Welcome at the core-facility C4Pi

- → Expertise & missions
- → Team, infrastructure & network
- → Scientific drivers
- → Recent achievements
- \rightarrow Focus on design / μ -technologies

Monolithic Active Pixel Sensor in CMOS technology & detection modules

the second support to be a support of the second se

Expertise

Requests from scientific groups

Expertise	<i>lip</i> el	
Sensitive layer	Colle	ction node
In-pixel analogue fron	t-end	Bias monitoring
Digital conve	rsion	Digitisation
Digital front-end & ba	ck-end	Read-out architecture
egister Transfer Level	Top d	escription
Integration		Synthesis, Layout
Design Rule Checking	Verifi	cation
IP, component creation		Fabrication
Test systems prototyping	DAQ, Contro	ol, data transfert systems design
Board, f	ex, detection module	design
Hardware / Firmware / Softwar	e design	Test setup intergation
IP validation Fu	nctional tests	Physical characterisation
Laboratory tests	Beam tests	Production tests
Board/flex component population	1	tool design
ASIC/wafer probe te	esting	Module validation
Manual/automatic assembly	Bonding	2D/3D Metrology

Welcome at IPHC-C4Pi

• PhD

IL COMPANY A

and the state of the second se

J. Soudier – Doc3 C. Lemoine (CERN) – Doc2 H. Shamas – Doc1 E. Sacchetti – Doc

Masters

C. Antony, G. Morel, N. Vergara – M2 microelectronics N. Favriou – M2 physics

Bachelors

M. Grau – L2 electronics

• Apprentices

B. Faechtig – LPro1 T.Jacques – BUT3

Team

Infrastructure

K. K. TOWN

the state of the second s

Network

Scientific drivers & commitments

- CE-65 & SPARC programs for vertex (VTX) and tracker
 - Vertex sensor to renew reference planes of beam telescope
 - Tracker sensor in synergy with ALICE3
- MIMOSIS & CE-18 programs for vertex (MVD)

- Belle II $\rightarrow \sim 2029$
- OBELIX program for vertex upgrade(VTX)

 $\begin{array}{c} \text{ALICE} \\ \rightarrow 2027 \\ \rightarrow 2033 \end{array}$

- MOSS/MOSAIX program for new vertex ITS3
- Common R&D CE-65 for tracker ALICE3

Sensor comparison

Scientific drivers & commitments

• Monolithic-Imager

multi-purpose with analogue output: dosimetry/spectroscopy back-side illumination for sensitivity to very-low penetrating quanta

• TIIMM / TIXX

Ion tracking & identification (through ΔE) Signal digitized (ToT) with 10⁴ dynamic

• IMIC

ß imaging in awake rodents brain ALPIDE made a needle

• MIMOSIS

- Various applications possible in spectroscopy

Recent achievements

MIMOSIS sensor

New TPSCo 65 nm proc.

FOOT module

and paper in success in successing diversion of the little of

Bended sensors

New beam telescope

Welcome at IPHC-C4Pi

Focus on micro-technology activities

- CMOS technologies
 - Maintaining access to processes costs resources \rightarrow limited nb of CMOS processes handled at C4Pi
 - C4Pi strategy: **mainstream processes** \rightarrow fabrication robustness guaranteed
- MIMOSA-1, 1999, AMS 600 nm
 - AMS 350 nm
 - **2004**-2011
 - MIMOSA-26
 - MIMOSA-28
 - XFAB 350 nm
 - ALPHABeast for DeSis
 2022

C4Pi proposal to ECFA-DRD7 for 180 nm contact-point (2024-27)

Roadmap on Tower technologies

	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
LHC	LS2	LS2 RUN3			LS3		RUN4			LS4		RUN 5			
65 mm	MLR1		ER1	EF	R2 E	R3? =>	ALICE-ITS	3				=> R	&D		
Resco 1	ER? => ALICE3 / LHCb-UT,MT / FCCee														
į l					MPR	2	MPR3	MP	R4 =>	R&D					
SuperKEKB	RUN	1	LS1		RU	N2		LS	2?	RU	N3				
OBELIX-1 OBELIX-2 => BelleII-VTX															
180 MI	MOSIS-1	Μ	IMOSIS-2	+2.1	MIMOS	IS-3 ? =>	> CBM-M	VD							
iome.	UARTPIC-1			QUARTF	PIC-2	QU	ARTPIC-3?	=> R&C)						
Other colliders FCC-Feasibility SIS-CBM EIC															

Internal technological R&D

Scientific applications → R&D @ C4Pi with general trend = maximise CMOS-MAPS potential

R&D = upstream advances (+ PhD / Master student)

• Within DRD7

Direct application: CBM-MVD

MIMOSIS sensor

- Match CBM vertex requirements & achieve step forward / Higgs-Factories
 combine position res. (~5µm) & low-power (<100 mW/cm²) & high hit-rate (>50 MHz/cm²)
- Specificity of CBM collisions: 100 kHz Au+Au @ 11 AGeV and 10GHz p+Au @ 30 AGeV => large hit-rate fluctuation & operation in vacuum

Full specs for MIMOSIS sensor

No safety factor

Position resolution	~5 µm
Time resolution / continuous r.o.	~5 µs
Power dissipation	<100 - 200 mW/cm
Hit rate (average/50 µs peak)	20/70 MHz/cm ²
Material budget / layer	0.05 % X ₀
Operation temp in vacuum	- 40°C to +30°C
Radiation* (non-ionizing)	~ 7x10 ¹³ n _{eq} /cm ²
Radiation* (ionizing)	~ 5 Mrad
Radiation gradient	100 %
Heavy lons-tolerance	10 Hz/mm ²

- MIMOSIS sensors
 - MIMOSIS-1 (2020)
 - MIMOSIS-2 (submitted 2022)
 - Final MIMOSIS-3

MIMOSIS-1

Parameter	Value
Technology	TowerJazz CIS 180 nm
Epitaxial layer	\sim 25 μ m thick, $> 1k\Omega\cdot$ cm
Sensor thickness	300 µm or 60 µm
Pixel size	$26.9\mu\text{m} imes30.2\mu\text{m}$
Pixel array	1024 $ imes$ 504 pixels
Sensitive area	\approx 4.2 cm ²
Array readout time	\approx 5 μ s
Power consumption	$<$ 100 mW/cm^2

Full digital on top design

C Direct application: Belle II-VTX

- OBELIX sensor
 - Dedicated sensor for the upgrade of the VTX
 - Based on TJ-MONOPIX-2 (Tower 180 nm)
 - C. Bespin VCI 2022 https://indi.to/5BR2P
 - Collaboration between
 - Bergamo, Bonn, Dortmund, Gottingen, KEK-Tsukuba, Marseille, Pavia, Strasbourg*, Valencia and Vienna
 - Specifications
 - Larger matrix / TJ-MONOPIX2: 896x464 pixels
 - Triggered @ 30 kHz with up to 10 µs delay
 - ✓ Maximum hit rate 120 MHz/cm2
 - Time binning 100 ns
 - ✓ Additional precision ~3ns @ low multiplicity (~10 MHz/cm²)
 - LDO regulator for voltage supply
 - Power budget 170-200 mW/cm²
 - Exploratory feature to input trigger
 - ✓ Fast ouput (~100 ns) with coarse granularity

The second secon Example of distributed design

The second

OBELIX design status

Analogue

- Matrix quasi-complete
 - Operating Std and HV flavours together: Hung working on duplicating biases
 - Pulse signal amplitude: new buffer from Kishishita to be integrated in layout soon
 - -Test columns (1 column per flavour): Pavia simulating to introduce new monitoring points
 - General monitoring: ADC by Jose moving well (could be in time) multiplexing by Hung well
- LDO
 - -Real person power issue => being worked on
- Simulation
 - Lot of work done by Roua
 - Need a dedicated meeting to "wrap-up"

Digital

- Quasi-complete since some time wrt code
 - -Still adaptation needed with
- Big think now is implementing the layout
 - Danwei's work
- Floorplan
 - Continuous effort by Kader
 - Will be the last part after the rest is done

Verification

- UVM (Luca):
 - -first step on registers achieved
 - -Top-funcitonality on-going
- Cocotb:
 - -Max has initial tests
 - -Possibly need manpower to extend them

21

E

3

Direct application: ALICE-ITS3

- MOSAIX sensor
 - Dedicated sensor for ITS3
 - Based on MOSS (TPSCo 65 nm)
 - developed with MLR1-ER1
 - Collaboration lead by CERN-ALICE

C side

direction)

MOSS sensor

and Reado

65 cm

under test

DRDs prospect for sensors in TPSCo 65 nm

• Already a lot known from MLR1+ER1 runs

- Techno performance with CE-65, APTS, DPTS
- Still completed this year (including tests at AR-TestBeam)
- Yield of stitched sensor MOSS
- Additional prototypes in ER2
 - APTS with pitch up to 50 μm
 - SPARC with asynchronous read-out
 - 1st version of MOSAIX

	ALICE ITS3	ALICE3 vertex	FCCee vertex	ALICE3 OT-ML	LHCb UT	FCCee tracker
Data taking in	2029	2035	>2040	2035	2035	>2040
Spatial res. (µm)	~5	2.5	3	10	pitch O(30)	10
Mat. budget (%X0)	0.05	0.1	0.15	1	0.3?	<15
Hit rate (MHz/cm²)	~10	100	50	0.06-1.7	160	<10
Time figure (ns)	1000	100 (RMS)	1000	100 (RMS)	O(1)	10 ² -10 ³
Power (mW/cm²)	20	70	20	20	100-300	50
Rad.hard. (kGy) (n _{eq} /cm²)	3 3x10 ¹²	3000 1x10 ¹⁶	20 5x10 ¹¹	2 - 50 ~6x10 ¹² - 2x10 ¹⁴	2400 3x10 ¹⁵	20 5x10 ¹¹

DRDs prospect for sensors in TPSCo 65 nm

Fine pitch

- Main goal = position resol. \leq 3 µm
- Other features:
 - Timing merit 1 to few 100 ns
 - Hit rate range 50-100 MHz/cm²
 - Power < 70 mW/cm²
 - NIEL tolerance $10^{14} n_{eq}/cm^2$ (?)
 - Size not critical (reticule OK)

• Realisation:

- Pitch 15-20 µm
- Binary output
- Read-out architecture to be decided
- Projects interested:
 - Future e+e- colliders (>> 2040)
 - ALICE-3 IRIS layers inside beam pipe (2033)
 - test-beam reference plane (2028)

<u>Tracking over large area</u>

- Main goal = power dissipation ~20 mW/cm²
- Other features:
 - -Timing merit 1 ns
 - Position resol. 10 μm
 - Hit rate & Radition tolerance => large range
- Realisation:
 - Pitch 25 to 30 µm
 - 50 μ m made from merging 4x 25 μ m pixels
 - Digitised output (3-6? Bits) like ToT or very small ADC
 - Optional: time resolution 10-100 ps with TDC outside matrix
 - Asynchronous read-out architecture
 - Should provide 25 ns tagging
- Project interested:
 - Future e+e- collider (>>2040)
 - ALICE-3 tracker (2033)
 - -LHCb upstream tracker (2033)
 - Fixed target experiments
 - Calorimeters

Focus on test & setup activities

Focus on integration activities

ALICE ITS1 production: 200 modules in 2005

Double Sided Silicon Strip Detector (DSSD) 6x128 strips / side => TAB bonding used to wrap ASIC ontop of sensors

ALICE ITS2 production: 500 modules in 2017-19

2 rows of 7 ALPIDE sensors (15x30mm, ép. 100um)

ALICE R&D ITS3 since 2019: bended sensors

1^{er} bended mini-tracker Radii: 18, 24, 30mm

2x9 capteurs de 15x30mm, épaisseurs 50um montés sur exosquelette Rayon de courbure de 18mm. En cours : ép. 30um

Illustration of specific bonding service

LPSC – ALICE FoCAL Détecteur Silicium : 9x8 pixels de 1cm x 1cm Démonstrateur : 18 cartes Final ? : 396 PCB de 45 x 8 (5 capteurs) (soit 1980 capteur silicium).

Strasbourg : EOST, ICS, I3 Bordeaux : IMS Clermont- Fd : LPC Grenoble : LPSC Lyon : IPNL Marseille : LAM Nantes : SUBATECH/IMT Paris : OMEGA, IPNO

BGA:

Other achieved or on-going projects

STELLA : 2015 (DSSD for nuclear physics)

Collab. : GANIL, IJCLab, Univ. York (UK), Univ. Surrey (UK), Obs. Genève

FOOT (INFN): 2021-23 Measurement of nuclear cross-sections of interest for Carbon-therapy

Module de détection Capteur MIMOSA 28 20 x 20 mm Epaisseur 50um

Cross-section module de détection

MAPSSIC: 2023 Implantable ß-probe for neuro-imaging

IN2P3 : CPPM, IJCLAB ; INSB : Lyon Neuroscience, NeuroPSI

2 capteurs CMOS (12x0,65mm, ép. 200um) collés dos à dos.

