

Étiquetage de la saveur et mesure de sin(2β) dans l'expérience LHCb

- 1. Introduction
- 2. Cadre théorique
- 3. Le détecteur LHCb
- 4. Étiquetage de la saveur initiale des mésons B
- 5. Procédure pour la mesure de sin(2β)
- 6. Conclusion et perspectives

Stéphane POSS CPPM, IN2P3, CNRS, et Aix-Marseille Université Sous la direction de R. LeGac JRJC - Dinard - Décembre 2007

Introduction

- LHCb est une expérience du LHC spécialisée dans l'étude de la violation de CP et des désintégrations rares dans le secteur de la beauté
 - Physique du quark beau
 - Recherche de nouvelle physique via des diagrammes en boucle
- > De nombreuses mesures phares : γ , ϕ_{χ} , BR(B₁→µµ), BR(B₁→K*µµ), ...
- Une étape essentielle : retrouver des paramètres connus pour valider les divers étapes de mesure
 - > $sin(2\beta)$: mesuré par BaBar et Belle
- Nécessité : identification de la saveur initiale des mésons B neutres (B ou B ?)

Le cadre théorique

Mélange des quarks dans le MS

 Le mélange des quarks est décrit dans le Modèle Standard par le Lagrangien des interactions par courant chargés

$$\mathcal{L}_{\text{int}}^{\text{CC}} = -\frac{g}{\sqrt{2}} \left(\begin{array}{cc} \bar{u}_{\text{L}}, & \bar{c}_{\text{L}}, & \bar{t}_{\text{L}} \end{array} \right) \gamma^{\mu} V_{\text{CKM}} \left(\begin{array}{c} u_{\text{L}} \\ s_{\text{L}} \\ b_{\text{L}} \end{array} \right) W_{\mu}^{+} + \text{h.c.}$$

> Ce Lagrangien décrit les couplages entre les quarks de type "up" avec ceux de types "down" par l'intermédiaire de la matrice CKM $(d)' (V_{ud} V_{us} V_{ub}) (d)^{phys}$

$$\begin{bmatrix} \mathbf{a} \\ \mathbf{s} \\ \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{\mathrm{ud}} & \mathbf{v}_{\mathrm{us}} & \mathbf{v}_{\mathrm{ub}} \\ V_{\mathrm{cd}} & V_{\mathrm{cs}} & V_{\mathrm{cb}} \\ V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}} \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{s} \\ \mathbf{b} \end{bmatrix}$$

- Cette matrice est unitaire et possède une phase complexe
 - Cette phase rend compte de la violation de CP dans le MS
- V_{CKM} peut s'ecrire avec 4 paramètres :

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4) \quad \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{v} \\ \mathbf{c} \\ \mathbf{t} \end{bmatrix}$$

deh

Contraintes actuelles sur le triangle d'unitarité

- De l'unitarité de la matrice, on peut extraire un ensemble de relations représentables sous forme de triangles
- Ex : triangle représentant

 $V_{\rm ud}V_{\rm ub}^* + V_{\rm cd}V_{\rm cb}^* + V_{\rm td}V_{\rm tb}^* = 0$

- Objectif : "sur contraindre" ce triangle
 - Permet de chercher des failles dans le modèle
- Accord impressionnant :
 - > Contrainte la plus forte : $sin(2\beta)$
 - Côtés limités pas la théorie
 - Angles limités par l'expérience

Precision :

a ~ ± 6°
β ~ ± 1°
v ~ ± 30°

Oscillations des mésons B neutres

La TQC décrit l'oscillation en saveur des mésons B neutres via des diagrammes en boîte :

 En étudiant les interférences entre oscillations et désintégration, on accède aux paramètres intervenant dans la violation de CP (ex : sin(2β))

 $\operatorname{Arg}\left(V_{\mathrm{td}}\right) \approx \beta$

On mesure les asymétries dépendantes du temps

$$\mathbf{A}_{\mathbf{CP}}^{\mathbf{theo}}(t) = \frac{\Gamma\left(\overline{\mathbf{B}}_{\mathbf{d}}^{0} \to \mathbf{J}/\psi\mathbf{K}_{\mathbf{S}}^{0}\right)(t) - \Gamma\left(\mathbf{B}_{\mathbf{d}}^{0} \to \mathbf{J}/\psi\mathbf{K}_{\mathbf{S}}^{0}\right)(t)}{\Gamma\left(\overline{\mathbf{B}}_{\mathbf{d}}^{0} \to \mathbf{J}/\psi\mathbf{K}_{\mathbf{S}}^{0}\right)(t) + \Gamma\left(\mathbf{B}_{\mathbf{d}}^{0} \to \mathbf{J}/\psi\mathbf{K}_{\mathbf{S}}^{0}\right)(t)} \propto \sin(2\beta)\sin(\Delta \mathbf{m}_{d}t)$$

Programme de physique de LHCb

- > Paramètres du mélange des B_s : fréquence, phase ϕ_s , $\Delta \Gamma_s$, ...
- > Les angles des triangles d'unitarité α , β , γ :
 - > Ex : sin(2 β) dans $B_d \rightarrow J/\psi K^0_s$ et avec des pingouins b \rightarrow s
- > Désintégrations rares :
 - > Pingouins radiatifs $B_d \rightarrow K^* \gamma$, ...
 - > Pingouins électrofaibles $B_d \rightarrow K^{*0} \mu + \mu$ -
 - > Pingouins gluoniques $B_{_{S}} \rightarrow \phi \phi$, $B_{_{d}} \rightarrow \phi K^{0}_{_{S}}$
 - > Diagrammes en boîte rares + pingouins $B_s \rightarrow \mu \mu$
- Physique des B_c et baryons-b
- + Nouvelle physique eventuelle

Le cadre expérimental

- > Section efficace inélastique : σ_{DD} = 80 mb
- > Une interaction par croisement de faisceau, plus propre à reconstruire
 - > Mesures de précision
 - Choix de la luminosité : L = $2x10^{32}$ cm⁻²s⁻¹
- > $\sigma_{tm} = 500 \mu b$: plus grande source de hadrons B : 10^{12} paires bb produites par an
 - $\succ \quad \mathsf{B}_{\mathsf{u}}, \, \mathsf{B}_{\mathsf{d}}, \, \mathsf{B}_{\mathsf{s}}, \, \mathsf{\Lambda}_{\mathsf{b}}, \, \mathsf{B}_{\mathsf{c}}, \, \dots$
- Les paires bb sont produites essentiellement vers l'avant et vers l'arrière, les deux b sont dans l'acceptance de LHCb

12/12/2007

Mesure de sin (2β) et étiquetage de la saveur

Mesure de sin (2β)

 $\succ \quad \mathbf{A}_{\mathrm{CP}}^{\mathrm{theo}}(t) = \frac{\Gamma\left(\overline{\mathbf{B}}_{\mathrm{d}}^{0} \to \mathbf{J}/\psi\mathbf{K}_{\mathrm{S}}^{0}\right)(t) - \Gamma\left(\mathbf{B}_{\mathrm{d}}^{0} \to \mathbf{J}/\psi\mathbf{K}_{\mathrm{S}}^{0}\right)(t)}{\Gamma\left(\overline{\mathbf{B}}_{\mathrm{d}}^{0} \to \mathbf{J}/\psi\mathbf{K}_{\mathrm{S}}^{0}\right)(t) + \Gamma\left(\mathbf{B}_{\mathrm{d}}^{0} \to \mathbf{J}/\psi\mathbf{K}_{\mathrm{S}}^{0}\right)(t)} \propto \sin(2\beta)\sin(\Delta \mathbf{m}_{d}t)$

- 5 ingredients nécessaires : ۶
 - Sélection des $B^0_{d} \rightarrow J/\psi K^0_{s}$: trigger et reconstruction
 - Mesure du temps de vie des B⁰_d
 - Étiquetage de la saveur initiale des B⁰
 - > Ajoute de la dilution : $A_{cp}^{mes}(t) = (1 2\omega)A_{cp}^{theo}(t)$
 - > 3 paramètres caractéristiques :
 - > Efficacité de l'étiquetage : $\varepsilon_{tag} = \frac{N_R + N_W}{N_R + N_W + N_{TT}}$
 - > Fraction de mauvais étiquetage : $\omega = \frac{N_W}{N_P + N_W}$
 - > Puissance de l'étiquetage : $\varepsilon_{\text{eff}} = \varepsilon_{\text{tag}} D^2 = \varepsilon_{\text{tag}} (1 2\omega)^2$
 - Ajustement des paramètres ۶

- Taggers à trace unique : muon, électron, kaon
- Taggers à traces multiples : charges de vertex
 - > Mon travail : re-optimisation des taggers électron et charge de vertex inclusive

Optimisation et performances

coupure optimale: p_T>1.2 GeV/c

Performances par taggers :

	$arepsilon_{ ext{eff}}$ %	$arepsilon_{ ext{tag}}$ %	$\omega~\%$
μ	$1.76 {\pm} 0.11$	11.53 ± 0.14	30.5 ± 0.6
е	$0.55 {\pm} 0.06$	$4.10 {\pm} 0.09$	31.7 ± 1.0
Kos	2.38 ± 0.13	30.82 ± 0.20	36.1 ± 0.4
K_{SS}	$3.26 {\pm} 0.15$	30.63 ± 0.20	33.7 ± 0.4
$Q_{\rm vtx}$	$1.34{\pm}0.10$	23.97 ± 0.19	38.2 ± 0.4

$$\epsilon_{tot} = \sum \epsilon_{eff}$$

Performances de l'algorithme

Comparaison entre différentes expériences

	Puissance d'étiquetage (%)
BaBar	30.5
Belle	28.8
ALEPH	27.0
DO	4.5
CDF	6.6
ATLAS	4.6
LHCb	7.1

- Supériorité des collisionneurs e⁺e⁻
- Bruit de fond (machine leptonique contre hadronique)
- Petits angles entre les différentes traces (ex : plus difficile de reconstruire des vertex), biais induits par le trigger et sélection.

Méthode utilisée dans LHCb pour l'extraction de sin(2β)

- $= A_{cp}^{mes}(t) \propto (1 2\omega) \sin(2\beta) \sin(\Delta m_d t)$
- > Utilisation de canaux de contrôle spécifiques de saveur finale :
 - Extraction des paramètres depuis un ajustement multi-variables
 - > $sin(2\beta)$ et ω ne peuvent pas être extraits en même temps
 - > ω sera mesuré grâce à $B_d \rightarrow J/\psi K^*$
 - > Utilisation de la séparation Mixed-Unmixed pour construire des asymétries de saveur dépendantes du temps caractérisées par un terme en cosinus -> oscillations = Δ md et une amplitude = 1-2 ω
 - Si on veut $\sigma(\sin(2\beta))$ due à l'étiquetage (erreur systématique) deux fois plus petite que l'erreur statistique pour 2fb⁻¹, il faut l'erreur relative sur $\omega < \sim 1\%$
 - > Nécessité de nombreux canaux de contrôle pour avoir une grande statistique

$$\sigma(\omega)^2 = \frac{\omega \times (1 - \omega)}{\varepsilon_{\text{tag}} \times \text{Nb}(\text{evts})/2\text{fb}^{-1}}$$

 Différents problèmes : pas possible d'appliquer directement ω entre le canal de contrôle et celui de signal : différences dues au trigger et à la sélection.

Canaux de contrôle

Sélection de différents canaux de contrôle : B⁺→ $\overline{D}^0_{,}\mu^+\nu$, B⁺→ $\overline{D}^0_{,}\Pi^+$, B⁰_s→D_s⁻μ⁺ν (2 notes publiques LHCb) et B⁺→J/ψ K⁺

	Yield	B/S
Bu→D⁰µv	2.4 M	0.7
Bu→D⁰⊓	1 M	0.1
Bs→Dsµv	1 M	0.36
Bu→J/ψ K+	2 M	0.46
Bd→J/ψ K*	1M	0.3

 $\sigma(\omega)/\omega \sim 0.5~\%$

En route vers $sin(2\beta)$

- Différentes compositions et comportement suivant les différents types de bruit ≻
 - Comprendre quelles sont les propriétés caractéristique de ces bruits est essentiel
 - Si la description est mauvaise :

S. POSS JRJC 2007

Asy -0.3

-0.4

0

2

8

10

12

14

16

Conclusion

- LHCb est une expérience dédiée à l'étude de la violation de CP et des désintégrations rares
 - Mesures de précision
 - Grande statistique disponible
- Étape préliminaire : vérifier la fiabilité du détecteur et des outils d'analyse
 - Mesurer des paramètres déjà connus : sin(2β) mesuré par BaBar et Belle
- > Outil clé : étiquetage de la saveur initiale des mésons B neutres
 - > Utilisation de nombreuses sources d'information
 - Nombreux canaux de contrôle nécessaires pour diminuer les erreurs systématiques
- > L'étude pour sin(2β) est en cours !
 - Extraction de la fraction de la mauvais étiquetage dans un canal de contrôle
 - > Utilisation de données issues du MC complet
 - > Utilisation de vraies données si possible en fin de thèse

The end !

Backups

Backups

4 angles indépendants de CKM

$$\begin{split} \gamma &\equiv \phi_3 &\equiv \arg \left[-\frac{V_{\rm ud} V_{\rm ub}^*}{V_{\rm cd} V_{\rm cb}^*} \right] \\ \beta &\equiv \phi_1 &\equiv \arg \left[-\frac{V_{\rm cd} V_{\rm cb}^*}{V_{\rm td} V_{\rm tb}^*} \right] \\ \beta_{\rm s} &\equiv \chi &\equiv \arg \left[-\frac{V_{\rm cb} V_{\rm cs}^*}{V_{\rm tb} V_{\rm ts}^*} \right] \\ \beta_{\rm K} &\equiv \chi' &\equiv \arg \left[-\frac{V_{\rm us} V_{\rm ud}^*}{V_{\rm cs} V_{\rm cd}^*} \right] \end{split}$$

$$\phi_{s} = 2 \arg(V_{ts} * V_{tb})$$

$$\sim -2\beta_{s}$$

$$\sim -2\arg(V_{ts})$$

$$\sim -\arg(V_{ts}^{2})$$

Deux triangles d'unitarité

Programme de physique de LHCb

- Paramètres du mélange des B_s: fréquence, phase, $\Delta\Gamma_s$, a_{fs} 7 > $B_{a} \rightarrow \rightarrow D_{a}\pi$, $J/\psi \phi$, $J/\psi \eta^{(1)}$, $\eta_{a}\phi$, $B_{a} \rightarrow D_{a}D_{a}$, $B_{a} \rightarrow \rightarrow D_{a}Iv$
- α avec $B_d \rightarrow \pi \rho \Pi$, $\rho \rho$ >

≽

۶

- $\beta \text{ avec } B_d \rightarrow J/\psi \psi K_s$
 - et β avec les pingouins b $\rightarrow \rightarrow$ s
- γ avec plusieurs canaux, avant une sensibilité différente à de la NP: Etiquerage du Briecessaire
 - Asymétrie CP dépendante du temps de $B_s \rightarrow D_s^-K^+$ et $D_s^+K^-$
 - Asymétrie CP dépendante du temps de $B_d \rightarrow \pi$ et $B_s \rightarrow K^+K^-$ ۶
 - Comparaison des taux de désintégration des $B_d \rightarrow D^0(K\pi, KK, \pi\pi\pi)K^{*0}$ ۶
 - Comparaison des taux de désintégration des $B^{\pm} \rightarrow D^{0}(K\pi, KK, \pi\pi\pi)K^{\pm}$ ۶
 - Analyse de Dalitz des $B^{\pm} \rightarrow D^{0}(K_{S}\Pi\Pi, K_{S}KK)K^{\pm}$ et $B_{d} \rightarrow D^{0}(K_{S}\Pi\Pi, K_{S}KK)K^{*0}$ ۶
- Désintégrations rares ۶
 - Pingouins radiatifs $B_d \rightarrow K^* \gamma \gamma$, $B_s \rightarrow \phi \gamma \gamma$, $B_d \rightarrow \omega \gamma$
- * Pingouins électrofaibles $B_a \rightarrow K^{*0} \mu \mu$
 - Pingouins gluoniques $B_s \rightarrow \phi \phi$, $B_d \rightarrow \phi K_s$ ۶
 - Diagramme en boîte rares $B_s \rightarrow \mu \mu$
- Physique des B_c et baryons-b + imprévu ! ۶

⇒ Reconstruire des désintégrations de hadrons b avec états finals variés présentant plusieurs particules chargées ou neutres

12/12/2007

Le LHC

- LHC : grand collisionneur de hadrons |
 - Accélère des protons à 14 TeV au centre c
 - Plus grand accelérateur de particules du m (27 km de circonférence)
 - Fréquence des collisions : 40 MHz
- > 4 expériences :
 - > ATLAS : généraliste (higgs, supersymétrie:
 - > CMS : généraliste (higgs, supersymétries..
 - ALICE : Étude des collisions d'ions lourds
 - > LHCb : physique du quark b
- Démarrage prévu : 2008

B production

- > B hadrons are mostly produced in the forward direction (along the beam)
- Choose a forward spectrometer 10–300 mrad
- Both b and b in the acceptance: important for tagging the production state of the B hadron

Production graphs

Examples of Q = c/b production diagrams, *not* exhaustive:

12/12/2007

12/12/2007

12/12/2007

12/12/2007

- 2 niveaux de déclenchement
 - Le premier niveau est hardware (Level 0)
 - Utilise les informations recueillies par les calorimètres, les chambres à muons et le système d'empilement (dans le détecteur à vertex) pour sélectionner les évènements contenant un quark b
 - Le deuxième est software (High Level Trigger)
 - Utilise les informations de l'ensemble du détecteur pour effectuer une reconstruction partielle des candidats et sélectionner les meilleurs
- En entrée du détecteur : 40 MHz
- En sortie : 2 kHz
 - Réduction par un facteur 200

Magnet

- Warm Al conductor
- ◆ 4 Tm integrated field
- Weight = 1500 tons
- ◆ 4.2 MW
- Possibility to reverse the field (systematics)

Vertex Locator

12/12/2007

Track finding strategy

- Long tracks
- \Rightarrow highest quality for physics (good IP & p resolution)
- Downstream tracks
- Upstream tracks

T tracks

VELO tracks

- \Rightarrow needed for efficient K_s finding (good p resolution)
- \Rightarrow lower p, worse p resolution, but useful for RICH1 pattern recognition
- ⇒ useful for RICH2 pattern recognition
- \Rightarrow useful for primary vertex reconstruction (good IP resolution)

TDR Performance of long track

TDR Primary vertex reconstruction

- Use long, upstream and VELO tracks
 - bb production vertex found in 98% of bb events

- Multiple vertices can be found
 - No problem choosing bb production vertex using back-pointing of reconstructed B candidates

Charged hadron identification (TDR)

$$\varepsilon(K \rightarrow K) = 85\%, \ \varepsilon(\pi \rightarrow K) = 1.7\%, \text{ for } \Delta \ln L_{\kappa_{\pi}} > 4$$

(long tracks between 2 and 100 GeV) $_{45}$

Particle Identification with

LHCb has to identified charged hadrons over a large momentum range:

- High momentum hadrons in two-body B decays
- + Low momentum K for B flavour tagging (identify K from $b \rightarrow c \rightarrow s$)

 \Rightarrow RICH system divided into 2 detectors

RICH detectors

12/12/2007

Identification des particules

- Bonne séparation π/K sur 2-100 GeV/c
- Faible impulsion cruciale pour l'étiquetage
- Grande impulsion cruciale pour e.g. séparation desmodes B2hh (gamma)
- Meilleure performance d'identification jamais obtenue à un collisionneur hadronique

RICH detectors

RICH2 super structure

Exit/entrance windows

Hybrid Photodiodes

Test beam: $e-\pi$ separation

Typical event in the RICH1 photon detectors

Calorimeters

+ Preshower

*Pb converter sandwiched between two scintillator planes with 16k scintillating pads

+ECAL

 *"Shashlik" type modules 2mm Pb/ 4mm scintillator

Readout via WLS fibres
★σE/E =10%/√E + 1.5%

+HCAL

- +4mm scintillator/ 16mm iron
- Readout via WLS fibres
- **+**σE/E =75%/√E + 10%

Calorimeters system crucial for level-0 trigger: read in less than 25 ns !

Calorimeters

Spd & Prs validate
 the charged and EM nature of
 incoming particle, respectively.

EXPERIMENTAL CHALLENGE NEUTRAL PIONS RECONSTRUCTION

Charged lepton identification (TDR)

Build combined Δ InL variables using information from muon detector, calorimeters, and RICHes \Rightarrow both muon and electron ID significantly improved

 p_{μ} > 3 GeV and in MUON acceptance e from B⁰ \rightarrow J/ ψ K_s in CALO acceptance 12/12/2007 S. POSS JRJC 2007

γ and π^0 reconstruction (TDR)

- > γ with high E_T (> 2–3 GeV):
 - easy to trigger
 - used to reconstruct radiative B decays such as $B^0 \rightarrow K^* \gamma$ and $B_s \rightarrow \phi \gamma$
 - γ pairs from hard π⁰ can "merge" and be reconstructed as single γ
- > Resolved π^0 (2 γ clusters):
 - σ(m_{γγ}) ~ 10 MeV
- > Merged π^0 (single cluster):
 - core $\sigma(m) \sim 15 \text{ MeV}$
 - Larger $p_T(\pi^0)$ → less comb. bkg.

Introduction

Introduction

Velo overview

Velo overview

looking through from upstream

Chambres à muons

C-side M2 station completed

A-side M2 wall

Calo

ECAL:

 $\frac{\sigma_E}{E} = \frac{10\%}{\sqrt{E}} \oplus 1\%$ HCAL: $\frac{\sigma_E}{E} = \frac{80\%}{\sqrt{E}} \oplus 10\%$

12/12/2007

Etude CDF de $B \rightarrow DIv$

Différentes sources de leptons

Lepton charme

 $c \rightarrow 1$ S. POSS JRJC 2007

Hadronisation d'un quark b avec distribution de charge des particules produites

Corrélations de charge entre B_s et traces de fragmentations

Électron

- Optimisation de la sélection des électrons
 - Coupures sur le PID (RICH, CALO), l'impulsion, l'impulsion transverse, la qualité de la trace, le depôt d'énergie dans le détecteur de vertex et E/p (issu du calorimètre)

Valeur des coupures incluses dans le code officiel

S. POSS Séminaire 1iere année

Vertex Inclusif du côté opposé

> Définition :
$$Q_{vtx} = \frac{\sum_i p_{T_i}^{\kappa} Q_i}{\sum_i p_{T_i}^{\kappa}}$$

- Reconstruction d'un vertex inclusif par maximum de vraisemblance
- Optimization de κ et coupure centrale
- Utilisation inclusive ou exclusive selon les autres taggers disponibles
- Inclu dans le code officiel

κ

10

Control channels

- Idea: accumulate high statistics in flavour-specific modes
- ω can be extracted by:
 - B[±]: just comparing tagging with observed flavour
 - **B**_d and **B**_s: fitting known oscillation

	Channel	Yield/ 2 fb ⁻¹	δω /ω (2fb⁻¹)
Similar to signal	B+→J/ψ(μμ)K+	1.7 M	0.4%
	$B^+ \rightarrow D^0 \pi^+$	0.7 M	0.6%
	Β⁰→J/ψ(μμ)K*º	0.7 M	0.6%
	$B_s \rightarrow D_s^+ \pi^-$	0.12 M	2%
Semi- leptonics	$B_d^0 \rightarrow D^* - \mu^+ \nu$	9 M	0.16%
	$B^+ \rightarrow D^{0} (^*) \mu^+ \nu$	3.5 M	0.3%
	$B_s \rightarrow D_s^{(*)} \mu^+ \nu$	2 M	1%

B/S~0.2-0.8

B physics at LHC: (dis)advantages

	$\begin{array}{ccc} e^+e^- \rightarrow \ \Upsilon(4S) \rightarrow BB & pp \rightarrow \rightarrow \ bbX \ (\samebox{\scale}s=14) \\ PEPII, \ KEKB & LHC \ (LHCb-A) \end{array}$		ເຮ)
Production $\sigma_{_{bb}}$	1 nb	~500 µb	\bigcirc
Typical bb rate	10 Hz	100-1000 kHz	
bb purity	~1/4	σσ _{bb} /σσ _{inel} = 0.6% Trigger is a major issue !	
Pileup	0	0.5-5	
b-hadron types	B⁺B⁻ (50%) BºBº (50%)	B ⁺ (40%), B ⁰ (40%), B _s (10%) B _c (< 0.1%), b-baryons (10%)	
b-hadron boost	Small	Large (decay vertexes well separated)	
Production vertex	Not reconstructed	Reconstructed (many tracks)	
Neutral B mixing	Coherent B°B° pair mixing	Incoherent B ^o and B _s mixing (extra flavour-tagging dilution)	
Event structure	BB pair alone	Many particles not associated with the two b hadrons	

The LHC environment

	B factories	Tevatron	LHC
Prod. σ_{bb}	1 nb	100 μb	500 μb
bb rate	10 Hz	0.3 Hz	100 KHz
Purity	\sim 1/4	~ 0.2%	ರ _{bb} /ರ _{inel} ∼ 0.6%
Event struct.	BB pair	Many particles not from B	

Trigger an important issue!

Relevant rates:

- LHC: 40 MHz, 2 bunches full: 30 MHz
- At least 2 tracks in acceptance 10 MHz
- bb: 100 kHz
 - Decay of one B in acceptance: 15 kHz
 - relevant decays BR ~10⁻⁴ 10⁻⁹

Atlas/CMS trigger output: 100Hz; ~1MB/evt

12/12/2007 31/05/2007

Particles reconstructed

Туре	<n></n>
π^{\pm}	25
Κ±	10
μ^{\pm}	0.5
γ (p _T >2.5GeV)	~1

Extract ω in Bd2JPsiK* using RooFit (1)

- Signal model description :
 - Mass : gaussian
 - Decay :
 - Simple : $pdf sig \propto \frac{1}{\tau} e^{\left(-\frac{t}{\tau}\right)} \otimes Gauss(t, 0, \sigma)$
 - > Simple with oscillations : $pdf sig \propto \frac{1}{2\tau} e^{\left(-\frac{t}{\tau}\right)} \times (1 + \cos(\Delta m_d t)) \otimes Gauss(t, 0, \sigma)$
 - > Complex : pdf sig $\propto \frac{1}{2\tau} e^{\left(-\frac{t}{\tau}\right)} \times \left(1 + \mu(1 2\omega)\cos(\Delta m_d t)\right) \otimes \text{Gauss}(t, 0, \sigma)$
 - µ is +/-1/0 according to UnMixed / Mixed / untagged
- Bkg model :
 - Mass : exponential
 - > Decay : > Simple : $pdf bkg \propto \frac{1}{\tau_B} e^{\left(-\frac{t}{\tau_B}\right)} \otimes Gauss(t, 0, \sigma)$
 - > With tagging :

$$\text{pdf bkg} \propto \frac{1}{\tau_B} e^{\left(-\frac{t}{\tau_B}\right)} \times \left(\frac{1 + \mu(1 - 2\omega_B)}{2} + (\mu = 0) \times \frac{1}{2}\right) \otimes \text{Gauss}(t, 0, \sigma)$$

12/12/2007