) ps

[1] A. Lindroth et al. Phys. Rev. Lett. 82, 4783 (1991)[2] S. Ilieva et al., PRC 94, 034302 (2016).

Lifetime ¹⁴² Xe	$ au_{2^+}$ in ps	$ au_{4^+}$ in ps	$ au_{6^+}$ in ps
S. Ilieva et al. [1]	249(23)	54(10)	
C. Henrich et al. [2]		37(9)	11(3)
This work	247(28)	123(35)	≤ 46

⁷Li contamination:

- → Higher lifetime expected for τ_{4+} (contamination of feeder peak)
- → Calculated value of τ_{6+} is 9(37)ps

[1] S. Ilieva et al., PRC 94, 034302 (2016).[2] C. Henrich et al. PhD thesis (2021), to be published

Getting around the Li contamination:

- → Feeder (551 keV) $8^+ \rightarrow 6^+$ in ¹⁴²Xe
- → Decay (404 keV) $4^+ \rightarrow 2^+$ in ¹⁴²Xe

C. Henrich et al. PhD thesis (2021), to be published

¹⁴²Xe determination of τ_{4+} (background centroid of feeder peak)

Transition	Centroid exp.	PRC value	Peak to background	Background Centroid	t_{cor}
Feeder		-21.8 (40)	0.32 (1)	16.3 (68)	61.5 (287)
	35.9 (61)				
Decay		-7.9 (40)	0.27 (1)	25.3 (61)	39.4 (323)

^[1] J.M. Régis et al. NIM Phys. Res. A, 897, p. 38 (2018)

¹⁴²Xe determination of τ_{4+} (background centroid of decay peak)

Transition	Centroid exp.	PRC value	Peak to background	Background Centroid	t_{cor}
Feeder		-21.8 (40)	0.32 (1)	16.3 (68)	61.5 (287)
	35.9 (61)				
Decay		-7.9 (40)	0.27 (1)	25.3 (61)	39.4 (323)

[1] J.M. Régis et al. NIM Phys. Res. A, 897, p. 38 (2018)

$^{\rm 142} Xe$ determination of background corrected $\tau_{\rm _{4+}}$

Lifetime ¹⁴² Xe	$ au_{2^+}$ in ps	$ au_{4^+}$ in ps	$ au_{6^+}$ in ps
S. Ilieva et al. [1]	249(23)	54(10)	
C. Henrich et al. [2]		37(9)	11(3)
This work	247(28)	123(35)	≤ 46
		61(23)	

[1] S. Ilieva et al., PRC 94, 034302 (2016).[2] C. Henrich et al. PhD thesis (2021), to be published

Reduced transition strengths of ¹⁴⁰Xe

Calculation of B(E2) values:

$$B(E2; I \to I - 2) = \frac{1}{C(E2) \cdot E^5 \cdot \tau \cdot (1 + f_{ic})}$$

with
$$C(E2) = 1.23 \cdot 10^9 (s \cdot MeV^5 \cdot e^2 \cdot fm^4)^{-1}$$

- Experimental results agree with this work
- Trend predicted in ILSSM looks promising overestimate the B(E2) values for I = 2 by 17%

[1] S. Ilieva et al. Phys. Rev. C 94,034302 (2016)
[2] A. Lindroth et al. Phys. Rev. Lett. 82, 4783 (1991)
[3] D. Bianco et al. Phys. Rev. C 88,024303 (2013)

04.06.2024 | Milan | IKP TU Darmstadt | AG Kröll | Andi Messingschlager

27

• Trend of $D(\Gamma_2)$ voluce are dia

Reduced transition strengths of ¹⁴²Xe

- Trend of B(E2) values predicted in SCCM looks promising.
- Same goes for pediction in LSSM which is slightly to low at I = 2⁺
- Investigation of τ₂₊ confirms normalisation in Ref. [2]
- Theoretical models agree with Ref. [2] for I = 4⁺.
- Disagreement between fast timing and Coulomb excitation. Uncertainty ranges overlap.

[1] S. Ilieva et al. Phys. Rev. C 94,034302 (2016)

[2] C. Henrich et al. PhD thesis (2021), to be published

[3] H. Naidia in private comunication (2024)

[4] R. Rodriguez et al. J. Phys. G: Nucl. Part. Phys. 49,015101 (2022)

THE END

THANK YOU FOR LISTENING TO MY PROJECT And thank you for the support by:

- M. von Tresckow
- T. Kröll
- BMBF under Verbundprojekt 05P2021 (ErUM-FSP T07) grant 05P21RDFN1
- ARIEL
- Nuball2 collaboration