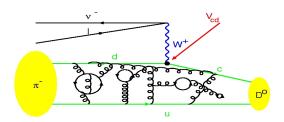
Benjamin Haas

LPT, Universite Paris XI/CNRS

December 6, 2007

Mise en bouche : désintégrations du meson $D(=\bar{u}c,...)$



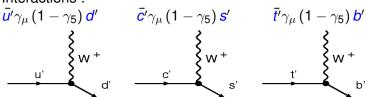
- 1. Détermination de la phase de violation CP
- 2. Tests d'unitarité de la matrice CKM
- 3. Tests de la dynamique de QCD non perturbative
- 4. Tests du modele standard (presence de courants droits,...)

Les quarks et le secteur electrofaible

1. 6 SAVEUR DE QUARKS repartis dans 3 familles états propres des interactions electrofaibles:

$$\left(\begin{array}{c}u'\\d'\end{array}\right),\;\left(\begin{array}{c}c'\\s'\end{array}\right),\;\left(\begin{array}{c}t'\\b'\end{array}\right)$$

2. Interactions:



3. On sait que les etats propres de masse different

$$\begin{pmatrix} u' \\ c' \\ t' \end{pmatrix} = S^{\mathrm{U}} \begin{pmatrix} u \\ c \\ t \end{pmatrix}, \qquad \begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = S^{\mathrm{D}} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

1. Que deviennent les courants ?

$$\{U^{\alpha}\} = (u, c, t), \qquad \{D^{\alpha}\} = (d, s, b)$$

$$\bar{U}^{\alpha\prime}\gamma_{\mu}(1 - \gamma_{5})D^{\alpha\prime} = \bar{U}^{\alpha}\gamma_{\mu}(1 - \gamma_{5})D^{\beta}V_{\alpha\beta}$$

$$V = S^{U^{\dagger}}S^{D}$$

Tous les quarks "Up" interragissent avec tous les quarks "Down" a priori

2. Parametrisation de Wolfenstein (1983) de la matrice CKM:

$$V = \begin{pmatrix} u & c & t \\ 1 - \lambda^2/2 & \lambda & \lambda^3 A \left(\rho - i\eta(1 - \lambda^2/2)\right) & d \\ -\lambda & 1 - \lambda^2/2 - i\eta A^2 \lambda^4 & \lambda^2 A (1 + i\eta \lambda^2) & s \\ \lambda^3 A \left(1 - \rho - i\eta\right) & -\lambda^2 A & 1 & b \end{pmatrix}$$

La matrice de mélange de Cabibbo-Kobayashi-Maskawa (CKM)

$$V = \begin{pmatrix} u & c & t \\ 1 - \lambda^2/2 & \lambda & \lambda^3 A \left(\rho - i\eta(1 - \lambda^2/2)\right) & d \\ -\lambda & 1 - \lambda^2/2 - i\eta A^2 \lambda^4 & \lambda^2 A (1 + i\eta \lambda^2) & s \\ \lambda^3 A \left(1 - \rho - i\eta\right) & -\lambda^2 A & 1 & b \end{pmatrix}$$

La matrice de mélange de Cabibbo-Kobayashi-Maskawa (CKM)

$$V = \begin{pmatrix} u & c & t \\ 1 - \lambda^2/2 & \lambda & \lambda^3 A \left(\rho - i\eta(1 - \lambda^2/2)\right) & d \\ -\lambda & 1 - \lambda^2/2 - i\eta A^2 \lambda^4 & \lambda^2 A (1 + i\eta \lambda^2) & s \\ \lambda^3 A \left(1 - \rho - i\eta\right) & -\lambda^2 A & 1 & b \end{pmatrix}$$

Matrice unitaire dans le Modèle Standard

La matrice de mélange de Cabibbo-Kobayashi-Maskawa (CKM)

$$V = \begin{pmatrix} u & c & t \\ 1 - \lambda^2/2 & \lambda & \lambda^3 A \left(\rho - i\eta(1 - \lambda^2/2)\right) & d \\ -\lambda & 1 - \lambda^2/2 - i\eta A^2 \lambda^4 & \lambda^2 A (1 + i\eta \lambda^2) & s \\ \lambda^3 A \left(1 - \rho - i\eta\right) & -\lambda^2 A & 1 & b \end{pmatrix}$$

- 1. Matrice unitaire dans le Modèle Standard
- 2. Interactions autorisées à violer CP grace au terme η

$$V = \begin{pmatrix} u & c & t \\ 1 - \lambda^2/2 & \lambda & \lambda^3 A \left(\rho - i\eta(1 - \lambda^2/2)\right) & d \\ -\lambda & 1 - \lambda^2/2 - i\eta A^2 \lambda^4 & \lambda^2 A \left(1 + i\eta \lambda^2\right) & s \\ \lambda^3 A \left(1 - \rho - i\eta\right) & -\lambda^2 A & 1 & b \end{pmatrix}$$

- 1. Matrice unitaire dans le Modèle Standard
- 2. Interactions autorisées à violer CP grace au terme η
- 3. Hierarchie empirique des elements de matrices:

$$\lambda = 0.2166(23)$$

[Mescia arXiv:0710.5620]

La matrice de mélange de Cabibbo-Kobayashi-Maskawa (CKM)

$$V = \begin{pmatrix} u & c & t \\ 1 - \lambda^2/2 & \lambda & \lambda^3 A \left(\rho - i\eta(1 - \lambda^2/2)\right) & d \\ -\lambda & 1 - \lambda^2/2 - i\eta A^2 \lambda^4 & \lambda^2 A (1 + i\eta \lambda^2) & s \\ \lambda^3 A \left(1 - \rho - i\eta\right) & -\lambda^2 A & 1 & b \end{pmatrix}$$

- 1. Matrice unitaire dans le Modèle Standard
- 2. Interactions autorisées à violer CP grace au terme η
- 3. Hierarchie empirique des elements de matrices: $\lambda = 0.2166(23)$ [Mescia arXiv:0710.5620]

Seule l'experience peut nous donner les valeurs de ces parametres **MAIS**: les quarks n'existent pas a l'etat libre, ils hadronisent.

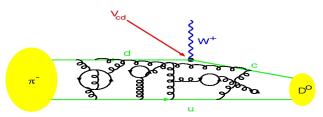
Hadronisation



- 1. On veut mesurer $V_{cd} \langle \bar{d} \gamma_{\mu} (1 \gamma_5) c \rangle W^{\mu}$
- 2. Les quarks n'existent pas à l'état libre
 - $\langle \bar{d}\gamma_{\mu}(1-\gamma_5)c\rangle$ non accessible experimentalement
 - $\langle \pi | \vec{d} \gamma_{\mu} (1 \gamma_5) c | D \rangle$ accessible experimentalement
 - → Resultat experimental=Partie faible×Partie hadronique×...
- 3. A l'intérieur des hadrons, les interactions sont non perturbatives

 $\langle \pi | \bar{d} \gamma_{\mu} (1 - \gamma_5) c | D \rangle$ non évaluable perturbativement \downarrow QCD SUR RÉSEAU

Hadronisation



- 1. On veut mesurer $V_{cd} \langle \bar{d} \gamma_{\mu} (1 \gamma_5) c \rangle W^{\mu}$
- 2. Les quarks n'existent pas à l'état libre
 - $\langle \bar{d}\gamma_{\mu}(1-\gamma_5)c\rangle$ non accessible experimentalement
 - $\langle \pi | \vec{d} \gamma_{\mu} (1 \gamma_5) c | D \rangle$ accessible experimentalement
 - → Resultat experimental=Partie faible×Partie hadronique×...
- 3. A l'intérieur des hadrons, les interactions sont non perturbatives

$$\langle \pi | \bar{d} \gamma_{\mu} (1 - \gamma_5) c | D \rangle$$
 non évaluable perturbativement \downarrow QCD sur réseau

- 1. Theorie de jauge **SU(3)** Lagrangien $\mathcal{L}_{QCD}[x, \{\Phi\}]$
- 2. Evaluation de $\langle \pi | \bar{d} \gamma_{\mu} (1 \gamma_5) c | D \rangle$;

$$\langle \pi(x)|ar{d}\gamma_{\mu}(1-\gamma_{5})c|D(y)
angle =\int\pi(x)\;ar{u}\gamma_{\mu}(1-\gamma_{5})c\;D(y)e^{i\int\mathrm{d}^{4}x\mathcal{L}_{QCD}[x,\{\Phi\}]}$$

- 1. Theorie de jauge SU(3) Lagrangien $\mathcal{L}_{QCD}[x, \{\Phi\}]$
- 2. Evaluation de $\langle \pi | \bar{d} \gamma_{\mu} (1 \gamma_5) c | D \rangle$;

$$\langle \pi(x)|\bar{d}\gamma_{\mu}(1-\gamma_{5})c|D(y)\rangle = \int \pi(x)\;\bar{u}\gamma_{\mu}(1-\gamma_{5})c\;D(y)e^{i\int d^{4}x\mathcal{L}_{QCD}[x,\{\Phi\}]}$$

Tentative de resolution numérique de l'intégrale complète ?

- 1. Theorie de jauge **SU(3)** Lagrangien $\mathcal{L}_{QCD}[x, \{\Phi\}]$
- 2. Evaluation de $\langle \pi | \bar{d} \gamma_{\mu} (1 \gamma_5) c | D \rangle$;

$$\langle \pi(x)|ar{d}\gamma_{\mu}(1-\gamma_{5})c|D(y)\rangle = \int \pi(x)\ ar{u}\gamma_{\mu}(1-\gamma_{5})c\ D(y)e^{i\int \mathrm{d}^{4}x\mathcal{L}_{QCD}[x,\{\Phi\}]}$$

Tentative de resolution numérique de l'intégrale complète ?

Problemes:

- Termes complexes oscillants très (trop!) rapidement
 - → II faut s'en débarrasser

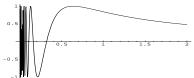


Figure: sin(1/x)

- 1. Theorie de jauge **SU(3)** Lagrangien $\mathcal{L}_{QCD}[x, \{\Phi\}]$
- 2. Evaluation de $\langle \pi | \bar{d} \gamma_{\mu} (1 \gamma_5) c | D \rangle$;

$$\langle \pi(x)|\bar{d}\gamma_{\mu}(1-\gamma_{5})c|D(y)\rangle = \int \pi(x)\;\bar{u}\gamma_{\mu}(1-\gamma_{5})c\;D(y)e^{i\int d^{4}x\mathcal{L}_{QCD}[x,\{\Phi\}]}$$

Tentative de resolution numérique de l'intégrale complète ?

Problemes:

- Termes complexes oscillants très (trop!) rapidement
 - → II faut s'en débarrasser
- Il faut discrétiser le lagrangien
 - → Quel impact sur la théorie ??

• Termes complexes oscillants très (trop!) rapidement:

On effectue une "rotation" vers l'espace euclidien : $t \rightarrow it$

$$\langle \pi(x)|\bar{u}\gamma_{\mu}(1-\gamma_{5})c|D(y)\rangle^{E} = \int \pi(x)\;\bar{u}\gamma_{\mu}(1-\gamma_{5})c\;D(y)e^{-\int d^{4}x\mathcal{L}^{E}_{QCD}[x,\{\Phi\}]}$$

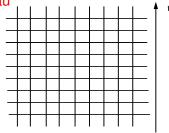
- Il faut discrétiser le lagrangien
 - → QCD sur reseau

• Termes complexes oscillants très (trop!) rapidement:

On effectue une "rotation" vers l'espace euclidien : $t \rightarrow it$

$$\langle \pi(x)|\bar{u}\gamma_{\mu}(1-\gamma_{5})c|D(y)\rangle^{E} = \int \pi(x)\;\bar{u}\gamma_{\mu}(1-\gamma_{5})c\;D(y)e^{-\int d^{4}x\mathcal{L}^{E}_{QCD}[x,\{\Phi\}]}$$

Il faut discrétiser le lagrangien



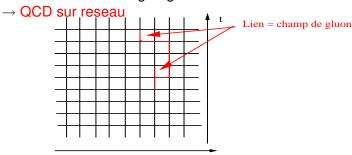
X

• Termes complexes oscillants très (trop!) rapidement:

On effectue une "rotation" vers l'espace euclidien : $t \rightarrow it$

$$\langle \pi(x)|\bar{u}\gamma_{\mu}(1-\gamma_{5})c|D(y)\rangle^{E} = \int \pi(x)\;\bar{u}\gamma_{\mu}(1-\gamma_{5})c\;D(y)e^{-\int d^{4}x\mathcal{L}^{E}_{QCD}[x,\{\Phi\}]}$$

Il faut discrétiser le lagrangien



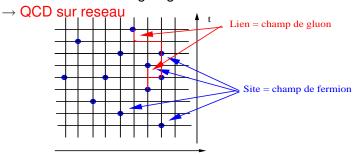
X

• Termes complexes oscillants très (trop!) rapidement:

On effectue une "rotation" vers l'espace euclidien : $t \rightarrow it$

$$\langle \pi(x)|\bar{u}\gamma_{\mu}(1-\gamma_{5})c|D(y)\rangle^{E} = \int \pi(x)\;\bar{u}\gamma_{\mu}(1-\gamma_{5})c\;D(y)e^{-\int d^{4}x\mathcal{L}^{E}_{QCD}[x,\{\Phi\}]}$$

Il faut discrétiser le lagrangien



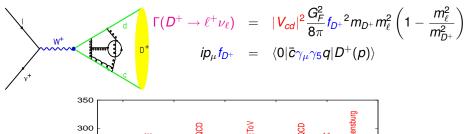
Х

Resultats récents dans le secteur du charme

- 1. **Spectrsocopie**: Observation de nouveaux états, dont certains états étranges étonnement étroits
 - 0^+ : $D_0^*(2400)$, $\Gamma = 261 \pm 50 \text{MeV}$; $D_{s0}^*(2317)$, $\Gamma < 4.6 \text{ MeV}$
 - 1⁺ : $D_1(2420)$, $\Gamma = 20.4 \pm 1.7 \text{MeV}$; $D_{s1}(2460)$, $\Gamma < 5.5 \text{ MeV}$
- 2. Le mélange $\mathbf{D} \bar{\mathbf{D}}$
- 3. **BaBar and BELLE** sont des usines à mesons *B* qui produisent une grande statistique d'evenements "charmés"
- 4. **Usines à** c: Cleo-c travaille sur la résonnance $\psi(3770)$; BESS-III devrait commencer en 2008

Un meilleur contrôle des erreurs théoriques est nécessaire

$$D^+ \rightarrow \ell^+ \nu_{\ell}$$



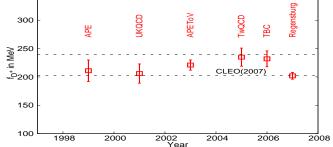


Figure: Resultats "quenched" (boucles de quarks negligés))

00

$D^+ ightarrow \ell^+ u_\ell$: notre de calcul de f_D^+ [Becirevic, Haas, Mescia]

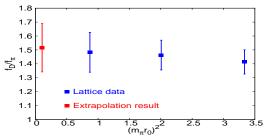
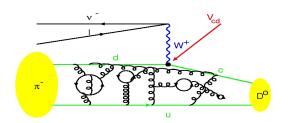


Figure: f_D/f_{π} en fonction de la masse du pion

- Impossibilité de simuler à la valeur physique de la masse des quarks legers (ou du pion)
 - → Extrapolation (*chirale*) vers le pion physique
- 2. Impossibilité de simuler dans le continu:
 - "Amélioration de l'action" pour une convergence plus rapide
 - Extrapolation vers le continu

$$D \to \pi \ell \nu_{\ell}$$



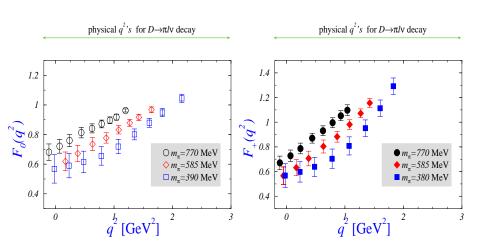
$$\begin{split} \frac{d\Gamma}{dq^2}(D \to \pi \ell \nu_\ell) &= |V_{cd}|^2 \frac{G_F^2}{192 \pi^2 m_D^3} \lambda^{3/2} (q^2) |F_+(q^2)|^2 \\ \langle \pi(\overrightarrow{k}) | V_\mu^{qc} | D(\overrightarrow{p}) \rangle &= (p + k - q \frac{m_D^2 + m_P^2}{q^2})_\mu F_+(q^2) + q_\mu \frac{m_D^2 + m_P^2}{q^2} F_0(q^2) \end{split}$$

Probleme (supplémentaire)

- Determiner une fonction plutot qu'une valeur
 - \rightarrow Une plage de q^2 "physique" est necessaire

$D o \pi \ell u_\ell$: notre calcul de $F_+(q^2)$

[Becirevic, Haas, Mescia]



Conclusion

- Il reste encore beaucoup à faire dans le secteur du charme
- Nous avons déeveloppé ne nouvelle strategie pour extraire les facteurs de forme
- · Nos resultats:

$$f_D = 200(22) \text{ MeV}$$

$$\frac{F_{+}(1\text{GeV}^{2})}{f_{D}} = 3.76(54) \text{ GeV}^{-1}$$
 LinearFit
4.32(56) GeV⁻¹ HM χ PT

- En projet : l'etude de la forme des facteurs de forme, ou aue peut-on apprendre sur QCD?
- Travail sur les problemes des artefacts du à la discretisation (potentiellement important pour le charme)