

Étiquetage de la saveur et mesure de sin(2β) dans l'expérience LHCb

- 1. Introduction
- 2. Cadre théorique
- 3. Le détecteur LHCb
- 4. Étiquetage de la saveur initiale des mésons B
- 5. Procédure pour la mesure de sin(2β)
- 6. Conclusion et perspectives

Stéphane POSS
CPPM, IN2P3, CNRS, et Aix-Marseille Université
Sous la direction de R. LeGac
JRJC - Dinard - Décembre 2007

Introduction

- LHCb est une expérience du LHC spécialisée dans l'étude de la violation de CP et des désintégrations rares dans le secteur de la beauté
 - Physique du quark beau
 - Recherche de nouvelle physique via des diagrammes en boucle
- ▶ De nombreuses mesures phares : γ , ϕ_s , BR(B_s→μμ), BR(B_s→K*μμ), ...
- Une étape essentielle : retrouver des paramètres connus pour valider les divers étapes de mesure
 - sin(2β) : mesuré par BaBar et Belle
- Nécessité : identification de la saveur initiale des mésons B neutres (B ou B ?)

Le cadre théorique

Mélange des quarks dans le MS

Le mélange des quarks est décrit dans le Modèle Standard par le Lagrangien des interactions par courant chargés

$$\mathcal{L}_{\text{int}}^{\text{CC}} = -\frac{g}{\sqrt{2}} \left(\begin{array}{cc} \bar{u}_{\text{L}}, & \bar{c}_{\text{L}}, & \bar{t}_{\text{L}} \end{array} \right) \gamma^{\mu} V_{\text{CKM}} \left(\begin{array}{c} d_{\text{L}} \\ s_{\text{L}} \\ b_{\text{L}} \end{array} \right) W_{\mu}^{+} + \text{h.c.}$$

Ce Lagrangien décrit les couplages entre les quarks de type "up" avec ceux de types "down" par l'intermédiaire de la matrice CKM

$$\begin{pmatrix} \mathbf{d} \\ \mathbf{s} \\ \mathbf{b} \end{pmatrix}' = \begin{pmatrix} V_{\mathrm{ud}} & V_{\mathrm{us}} & V_{\mathrm{ub}} \\ V_{\mathrm{cd}} & V_{\mathrm{cs}} & V_{\mathrm{cb}} \\ V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}} \end{pmatrix} \begin{pmatrix} \mathbf{d} \\ \mathbf{s} \\ \mathbf{b} \end{pmatrix}^{\mathrm{phys}}$$

- Cette matrice est unitaire et possède une phase complexe
 - Cette phase rend compte de la violation de CP dans le MS
- > V_{CKM} peut s'ecrire avec 4 paramètres :

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4) \quad \boxed{\begin{matrix} u \\ c \\ t \end{matrix}} \quad \boxed{\begin{matrix} a \mid s \mid b \end{matrix}}$$

Contraintes actuelles sur le triangle d'unitarité

- De l'unitarité de la matrice, on peut extraire un ensemble de relations représentables sous forme de triangles
- Ex : triangle représentant

$$V_{\rm ud}V_{\rm ub}^* + V_{\rm cd}V_{\rm cb}^* + V_{\rm td}V_{\rm tb}^* = 0$$

- Objectif: "sur contraindre" ce triangle
 - Permet de chercher des failles dans le modèle
- Accord impressionnant :
 - Contrainte la plus forte : sin(2β)
 - Côtés limités pas la théorie
 - Angles limités par l'expérience
 - Precision :

$$\rightarrow$$
 $a \sim \pm 6^{\circ}$

Oscillations des mésons B neutres

 En étudiant les interférences entre oscillations et désintégration, on accède aux paramètres intervenant dans la violation de CP (ex : sin(2β))

On mesure les asymétries dépendantes du temps

$$\mathbf{A_{CP}^{theo}}(t) = \frac{\Gamma\left(\overline{\mathbf{B}_{d}^{0}} \rightarrow \mathbf{J}/\psi\mathbf{K_{S}^{0}}\right)(t) - \Gamma\left(\mathbf{B_{d}^{0}} \rightarrow \mathbf{J}/\psi\mathbf{K_{S}^{0}}\right)(t)}{\Gamma\left(\overline{\mathbf{B}_{d}^{0}} \rightarrow \mathbf{J}/\psi\mathbf{K_{S}^{0}}\right)(t) + \Gamma\left(\mathbf{B_{d}^{0}} \rightarrow \mathbf{J}/\psi\mathbf{K_{S}^{0}}\right)(t)} \propto \sin(2\beta)\sin(\Delta\mathbf{m}_{d}t)$$

Programme de physique de LHCb

- Paramètres du mélange des B_s : fréquence, phase $φ_s$, $ΔΓ_s$, ...
- Les angles des triangles d'unitarité α, β, γ :
 - \succ Ex : sin(2β) dans B_d \rightarrow J/ψ K⁰_S et avec des pingouins b \rightarrow s
- Désintégrations rares :
 - > Pingouins radiatifs $B_d \to K^* \gamma$, ...
 - → Pingouins électrofaibles B_d^- → K^{*0} μ+μ-
 - $\succ \ \, \text{Pingouins gluoniques B}_{_{S}} \rightarrow \ \, \varphi \varphi, \ \, \text{B}_{_{d}} \rightarrow \varphi \ \, \text{K}^{0}_{_{S}}$
 - > Diagrammes en boîte rares + pingouins $B_s \to \mu\mu$
- Physique des B_c et baryons-b
- + Nouvelle physique eventuelle

Le cadre expérimental

- Section efficace inélastique : $\sigma_{pp} = 80 \text{ mb}$
- Une interaction par croisement de faisceau, plus propre à reconstruire
 - Mesures de précision
 - Choix de la luminosité : $L = 2x10^{32} \text{ cm}^{-2}\text{s}^{-1}$
- σ_{th} = 500μb : plus grande source de hadrons B : 10¹² paires bb produites par an
 - \rightarrow B_u , B_d , B_s , Λ_b , B_c , ...
- Les paires bb sont produites essentiellement vers l'avant et vers l'arrière, les deux b sont dans l'acceptance de LHCb

Spécificités :

- VELO : $\sigma_{\tau}(Bs \rightarrow D_{s}\pi) = 40 \text{ fs}$

Mesure de sin(2β) et étiquetage de la saveur

Mesure de $\sin(2\beta)$

$$> \quad {\rm A_{CP}^{theo}}(t) = \frac{{\Gamma \left({{\overline {\rm B}_{\rm d}^0} \to {\rm J/}\psi {\rm K_S^0}} \right)(t) - \Gamma \left({{\rm B_{\rm d}^0} \to {\rm J/}\psi {\rm K_S^0}} \right)(t)}}{{\Gamma \left({{\overline {\rm B}_{\rm d}^0} \to {\rm J/}\psi {\rm K_S^0}} \right)(t) + \Gamma \left({{\rm B_{\rm d}^0} \to {\rm J/}\psi {\rm K_S^0}} \right)(t)}} \propto \sin (2\beta) \sin (\Delta m_d t)$$

- 5 ingredients nécessaires :
 - > Sélection des $B_d^0 \to J/\psi \ K_s^0$: trigger et reconstruction
 - Mesure du temps de vie des B⁰_d
 - Étiquetage de la saveur initiale des B⁰_d
 - > Ajoute de la dilution : $A_{cp}^{mes}(t) = (1 2\omega)A_{cp}^{theo}(t)$
 - > 3 paramètres caractéristiques :
 - Figure 1 State 1 Stiques : $\varepsilon_{\rm tag} = \frac{N_R + N_W}{N_R + N_W + N_U}$
 - > Fraction de mauvais étiquetage : $\omega = \frac{N_W}{N_R + N_W}$
 - > Puissance de l'étiquetage : $\varepsilon_{\rm eff} = \varepsilon_{\rm tag} D^2 = \varepsilon_{\rm tag} (1-2\omega)^2$
 - Ajustement des paramètres

Étiquetage de la saveur (2)

- Taggers à trace unique : muon, électron, kaon
- Taggers à traces multiples : charges de vertex
 - Mon travail : re-optimisation des taggers électron et charge de vertex inclusive

Optimisation et performances

Performances par taggers:

	$\varepsilon_{\mathrm{eff}}$ %	$\varepsilon_{\mathrm{tag}}$ %	ω %
μ	1.76 ± 0.11	11.53 ± 0.14	30.5 ± 0.6
е	0.55 ± 0.06	4.10 ± 0.09	31.7 ± 1.0
K_{OS}	2.38 ± 0.13	30.82 ± 0.20	36.1 ± 0.4
K_{SS}	3.26 ± 0.15	30.63 ± 0.20	33.7 ± 0.4
Q_{vtx}	1.34 ± 0.10	23.97 ± 0.19	38.2 ± 0.4

$$\varepsilon_{\text{tot}} = \sum \varepsilon_{\text{eff}}$$

coupure optimale: p_→1.2 GeV/c

Performances de l'algorithme

Comparaison entre différentes expériences

	Puissance d'étiquetage (%)
BaBar	30.5
Belle	28.8
ALEPH	27.0
DO	4.5
CDF	6.6
ATLAS	4.6
LHCb	7.1

- Supériorité des collisionneurs e⁺e⁻
- Bruit de fond (machine leptonique contre hadronique)
- Petits angles entre les différentes traces (ex : plus difficile de reconstruire des vertex), biais induits par le trigger et sélection.

Méthode utilisée dans LHCb pour l'extraction de sin(2β)

- $A_{cp}^{mes}(t) \propto (1 2\omega) \sin(2\beta) \sin(\Delta m_d t)$
- Utilisation de canaux de contrôle spécifiques de saveur finale :
 - Extraction des paramètres depuis un ajustement multi-variables
 - \rightarrow sin(2 β) et ω ne peuvent pas être extraits en même temps
 - > ω sera mesuré grâce à $B_d \rightarrow J/ψ$ K^*
 - $^{>}$ Utilisation de la séparation Mixed-Unmixed pour construire des asymétries de saveur dépendantes du temps caractérisées par un terme en cosinus -> oscillations = Δ md et une amplitude = 1-2 ω
 - Si on veut $\sigma(\sin(2\beta))$ due à l'étiquetage (erreur systématique) deux fois plus petite que l'erreur statistique pour $2fb^{-1}$, il faut l'erreur relative sur $\omega < \sim 1\%$
 - Nécessité de nombreux canaux de contrôle pour avoir une grande statistique

$$\sigma(\omega)^{2} = \frac{\omega \times (1 - \omega)}{\varepsilon_{\text{tag}} \times \text{Nb(evts)}/2\text{fb}^{-1}}$$

Différents problèmes : pas possible d'appliquer directement ω entre le canal de contrôle et celui de signal : différences dues au trigger et à la sélection.

Canaux de contrôle

Sélection de différents canaux de contrôle : $B^+ \to \overline{D}^0 \mu^+ \nu$, $B^+ \to \overline{D}^0 \Pi^+$, $B^0_s \to D_s^- \mu^+ \nu$ (2 notes publiques LHCb) et $B^+ \to J/\psi$ K^+

	Yield	B/S
Bu→D ⁰ µv	2.4 M	0.7
Bu→D ⁰ ⊓	1 M	0.1
Bs→Dsµv	1 M	0.36
Bu→J/ψ K+	2 M	0.46
Bd→J/ψ K*	1M	0.3

 $\sigma(\omega)/\omega \sim 0.5 \%$

En route vers $sin(2\beta)$

- Extraction de Δmd et ω avec B⁰_d → J/ψ K*
 - Modelisation du signal avec une expression décrivant l'oscillation en saveur Mixed Unmixed
 - Bruit de fond non oscillant
 - Un toy MC permet de tester la robustesse du model
 - Bon accord, ajustement stable
- Fit sur des données issues du MC complet en cours
 - Description plus réaliste nécessaire
 - Différentes compositions et comportement suivant les différents types de bruit
 - Comprendre quelles sont les propriétés caractéristique de ces bruits est essentiel
 - Si la description est mauvaise :

Conclusion

- LHCb est une expérience dédiée à l'étude de la violation de CP et des désintégrations rares
 - Mesures de précision
 - Grande statistique disponible
- Étape préliminaire : vérifier la fiabilité du détecteur et des outils d'analyse
 - Mesurer des paramètres déjà connus : sin(2β) mesuré par BaBar et Belle
- Outil clé : étiquetage de la saveur initiale des mésons B neutres
 - Utilisation de nombreuses sources d'information
 - Nombreux canaux de contrôle nécessaires pour diminuer les erreurs systématiques
- L'étude pour sin(2β) est en cours!
 - Extraction de la fraction de la mauvais étiquetage dans un canal de contrôle
 - Utilisation de données issues du MC complet
 - Utilisation de vraies données si possible en fin de thèse

The end!

Backups

Backups

4 angles indépendants de CKM

$$\gamma \equiv \phi_3 \equiv \arg \left[-\frac{V_{\rm ud}V_{\rm ub}^*}{V_{\rm cd}V_{\rm cb}^*} \right]
\beta \equiv \phi_1 \equiv \arg \left[-\frac{V_{\rm cd}V_{\rm cb}^*}{V_{\rm td}V_{\rm tb}^*} \right]
\beta_{\rm s} \equiv \chi \equiv \arg \left[-\frac{V_{\rm cb}V_{\rm cs}^*}{V_{\rm tb}V_{\rm ts}^*} \right]
\beta_{\rm K} \equiv \chi' \equiv \arg \left[-\frac{V_{\rm us}V_{\rm ud}^*}{V_{\rm cs}V_{\rm cd}^*} \right]$$

$$\phi_s = 2 \operatorname{arg}(V_{ts}^*V_{tb})$$

$$\sim -2\beta_s$$

$$\sim -2\operatorname{arg}(V_{ts})$$

$$\sim -\operatorname{arg}(V_{ts}^2)$$

22

Deux triangles d'unitarité

$$\beta_s = \chi$$

Programme de physique de LHCb

- Paramètres du mélange des B_s: fréquence, phase, ΔΓ_s, a_{fs}
 - * $B_s \rightarrow D_s \pi$, $J/\psi \phi$, $J/\psi \eta^{()}$, $\eta_c \phi$, $B_s \rightarrow D_s D_s$, $B_s \rightarrow D_s V$
- > a avec B_d →πρπ, ρρ
- > β avec $B_d \rightarrow \rightarrow J/\psi \psi K_s$
 - \rightarrow et β avec les pingouins b $\rightarrow\rightarrow$ s
- γ avec plusieurs canaux, ayant une sensibilité différente à de la NP:
 - Asymétrie CP dépendante du temps de B_s→→ D_s-K+ et D_s+K-
 - Asymétrie CP dépendante du temps de $B_d \rightarrow \rightarrow \Pi \Pi$ et $B_s \rightarrow \rightarrow K^+K^-$
 - Comparaison des taux de désintégration des B_d→→ D⁰(Кп,КК,πпп)K*⁰
 - Comparaison des taux de désintégration des $B^{\pm} \rightarrow D^{0}(K\Pi,KK,\Pi\Pi\pi)K^{\pm}$
 - Analyse de Dalitz des $B^{\pm} \rightarrow \rightarrow D^{0}(K_{S}\Pi\Pi, K_{S}KK)K^{\pm}$ et $B_{d} \rightarrow \rightarrow D^{0}(K_{S}\Pi\Pi, K_{S}KK)K^{*0}$
- Désintégrations rares
 - Pingouins radiatifs $B_d \rightarrow \rightarrow K^* \gamma \gamma$, $B_s \rightarrow \rightarrow \phi \gamma \gamma$, $B_d \rightarrow \rightarrow \omega \gamma$
 - Pingouins électrofaibles B_d→→ K*⁰ μμ
 - Pingouins gluoniques $B_s \rightarrow \Phi \Phi$, $B_d \rightarrow \Phi K_s$
- Physique des B_c et baryons-b + imprévu !
- ⇒ Reconstruire des désintégrations de hadrons b avec états finals variés présentant plusieurs particules chargées ou neutres

Etique took du Drécessoire

Le LHC

LHC : grand collisionneur de hadrons l

Accélère des protons à 14 TeV au centre c

 Plus grand accelérateur de particules du m (27 km de circonférence)

Fréquence des collisions : 40 MHz

4 expériences :

ATLAS : généraliste (higgs, supersymétries)

CMS : généraliste (higgs, supersymétries...

ALICE : Étude des collisions d'ions lourds

LHCb : physique du quark b

Démarrage prévu : 2008

B production

- B hadrons are mostly produced in the forward direction (along the beam)
- Choose a forward spectrometer 10–300 mrad
- Both b and b in the acceptance: important for tagging the production state of the B hadron

Production graphs

Examples of Q = c/b production diagrams, *not* exhaustive:

Torbjorn Sjostrand Pythia

12/12/2007

- 2 niveaux de déclenchement
 - Le premier niveau est hardware (Level 0)
 - Utilise les informations recueillies par les calorimètres, les chambres à muons et le système d'empilement (dans le détecteur à vertex) pour sélectionner les évènements contenant un quark b
 - Le deuxième est software (High Level Trigger)
 - Utilise les informations de l'ensemble du détecteur pour effectuer une reconstruction partielle des candidats et sélectionner les meilleurs
- En entrée du détecteur : 40 MHz
- En sortie : 2 kHz
 - Réduction par un facteur 200

Magnet

- ♦ Warm Al conductor
- ◆ 4 Tm integrated field
- ♦ Weight = 1500 tons
- ◆ 4.2 MW
- Possibility to reverse the field (systematics)

Vertex Locator

- ◆ 21 stations, retractable during injection
- sensitive area starts at only 8 mm from beam axis
- \star r/ ϕ sensors (single sided, 45° r-sectors)
- pitch ranges from 35 μm to 102 μm
- ♦ 300 µm thin silicon
- ◆ 172k readout channels

◆ Secondary vacuum box with <10-4 mbar</p>

stand-alone tracking!

Tracking chambers (TT, IT,

Tracking chambers (TT, IT, OT)

Track finding strategy

Long tracks ⇒ highest quality for physics (good IP & p resolution)

Downstream tracks \Rightarrow needed for efficient K_s finding (good p resolution)

Upstream tracks ⇒ lower p, worse p resolution, but useful for RICH1 pattern recognition

T tracks ⇒ useful for RICH2 pattern recognition

VELO tracks ⇒ useful for primary vertex reconstruction (good IP resolution)

TDR Result of track finding

Typical event display:

<u>Average</u>	<u>multi</u>	plicity	y in b	<u>b event</u>

26 long tracks

4 downstream tracks

11 upstream tracks

5 T tracks

26 VELO tracks

Total = 72 tracks

 $\leq \delta p/p \geq efficiency$

0.37% 94% for p >10 GeV/c

0.43%

~15%

80% for p > 5 GeV/c

75% for p > 1 GeV/c

20–50 hits assigned to a long track 98.7% correctly assigned

 $\sigma(IP)$

40 μm

TDR Performance of long track

S. POSS JRJC 2007

Efficiency vs momentum p (GeV)

 ϵ = 94% for p > 10 GeV (larger for tracks from B) Fraction of ghost tracks vs minimum p_T cut (GeV)

3% for $p_{T,cut} = 0.3 \text{ GeV}$ (B tracks have large p_T)

TDR Primary vertex reconstruction

- Use long, upstream and VELO tracks
 - bb production vertex found in 98% of bb events

- Multiple vertices can be found
 - No problem choosing bb production vertex using back-pointing of reconstructed B candidates

 $K_S \rightarrow \pi^+\pi^-$ reconstruction (TDR)

- 25% decay after TT
 - Not reconstructed
- 50% decay outside VELO but before TT
 - Use pairs of downstream tracks
- 25% decay inside VELO
 - Use long and upstream tracks

combinatorial background in $B^0 \rightarrow J/\psi \ K_s$ events remove when K_s combined with J/ψ

Charged hadron identification

2 RICHes, 3 radiators

- Full global ring pattern recognition
 - Use info from all reconstructed tracks traversing the RICHes
 - Determine for each track loglikelihood differences between two hypotheses, e.g. $\Delta lnL_{K\pi} = lnL(K)$ $lnL(\pi)$
- Can cut on ∆InL values depending on analysis
- Example of performance:

$$\epsilon(K \rightarrow K) = 88\%$$
, $\epsilon(\pi \rightarrow K) = 2.9\%$, for $\Delta InL_{K\pi} > 2$
 $\epsilon(K \rightarrow K) = 85\%$, $\epsilon(\pi \rightarrow K) = 1.7\%$, for $\Delta InL_{K\pi} > 4$

(long tracks between 2 and 100 GeV) $_{45}$

Particle Identification with

LHCb has to identified charged hadrons over a large momentum range:

- High momentum hadrons in two-body B decays
- **♦** Low momentum K for B flavour tagging (identify K from b \rightarrow c \rightarrow s)

⇒ RICH system divided into 2 detectors

RICH detectors

RICH2 p<~100 GeV

15-120 mrad

RICH1 1<p<60 GeV

25-300 mrad

5cm aerogel; n=1.03

 $4 \text{ m}^3 C_4 F_{10}$; n = 1.0014

Significant magnetic fringe field

Identification des particules

- Faible impulsion cruciale pour l'étiquetage
- Grande impulsion cruciale pour e.g. séparation desmodes B2hh (gamma)
- → Meilleure performance d'identification jamais obtenue à un collisionneur hadronique

RICH detectors

RICH2 super structure

Exit/entrance windows

Hybrid Photodiodes

Test beam: $e-\pi$ separation

Typical event in the RICH1 photon detectors

Calorimeters

- + Preshower
- *Pb converter sandwiched between two scintillator planes with 16k scintillating pads

- +ECAL
- *"Shashlik" type modules 2mm Pb/ 4mm scintillator
- ◆Readout via WLS fibres
- $\sigma E/E = 10\%/\sqrt{E} + 1.5\%$
- +HCAL
- ♦4mm scintillator/ 16mm iron
- ◆Readout via WLS fibres
- $+\sigma E/E = 75\%/\sqrt{E} + 10\%$

Calorimeters system crucial for level-0 trigger: read in less than 25 ns!

Calorimeters

Spd & Prs validate
 the charged and EM nature of incoming particle, respectively.

EXPERIMENTAL CHALLENGE NEUTRAL PIONS RECONSTRUCTION

 γ I dentification is based on calo-cluster neutrality (anti-track matching) and kinematics

2 kinds of reconstructed π^0 's:

•R esolved $\pi^0 o Pair of isolated photons$ •M erged $\pi^0 o Pair of photons merged within$ 12/12/2007 a single cluster (large P) a single cluster shape

Charged lepton identification (TDR)

Build combined ΔlnL variables using information from muon detector, calorimeters, and RICHes \Rightarrow both muon and electron ID significantly improved

 p_{μ} > 3 GeV and in MUON acceptance e from $B^0 \rightarrow J/\psi K_S$ in CALO acceptance

53

12/12/2007

 γ and π^0 reconstruction (TDR)

- \rightarrow γ with high E_T (> 2–3 GeV):
 - easy to trigger
 - used to reconstruct radiative B decays such as $B^0{
 ightarrow} K^*\gamma$ and $B_s{
 ightarrow} \phi\gamma$
 - γ pairs from hard π⁰
 can "merge" and be
 reconstructed as single γ
- Resolved π^0 (2 γ clusters):
 - $\sigma(m_{\gamma\gamma}) \sim 10 \text{ MeV}$
- Merged π^0 (single cluster):
 - core σ(m) ~ 15 MeV
 - Larger $p_T(\pi^0)$ → less comb. bkg.

Performance du trajectographe

Introduction

Introduction

Velo overview

Velo overview

Chambres à muons

C-side M2 station completed

A-side M2 wall

Calo

ECAL:

$$\frac{\sigma_E}{E} = \frac{10\%}{\sqrt{E}} \oplus 1\%$$
HCAL:

$$\frac{\sigma_E}{E} = \frac{80\%}{\sqrt{E}} \oplus \underset{61}{10\%}$$

12/12/2007

S. POSS JRJC 2007

Etude CDF de B→DIv

Différentes sources de leptons

Lepton primaire

 $b \rightarrow 1$

 $b \to \tau \to 1$

Lepton charme

 $\stackrel{\mathfrak{c} \to 1}{\text{S. POSS JRJC 2007}}$

Hadronisation d'un quark b avec distribution de charge des particules produites

Corrélations de charge entre B_s et traces de fragmentations

Électron

- Optimisation de la sélection des électrons
 - Coupures sur le PID (RICH, CALO), l'impulsion, l'impulsion transverse, la qualité de la trace, le depôt d'énergie dans le détecteur de vertex et E/p (issu du calorimètre)

Valeur des coupures incluses dans le code officiel

Vertex Inclusif du côté opposé

Position:
$$Q_{vtx} = \frac{\sum_i p_{Ti}^{\kappa} Q_i}{\sum_i p_{Ti}^{\kappa}}$$

 Reconstruction d'un vertex inclusif par maximum de vraisemblance

- Optimization de κ et coupure centrale
- Utilisation inclusive ou exclusive selon les autres taggers disponibles
- Inclu dans le code officiel

Control channels

- Idea: accumulate high statistics in flavour-specific modes
- ω can be extracted by:
 - B*: just comparing tagging with observed flavour
 - B_d and B_s: fitting known oscillation

	Channel	Yield/ 2 fb ⁻¹	δω /ω (2fb⁻¹)
	Β+→J/ψ (μμ)Κ+	1.7 M	0.4%
Similar to	$B^+ \rightarrow D^0 \pi^+$	0.7 M	0.6%
signal	Β ⁰ →J/ψ(μμ)Κ* ⁰	0.7 M	0.6%
	$B_s \rightarrow D_s^+ \pi^-$	0.12 M	2%
	$B_d^0 \rightarrow D^{*-} \mu^+ \nu$	9 M	0.16%
Semi- leptonics	$B^+ \rightarrow D^0$ (*) $\mu + \nu$	3.5 M	0.3%
	$B_s \rightarrow D_s^{(*)} \mu + \nu$	2 M	1%

B/S~0.2-0.8

B physics at LHC: (dis)advantages

	e+e- → Y(4S) → BB PEPII, KEKB	pp $\rightarrow \rightarrow$ bbX (\sqrt{s} = 14 TeV, Δt_{bunch} =25 ns) LHC (LHCb-ATLAS/CMS)		
Production $\sigma_{_{ m bb}}$	1 nb	~500 μb		
Typical bb rate	10 Hz	100-1000 kHz		
bb purity	~1/4	σσ _{bb} /σσ _{inel} = 0.6% Trigger is a major issue!	(``	
Pileup	0	0.5-5		
b-hadron types	B+B- (50%) B0B0 (50%)	B+ (40%), B° (40%), B _s (10%) B _c (< 0.1%), b-baryons (10%)		
b-hadron boost	Small	Large (decay vertexes well separated)		
Production vertex	Not reconstructed	Reconstructed (many tracks)		
Neutral B mixing	Coherent B°B° pair mixing	Incoherent B ^o and B _s mixing (extra flavour-tagging dilution));	
Event structure	BB pair alone	Many particles not associated with the two b hadrons		

The LHC environment

	B factories	Tevatron	LHC
Prod. σ_{bb}	1 nb	100 μb	500 μ b
bb rate	10 Hz	0.3 Hz	100 KHz
Purity	~ 1/4	~ 0.2%	σ _{bb} /σ _{inel} ~ 0.6%
Event struct.	BB pair	Many parti	cles not from B

Relevant rates:

- LHC: 40 MHz, 2 bunches full: 30 MHz
- At least 2 tracks in acceptance 10 MHz
- bb: 100 kHz
 - Decay of one B in acceptance: 15 kHz
 - relevant decays BR ~10⁻⁴ − 10⁻⁰

Atlas/CMS trigger output: 100Hz; ~1MB/evt

Particles reconstructed

Туре	<n></n>
π^{\pm}	25
K^\pm	10
μ^\pm	0.5
γ (p _T >2.5GeV)	~1

Extract ω in Bd2JPsiK* using RooFit (1)

- Signal model description :
 - Mass : gaussian
 - > Decay:
 - Simple: $\operatorname{pdf} \operatorname{sig} \propto \frac{1}{\tau} e^{\left(-\frac{t}{\tau}\right)} \otimes \operatorname{Gauss}(t, 0, \sigma)$
 - > Simple with oscillations : $pdf sig \propto \frac{1}{2\tau} e^{\left(-\frac{t}{\tau}\right)} \times (1 + \cos(\Delta m_d t)) \otimes Gauss(t, 0, \sigma)$
 - > Complex: pdf sig $\propto \frac{1}{2\tau}e^{\left(-\frac{t}{\tau}\right)} \times (1 + \mu(1 2\omega)\cos(\Delta m_d t)) \otimes \text{Gauss}(t, 0, \sigma)$
 - μ is +/-1/0 according to UnMixed / Mixed / untagged
- Bkg model :
 - Mass: exponential
 - Decay:
 - Pecay: $\text{Poly Simple:} \quad \text{pdf bkg} \propto \frac{1}{\tau_B} e^{\left(-\frac{t}{\tau_B}\right)} \otimes \text{Gauss}(t,0,\sigma)$
 - With tagging :

pdf bkg
$$\propto \frac{1}{\tau_B} e^{\left(-\frac{t}{\tau_B}\right)} \times \left(\frac{1 + \mu(1 - 2\omega_B)}{2} + (\mu = 0) \times \frac{1}{2}\right) \otimes \text{Gauss}(t, 0, \sigma)$$