
Allocations mémoires,

pourquoi et comment profiler
SÉBASTIEN VALAT – JEUDIS DE GRAY SCOTT – FÉVRIER 2024

1

Origin of the tools

 PhD. On memory management for HPC (at CEA / UVSQ)

 MALT : post-doc at Versailles :

 NUMAPROF : side project post-doc work at :

 URL :

2

Get both on :

https://memtt.github.io/

https://memtt.github.io/

Motivation

 Lot of issues today :

 Huge memory space to manage (~TB of memory)

 Lot more distinct allocations (e.g. 75M in 5 minutes)

 Multi-threaded : 256 threads

 Hidden into large (huge) C/C++/Fortran codes (~1M lines)

 Access:

 NUMA (Non Uniform Memory Access)

 Memory wall !

3

Key today 4

You need to

well understand memory
Behavior of you (HPC)

Application !

Eg: >1M lines C++ simulation.

On 128 cores / 16 NUMA CPUs

5

Same about memory consumption

on 12 cores

6

MALT
MALLOC TRACKER

7

Goal

 We have profiling tool for timing (eg. Valgrind or vtune)

 But for memory usage ?

 Memory can be an issue :

 Failed to run (or swap) due to lack of memory resource.

 Performance impact of memory management functions

 Three main questions :

 How to reduce memory footprint ?

 How to improve overhead of memory management ?

 How to improve memory usage ?

8

Some issue examples

 We want to help searching :

 Where memory is allocated.

 Properties of allocated chunks.

 Bad allocation patterns for performance.

 Leaks

 Global variables (TLS)

9

Some issue examples 10

Int gblVar[SIZE];
int * func(int size)
{
 child_func_with_allocs();
 void * ptr = new char[size];
 double* ret = new double[size*size*size];
 for (…..)
 {
 double* buffer = new double[size];
 //short and quick do stuff
 delete [] buffer;
 }
 return ret;
}

Indirect allocations

Leak

Short life allocations

Might lead to swap for large size

Global variables or TLS

Existing tools

 Valgrind - massif

 Valgrind - memcheck

•11

0

20

40

60

80

1 2 3 4 5 6

S1 S2 S3

Existing tools

 Google heap profiler (tcmalloc):

 IBM Purify++ / Parasoft Insure++

•12

What I want to provide

 Same approach than valgrind/kcachgind

 Mapped allocations on sources lines

 For memory resource usage :

 Memory leaks (malloc without free)

 Peak and total allocated memory

 For performance :

 Allocation count

 Allocation sizes (min/mean/max)

 Chunk lifetime (min/mean/max)

•13

Global summary

 Show global program statistics

•14

Per thread statistics 15

Source annotations •16

Metric selectorInclusive/Exclusive

Symbols Details of symbol or line

Call stacks reaching

the selected

site.

Per line annotation

Time charts 17

Chunk size distribution
Example from YALES2 with gfortran issue

•18

Many really small allocations

Global variables •19

Real cases

•20

Cerfacs - AVBP- CFD simulator 21

Example on AVBP init phase

 Issue with reallocation on init

•22

Time

Coria – YALES2 - Combustion 23

Allocatable arrays on YALES2
Issue only occur with gfortran, ifort uses stack arrays.

•24

And mostly really small

allocations !

Huge number of allocation for a line

programmer think it doesn’t do any !

Search intensive alloc functions

We can found allocs of 1B ! •25

Many codes produce allocations of 1B.

OK with moderation.

Search for the minimal chunk

size.

Usage & conclusion

•26

Usage

 Backtrace mode :

 Use the web view :

•27

Optionally recompile with debug flag to get source lines :
cc –g …
Run your program
${PREFIX}/bin/malt [--config=file.ini] YOUR_PRGM [OPTIONS]

#Launch the server
malt-webserver -i malt-{YOUR_PRGM}-{PID}.json
Connect with your browser on http://localhost:8080

Reminder on NUMA

28

Today topology

 Example current Intel Knight Landing, mode SNC2 or SNC4

 Also add fast memory MCDRAM presented as NUMA or LLC cache

29

MCDRAM MCDRAM

MCDRAM MCDRAM

N
U

M
A

 1
N

U
M

A
 3

N
U

M
A

 2
N

U
M

A
 4

R
A

M
R

A
M

R
A

M
R

A
M

Implicit binding : first touch

 New allocated segments are physically empty

 They are filled on first touch

 Page selection depend of the thread position

30

Virtual memory

NUMA 2NUMA 1

T1 T2 T3

?

Typical OpenMP mistake

 Make first init outside of OpenMP (in thread 1)

 So each pages will be first touched on NUMA 1

 Then access

 Bad performance due to remote accesses !

31

#pragma omp parallel for
for (int i = 0 ; i < SIZE ; i++)
 array[i] = 0;

#pragma omp parallel for
for (int i = 0 ; i < SIZE ; i++)
 array[i]++;

Wish list for a profiling tool…

 We want to know if we make remote accesses

 Ideally we need to know where…

 We can dream, we want to know which allocation contain issues

 We want to know where the first touch has been done

 On KNL we want to check MCRAM accesses

32

NUMPROF
HOW TO KNOW IF WE ARE RIGHT IN A REAL APPLICATION ?

33

NUMAPROF

 Take back the idea from MALT

 Web interface

 Source annotation

 Global metrics

 Use intel Pin

 Permit to instrument all memory accesses

 Parallel opposite to valgrind

 Difficulty: we cannot easily use libs inside the tool

 I would have used hwloc and libnuma…..

34

Overhead and scalability

 Of course overhead is large: ~30x

 But is scale

 Example code hydro on KNL:

35

0

50

100

150

200

250

300

1 2 4 8 16 32 64 128 256

TI
M

E
 M

U
LT

IP
LI

E
R

THREADS

Overhead

Numaprof Valgrind

60x
27x

GUI and example

36

Global summary 37

Statistics per thread 38

Source & asm annotations 39

Code Hydro

 KNL Without HBM WITH HBM

40

Original Hydro access matrix 41

Ordering issue 42

#pragma omp parallel for private(i) if (m_numa) SCHEDULE
 for (int32_t i = 0; i < m_nbtiles; i++) {
 int t = m_mortonIdx[i];
 m_tiles[t] = new Tile;
 }

Non parallel allocations 43

Parallel allocations

 Original

 Modified

44

for (int32_t i = 0; i < m_numThreads; i++) {
 m_buffers[i] = new ThreadBuffers(…);
 assert(m_buffers[i] != 0);
}

#pragma omp parallel
{
 int i = omp_get_thread_num();
 #pragma omp critical
 m_buffers[i] = new ThreadBuffers(..);
 assert(m_buffers[i] != 0);
}

Speed up obtained on Hydro

0

5

10

15

20

25

30

35

40

45

WITHOUT HBM Before After

Ti
m

e
 (

s)

45

-18%

Conclusion

 Memory is not trivial to handle in large programs

 Need to be taken in account

 Some tiny mistakes sometimes cost a lot

 Possibly everywhere in the program (global impact)

 Be able to get a view is a first help

46

	Default Section
	Diapositive 1 Allocations mémoires, pourquoi et comment profiler
	Diapositive 2 Origin of the tools
	Diapositive 3 Motivation
	Diapositive 4 Key today
	Diapositive 5 Eg: >1M lines C++ simulation. On 128 cores / 16 NUMA CPUs
	Diapositive 6 Same about memory consumption on 12 cores
	Diapositive 7 MALT
	Diapositive 8 Goal
	Diapositive 9 Some issue examples
	Diapositive 10 Some issue examples
	Diapositive 11 Existing tools
	Diapositive 12 Existing tools
	Diapositive 13 What I want to provide
	Diapositive 14 Global summary
	Diapositive 15 Per thread statistics
	Diapositive 16 Source annotations
	Diapositive 17 Time charts
	Diapositive 18 Chunk size distribution Example from YALES2 with gfortran issue
	Diapositive 19 Global variables
	Diapositive 20 Real cases
	Diapositive 21 Cerfacs - AVBP- CFD simulator
	Diapositive 22 Example on AVBP init phase
	Diapositive 23 Coria – YALES2 - Combustion
	Diapositive 24 Allocatable arrays on YALES2 Issue only occur with gfortran, ifort uses stack arrays.
	Diapositive 25 We can found allocs of 1B !
	Diapositive 26 Usage & conclusion
	Diapositive 27 Usage
	Diapositive 28 Reminder on NUMA
	Diapositive 29 Today topology
	Diapositive 30 Implicit binding : first touch
	Diapositive 31 Typical OpenMP mistake
	Diapositive 32 Wish list for a profiling tool…
	Diapositive 33 NUMPROF
	Diapositive 34 NUMAPROF
	Diapositive 35 Overhead and scalability
	Diapositive 36 GUI and example
	Diapositive 37 Global summary
	Diapositive 38 Statistics per thread
	Diapositive 39 Source & asm annotations
	Diapositive 40 Code Hydro
	Diapositive 41 Original Hydro access matrix
	Diapositive 42 Ordering issue
	Diapositive 43 Non parallel allocations
	Diapositive 44 Parallel allocations
	Diapositive 45 Speed up obtained on Hydro
	Diapositive 46 Conclusion

