Higgs couplings in the $Z(\ell\ell/\nu\nu)H$ channel at $\sqrt{s}=240$ GeV at the FCC experiment

_ x ____

Biennale APC

Alexis Maloizel

Supervisor:

Giovanni Marchiori

Studying the Higgs couplings

In the Standard Model (SM), fermions inherit their mass from their coupling

with the H

Our study aims at estimating the best precision with which we could measure these couplings

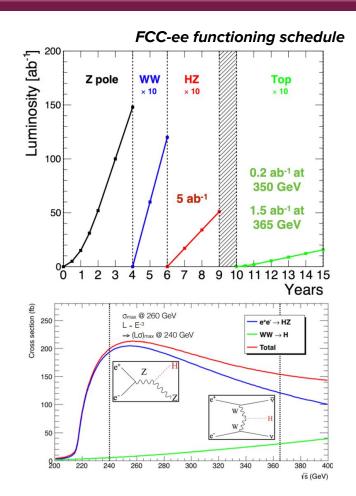
$$m_f = v \frac{y_f}{\sqrt{2}}$$

Any deviation from the expected value would indicate possible beyond SM processes

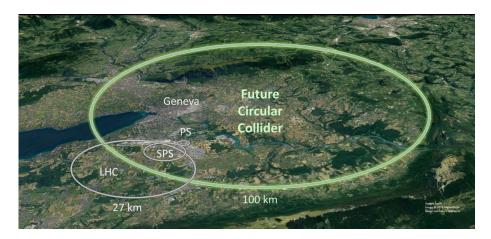
Heavy particles (W, Z, t)

Massless particles (photons, gluons)

Lighter, faste

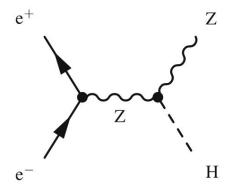


Light particles (leptons, quarks)



Higgs itself

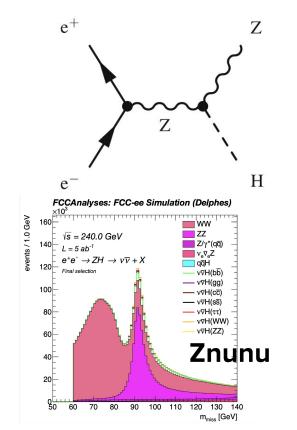
The FCC experiment - FCC-ee


- **FCC** (Future Circular Collider)
 - ~90km circular collider project
 - Two periods on functioning: **FCC-ee** & FCC-hh

- Great improvement on EW studies wrt LEP
- Higgs factory
- Great prospects for new physics (hh)

(ZH) Higgstrahlung process - Recoil Mass

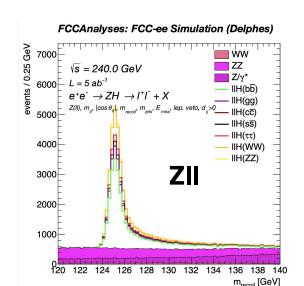
• $e^+ + e^- \to Z + H$

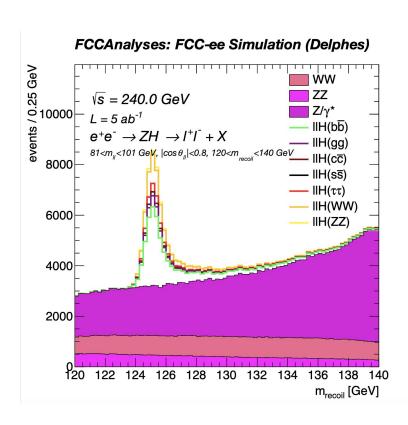

Recoil Mass:

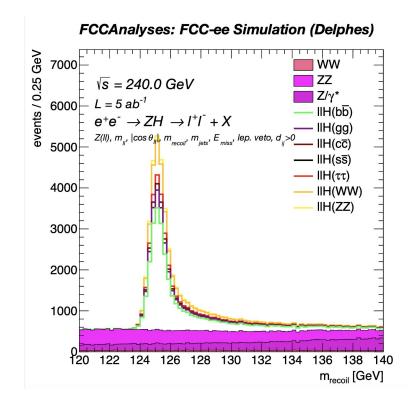
$$(E_{ll}+E_H,\overrightarrow{p_{ll}}+\overrightarrow{p_H})=\left(\sqrt{s},\overrightarrow{0}\right)\Rightarrow M_{recoil}^2=s+m_Z^2-2E_{ll}\sqrt{s}$$

- Allows model independent measurement of the total Higgs Cross-section
- Unusable in the LHC due to the composite nature of protons

(ZH) Higgstrahlung process - ZII & Znunu


• $e^+ + e^- \to Z + H$


Recoil Mass:


$$(E_{ll}+E_H,\overrightarrow{p_{ll}}+\overrightarrow{p_H})=\left(\sqrt{s},\overrightarrow{0}\right)\Rightarrow M_{recoil}^2=s+m_Z^2-2E_{ll}\sqrt{s}$$

- Allows model independent measurement of the total Higgs Cross-section
- Unusable in the LHC due to the composite nature of protons

Events selection - ZII example

Events categorization

We train a Neural Network to categorize the events in one of the signal channels :

$$H \rightarrow bb/cc/gg/ss/WW/ZZ/\tau\tau$$
 (uu/dd/cu/bd/bs/sd)

We perform slight adjustments on categorization and fit simultaneously all categories to count the number of signal events

ZII+Znunu	bb	СС	99	SS	ww	ZZ	ττ
Precision %	0.32	2.04	1.02	130	1.48	9.52	3.72

Very promising results wrt HL-LHC prediction and other future experiments as CEPC

Parralel and future studies

Parallel:

- R&D on ALLEGRO's electromagnetic calorimeter
- Working on the upgrade of ATLAS' inner detector tracker

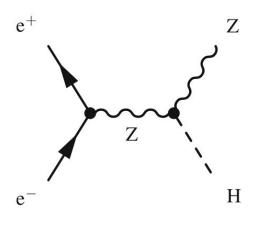
Future :

- Higgs coupling analysis at √s=365 GeV
- Higgs self-coupling (HH) in ATLAS in the bbyy channel

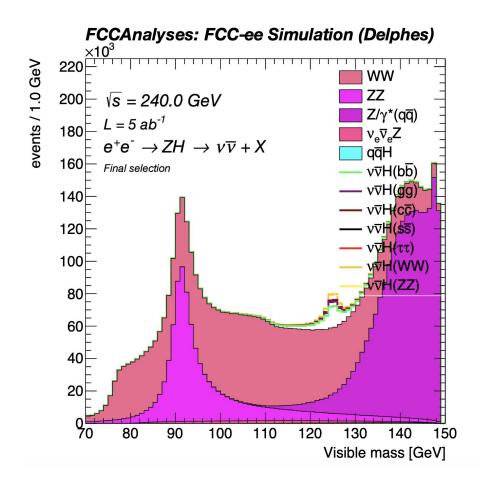
BACKUP

Without looking at the Higgs decay:

$$\sigma(ee \to ZH) \Rightarrow g_{HZZ}^2$$


Reconstructing H→ZZ:

$$\sigma(ee \to ZH)BR(H \to ZZ) \propto \frac{g_{HZZ}^4}{\Gamma} \Rightarrow \Gamma$$


Reconstructing other Higgs Boson decays H→XX:

$$\sigma(ee \to ZH)BR(H \to XX) \propto \frac{g_{HZZ}^2 g_{HXX}^2}{\Gamma} \Rightarrow g_{HXX}^2$$

Looking at "invisible" Higgs decays (large missing energy) ⇒ BR(H→invisible)

Znunu visible mass for the 2D fit

