Gravitational lensing of SNLS the Supernova

First Year Results from CFHT SNLS Astier et al (astro-ph/0510447)

Gravitational lensing

One of the consequences of GR is that light rays are deflected by gravity

Gravitational lensing depends solely on the projected, two-dimensional mass distribution of the lens, and is independent of the luminosity and the composition of the lens.

Ideal way to detect and study dark matter

The thin screen approximation

Valid when the distance between observer and lens and lens and source is much bigger than the size of the lens

Why is this interesting for us?

The light from a supernova will experience gravitational lensing due to galaxies, clusters or other matter densities in the line-of-sight and this will cause an additional dispersion in the observed source luminosities

Most of the Sne are demagnified and some are significantly magnified

Questions to be addressed:

-Can the intrinsic scatter in the Hubble diagram be further reduced?
-Is it possible to detect a correlation between residuals and magnification?
-Is it possible to say something about the dark matter distribution of the galaxies?

Jonsson et al. 2006

First estimate (a feasibility check)

700 simulated type Ia Sne using SNLS Sne observations (Astier et al 2006)

Magnification of each supernova is estimated using SNOC

The SuperNova Observation Calculator Goobar et al (astro-ph/0206409)

(2-mag

Is it possible to detect a signal ?

Expected standard candle brightness (calculated from a cosmological model)

Magnification

Plots of residuals vs magnification

For estimations of the magnification errors, a work on the GOODs fields has been used

(Jonsson et al astro-ph/0612324) Graph

Likelihood ratio

ANALYSIS OF THE SNLS DATASET

Conversion of luminosity into velocity dispersion or virial mass

2 promising methods:		
Galaxy-galaxy lensing	Faber-Jackson / Tully-Fisher relations	

Investigation of 5 different papers and their results (3 galaxy-galaxy lensing papers and 2 FJ/TF papers)

Hoekstra et al. 2004/2005 RCSBohm et al. (2004) FORS Deep FieldKleinheinrich et al. 2005 COMBO-17Mitchell et al. (2005) SDSS

Galaxy-galaxy lensing

Images of background galaxies are distorted by foreground galaxies.

Tangential ellipticity is proportional to tangential shear, γ_t $\gamma_t = \varepsilon_t$

Shear is a measure of the total mass (dark and luminous) $\gamma_t(r) \sim \Sigma(\langle r \rangle - \Sigma(r)$

BUT

One can only study ensemble averaged properties, because the weak lensing signal induced by an individual galaxy is too low to be detected.

Halo models

SIS Isothermal Sphere

NFW Navarro Frenk White

$$\rho(r) = \frac{\sigma_v^2}{2\pi G} \frac{1}{r^2}$$
$$\gamma_T = \frac{2\pi \sigma_v^2}{c^2 \theta} \beta$$
Velocity dispersion

$$\rho(r) = \frac{\delta_c \rho_c}{(r/r_s)(1+r/r_s)^2}$$
$$M_{vir} = \frac{800\pi}{3} \rho_c r_{vir}^3$$
$$\bigcup$$
Virial mass/radius

Scaling relations

The lensing signal depends on the angular diameter distance between observer, lens and source which is different for each survey.

What to do?

Answer:

Scale the results to a fiducial luminosity L*

$$\frac{\sigma}{\sigma_*} = \left(\frac{L}{L_*}\right)^{\alpha} \qquad \frac{M}{M_*} = \left(\frac{L}{L_*}\right)^{\beta} \qquad L_* = 10^{10} h^{-2} L_{B\oplus}$$

K-corrections	the fiducial luminosity is given in different bands	3-4%
Probing scales	The lensing signal is not probed out to the same radius	20%

K-corrections	the fiducial luminosity is given in different bands	— 3-4%
Probing scales	The lensing signal is not probed out to the same radius	20%
Cutoff radius	The models have infinit mass so we must have a cutoff usually refered to as the virial radius/mass or r200/m200	A lot of different definitions

K-corrections	the fiducial luminosity is given in different bands	— 3-4%
Probing scales	The lensing signal is not probed out to the same radius	20%
Cutoff radius	The models have infinit mass so we must have a cutoff usually refered to as the virial radius/mass or r200/m200	A lot of different definitions
Selection and contamination	Contamination by groups or on Different color splits	clusters

The Faber-Jackson/Tully-Fisher relations

The Faber-Jackson or Tully-Fisher relations relates the velocity dispersion and the Luminosity of the galaxy.

F-J relation (ellipticals) Mitchell et al. (2005)	$L \propto \sigma^{\beta}$
$\log_{10} \sigma = -0.091(M_B - 4.74 + 0.85z)$	30,000 galaxies
T-F relation (spirals) Bohm et al. (2004)	
$\log_{10} V_{\rm max} = -0.134(M_B + 3.61 + 1.22z)$	
$\sigma = V_{\rm max} / \sqrt{2}$	77 galaxies

paper	scaling parameter α	σ_{\star} km/s
Hoekstra et al. 2004	0.3	$140\pm4\pm3$
Kleinheinrich et al. full sample	$0.28^{+0.12}_{-0.09}$	136+18
blue sample (but scale = $150h^{-2}$ kpc)	0.22+0.15	130^{+30}_{-36}
red sample (but scale = 150h ⁻² kpc)	$0.28^{+0.15}_{-0.12}$	185^{+24}_{-30}
Tully-Ficher relation (spirals)	0.33	115^{+12}_{-10}
Faber-Jackson relation (ellipticals)	0.23	149^{+30}_{-29}

Table 1: Results for the SIS model.

paper	scaling parameter β	$M_{\rm vir} \ 10^{11} h^{-1} M\odot$
Hoekstra et al. 2005	1.5±0.3	5.9 ^{+1.5}
Kleinheinrich et al. full sample blue sample	$0.9^{+0.36}_{-0.48}$ $0.54^{+0.60}_{-0.36}$	$7.1^{+2.6}_{-2.7}$ $4.1^{+3.3}_{-2.4}$
red sample	$1.26^{+0.48}_{-0.60}$	$8.02^{+7.1}_{-3.8}$
Hoekstra et al. 2004	1.2	$8.4 \pm 0.7 \pm 0.4$

Table 2: Results for the NFW model.

Velocity dispersions

Virial mass

All "unobserved" matter is put into a smoothly distributed component.

Difficulty:

How to infer the "correct" total mass of each galaxy?

Results from SIS and NFW give different mass

Q-LET

Q-LET is a program that enables a quick estimate of the gravitational lensing effects on a point source

Future work

- Estimation of the magnification of the 500 final Sne
- Look for the lensing signal (a correlation between the residuals in the Hubble diagram and the magnification)
- See wheather it is possible to constrain the halo masses of the galaxies

