Rayonnement cosmique	CherCam	RC dans l'atmosphère	RC dans l'IM	Conclusion

Détection et étude des ions dans le rayonnement cosmique par l'expérience CREAM

Antje Putze

LPSC Grenoble

14 décembre 2007

Rayonnement cosmique	CherCam	RC dans l'atmosphère	RC dans l'IM	Conclusion
00000	000	000	0000	000
< Plan				

- 2 CherCam, un détecteur Čerenkov pour CREAM
- 3 Propagation du rayonnement cosmique dans l'atmosphère terrestre
- Propagation du rayonnement cosmique dans le milieu interstellaire

5 Conclusion

 Rayonnement cosmique
 CherCam
 RC dans l'atmosphère
 RC dans l'IM
 Conclusion

 •oooo
 Composition et abondances

 Particules chargées :
 Nuclear abundance: cosmic rays compared to solar system

FIG.: Abondances relatives [astro-ph/0510321]

98% noyaux

- 87% protons
- 12% hélium

• 1% noyaux lourds Abondances similaires aux abondances solaires, mais :

- les éléments légers (Li, Be, B) et les éléments sub-Fe (Sc, Ti, Mn) sont plus abondants
- H et He sont moins abondants

Abondances \iff		Sources, Propagation		
Quelles sont les	sources? Comment le	rayonnement cosmique est-il		
accéléré ? Quel(s) est(sont) le(s) mécanisme(s) de propagation ?				

2% électrons

Rayonnement cosmique	CherCam	RC dans l'atmosphère	RC dans l'IM	Conclusion
0●000	000	000	0000	000
Spectre éne	rgétique			

Le spectre énergétique

- s'étend sur plus de 13 ordres de grandeurs
- peut être décrit par une loi de puissance :

$$\frac{\mathrm{d}\; N(E)}{\mathrm{d}\; E} \propto E^{-\gamma}$$

possède deux anomalies :

Rayonnement cosmique	CherCam	RC dans l'atmosphère	RC dans l'IM	Conclusion
००●००	000	000	0000	
Questions o	uvertes			

- Quelles sont les sources?
- Où se trouvent les sources?
- Existe-t-il des sources exotiques?
- Comment le rayonnement cosmique est-il accéléré?
- Comment est-il propagé?
- Qu'est-ce que provoque le genou et/ou la cheville?
- Existe-t-il une limite (GZK cut off)?

Intérêt physique du rayonnement cosmique

Le rayonnement cosmique peut nous donner des informations sur la composition et la structure de la galaxie, sur la distribution des sources et sur les processus physiques se déroulant dans la galaxie.

Rayonnement cosmique	CherCam	RC dans l'atmosphère	RC dans l'IM	Conclusion
००●००	000	000	0000	
Questions o	uvertes			

- Quelles sont les sources?
- Où se trouvent les sources?
- Existe-t-il des sources exotiques?
- Comment le rayonnement cosmique est-il accéléré?
- Comment est-il propagé?
- Qu'est-ce que provoque le genou et/ou la cheville?
- Existe-t-il une limite (GZK cut off)?

Intérêt physique du rayonnement cosmique

Le rayonnement cosmique peut nous donner des informations sur la composition et la structure de la galaxie, sur la distribution des sources et sur les processus physiques se déroulant dans la galaxie.

Rayonnement cosmique	CherCam	RC dans l'atmosphère	RC dans l'IM	Conclusion
○○○●○	000	000	0000	000
🧶 Modèle de	e Leakv B	ox		

Equation de diffusion (sans pertes en énergie)

$$\frac{N_i}{\tau_{\rm esc}} + \bar{n} v \sigma_i N_i = q_i + \sum_{j > i} \bar{n} v \sigma_{ij} N_j$$

A l'équilibre : absorption \sim production

$$\frac{N}{\tau_{\rm esc}} = q$$

$$N \propto E^{-\gamma}, \quad au_{esc} \propto E^{-\delta}, \quad q \propto E^{-lpha}$$
 $\implies \quad \gamma = lpha + \delta$

La détermination d'un paramètre entraîne la détermination de l'autre !

I ≡ →

э

Rayonnement cosmique	CherCam	RC dans l'atmosphère	RC dans l'IM	Conclusion
○○○●○	000	000	0000	000
🧶 Modèle de	e Leakv B	ox		

Equation de diffusion (sans pertes en énergie)

$$\frac{N_i}{\tau_{\rm esc}} + \bar{n} v \sigma_i N_i = q_i + \sum_{j>i} \bar{n} v \sigma_{ij} N_j$$

A l'équilibre : absorption \sim production

$$\frac{N}{\tau_{\rm esc}} = q$$

$$egin{aligned} & N \propto E^{-\gamma}, \quad au_{ ext{esc}} \propto E^{-\delta}, \quad q \propto E^{-lpha} \ & \implies \quad \gamma = lpha + \delta \end{aligned}$$

La détermination d'un paramètre entraîne la détermination de l'autre!

- ₹ 🖬 🕨

 Rayonnement cosmique
 CherCam
 RC dans l'atmosphère
 RC dans l'IM
 Conclusion

 0000
 000
 000
 000
 000

Rapports secondaires sur primaires

Information sur la matière traversée λ_{esc} à partir des rapports secondaires sur primaires :

$$rac{S}{P} \propto au_{
m esc} \propto \lambda_{
m esc}$$

Test sensible des modèles de propagation par le rapport B/C :

 $\lambda^{B/C}_{
m esc} \propto R^{-\delta}$

Identification de l'indice spectral δ possible (par un fit) à partir des énergies $E_k > 10^2 \, \mathrm{GeV/n}$

FIG.: Données du rapport B/C (points) et calculs (lignes) pour des indices spectraux de $\delta = 0.3$, 0.46, 0.6, 0.7 et 0.85 [A. Castellina & F. Donato, Astroparticle Physics, 24 (2005) 146]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Rayonnement cosmique	CherCam	RC dans l'atmosphère	RC dans l'IM	Conclusion
00000	000	000	0000	
൙ Plan				

2 CherCam, un détecteur Čerenkov pour CREAM

3 Propagation du rayonnement cosmique dans l'atmosphère terrestre

Propagation du rayonnement cosmique dans le milieu interstellaire

5 Conclusion

Rayonnement cosmique CherCam PC dans l'atmosphère RC dans l'1M Conclusion 0000 000 000 000 000 000 000 000 000

L'expérience Cosmic Ray Energetics And Mass

Expérience en ballon :

Mesure directe du rayonnement cosmique

Gamme d'énergie : 10^{12} à $10^{15}\,{\rm eV}$

Objectifs :

Mesure des flux des éléments du rayonnement cosmique (H à Fe)

- Etude de la propagation du rayonnement cosmique
- Recherche d'une coupure en éléments du rayonnement cosmique avant le genou
- Calibration des détecteurs de grande surface

Rayonnement cosmique	CherCam	RC dans l'atmosphère	RC dans I'IM	Conclusion
00000	000	000	0000	000
	1 1			

Rayonnement cosmique	CherCam 000	RC dans l'atmosphère	RC dans l'IM 0000	Conclusion
< Plan				

- 1 Rayonnement cosmique
- 2 CherCam, un détecteur Čerenkov pour CREAM

3 Propagation du rayonnement cosmique dans l'atmosphère terrestre

Propagation du rayonnement cosmique dans le milieu interstellaire

5 Conclusion

Rayonnement co 00000	osmique	CherCam 000	RC dans l'atmosphère ●00	RC dans l'IM 0000	Conclusion
🗢 Pro	oblémati	que			

Interaction du rayonnement cosmique dans l'atmosphère terrestre :

- Absorption
- Production des gerbes de particules

Altitude d'une expérience en ballon est $\sim 40\,\rm km$, ce qui correspond à une épaisseur de matière traversée de $\sim 5\,\rm g/cm^2$:

- Absorption
- Fragmentation des noyaux lourds en noyaux plus légers

Formulation de la problématique

Les mesures des flux secondaires du rayonnement cosmique interstellaire sont influencées par la production supplémentaire des particules secondaires dans l'atmosphère terrestre.

(4月) (1日) (日)

Rayonnement cosmique	CherCam	RC dans l'atmosphère	RC dans l'IM	Conclusion
	000	o●○	0000	000
🗶 B/C atm	osphérique			

[A. Putze et al, ICRC 2007 Proceedings, Merida (Mexico), 0888]

B/C in the atmosphere

LPSC Grenoble

Antje Putze

Détection et étude du rayonnement cosmique par CREAM 14/24

э

LPSC Grenoble

Antje Putze

Détection et étude du rayonnement cosmique par CREAM 15/24

Rayonnement cosmique	CherCam	RC dans l'atmosphère	RC dans l'IM	Conclusion
	000	000	0000	000
൙ Plan				

- 1 Rayonnement cosmique
- 2 CherCam, un détecteur Čerenkov pour CREAM
- 3 Propagation du rayonnement cosmique dans l'atmosphère terrestre
- 4 Propagation du rayonnement cosmique dans le milieu interstellaire

5 Conclusion

00000		.000	000	••••	000
	Modèles de	propagation	on		

Absence d'une théorie définitive expliquant la nature de la propagation du rayonnement cosmique

 \implies Utilisation des modèles semi-empiriques

Modèles semi-empiriques

Modèle de Leaky Box, Modèle de Diffusion à une et à deux dimensions, Weighted Slab Model, ...

Paramètres

 δ , λ_0 , D, R_0 , V_a , V_c , D_d , D_h , ...

Nécessité de contraindre les modèles et les paramètres Collaboration avec des théorieciens du LPNHE et du LAPTH

Rayonnement cosmique	CherCam	RC dans l'atmosphère	RC dans l'IM	Conclusion
	000	000	●000	000
Modèles de	propagatio	on		

Absence d'une théorie définitive expliquant la nature de la propagation du rayonnement cosmique

 \implies Utilisation des modèles semi-empiriques

Modèles semi-empiriques

Modèle de Leaky Box, Modèle de Diffusion à une et à deux dimensions, Weighted Slab Model, ...

Paramètres

 δ , λ_0 , D, R_0 , V_a , V_c , D_d , D_h , ...

Nécessité de contraindre les modèles et les paramètres
 Collaboration avec des théorieciens du LPNHE et du LAPTH

Rayonne 00000	ement cosmique	CherCam 000	RC dans l'atmosphère 000	RC dans l'IM ○●○○	Conclusion
-	Approche k	payesienne	et chaînes de N	larkov	

But :

Détermination des densités de probabilité des paramètres de propagation

Outil : Markov Chain Monte Carlo (MCMC) Algorithme de Metropolis-Hastings

Comment ca marche (version simplifiée) :

- Echantillonnage et exploration de l'espace des paramètres avec des chaînes de Markov
- Temps passé dans une région par une chaîne de Markov \propto la densité de propabilité cherchée

 $\implies \mathsf{Pour} \text{ un bin donné il faut seulement compter les entrées dans les chaînes de Markov pour cette valeur !}$

Rayonne	ement cosmique	CherCam	RC dans l'atmosphère	RC dans l'IM	Conclusion
00000		000	000	००●०	000
-	Résultats	prélimina	ires		

[A. Putze et al, in preparation]

LPSC Grenoble

Antje Putze

Détection et étude du rayonnement cosmique par CREAM 19/24

Rayonne	ement cosmique	CherCam	RC dans l'atmosphère	RC dans l'IM	Conclusion
00000		000	000	०००●	000
-	Résultats p	réliminaire	es : λ_{esc}		

[A. Putze et al, in preparation]

LPSC Grenoble

Antje Putze

Détection et étude du rayonnement cosmique par CREAM 20/24

Rayonnement cosmique	CherCam 000	RC dans l'atmosphère 000	RC dans l'IM 0000	Conclusion
൙ Plan				

- 1 Rayonnement cosmique
- 2 CherCam, un détecteur Čerenkov pour CREAM
- 3 Propagation du rayonnement cosmique dans l'atmosphère terrestre
- 4 Propagation du rayonnement cosmique dans le milieu interstellaire

5 Conclusion

< ∃ >

Rayonne	ement cosmique	CherCam	RC dans l'atmosphère	RC dans l'IM	Conclusion
00000		000	000	0000	●○○
-	Conclusion				

Rayonnement cosmique :

- Etude du rayonnement cosmique = étude de tous les noyaux
- Rapports secondaires sur primaires sont un test sensible pour les modèles de propagation

Rayonnement cosmique dans l'atmosphère terrestre :

- Influence non-négligable de la production supplémentaire de noyaux secondaires dans l'atmosphère terrestre
- Estimation des erreurs systématique et statistique

Contraintes des paramètres de propagation :

- Reproduction des résultats physiques attendus, compatibles avec d'autre valeurs existantes
- Exclusion de l'indice spectral de Kolmogorov $\delta = 1/3$ pour le modèle de Leaky Box avec et sans réaccéleration

Rayonnement cosmique	CherCam	RC dans l'atmosphère	RC dans l'IM	Conclusion
	000	000	0000	○●○
Perspective	es I			

Interaction du rayonnement cosmique :

- Interaction du rayonnement cosmique dans le détecteur
 ⇒ Simulation du détecteur CREAM
- Création d'un logiciel plus performant utilisable par d'autres expériences

Contraintes des paramètres de propagation :

- Etude des modèles de diffusion dépendant de la zone, parce que récemment il a été montré que ces modèles peuvent affecter les flux exotiques estimés de façon considérable ([astro-ph/0612714])
- Utilisation de données experimentales nouvelles et plus précises pour les rapports secondaires sur primaires B/C et Sc+V+Ti/Fe de PAMELA, AMS et CREAM pour l'analyse MCMC

.

Rayonnement cosmique	CherCam	RC dans l'atmosphère	RC dans l'IM	Conclusion
00000	000	000	0000	○○●
Perspective	s II			

Analyse des données du vol de CREAM en décembre 2007

