JRJC 2007, 13 Décembre

Alejandro Pérez

Groupe BaBar LPNHE-Paris

Plan de Présentation

- Le Modes Domines par pingouin et la Recherche Physique au delà de Modèle Standard
- Le Canal $B^0 \rightarrow K_s \pi^+ \pi^-$
- Le Plan de Dalitz (DP)
- Stratégie d'Analyse: Fit de Vraisemblance Maximal
- Modèle de Signal
- Résultats de l'Ajustement
- Paramètres Mesurés et Interprétation
- Résumé et Perspectives

Alejandro Perez,

Le Modes charmless dominé par pingouin

- sin2 β dans les modes GOLDEN $b \rightarrow c\bar{c}s$
 - Dominé par amplitude d'arbre
 - Pingouins ont la même phase faible
- sin2 β dans les modes pingouin $b \rightarrow q \overline{q} s$
 - La phase dominante est la même
 - Particules de modèles au delà de SM peuvent contribuer aux boucles
 - C'est une fenêtre pour la nouvelle physique!

Modèle Standard

$$S_{c\bar{c}s} = S_{q\bar{q}s} + \Delta S_{SM} = \sin 2\beta$$

$$C_{c\bar{c}s} \approx C_{s\bar{s}s} \approx 0$$

Nouvelle Physique

$$S_{c\bar{c}s} \neq S_{q\bar{q}s} + \Delta S_{SM}$$

$$C_{c\bar{c}s} \neq C_{s\bar{s}}$$

Alejandro Perez,

- Nous avons fait simultanément
 - Une analyse dépendante du temps
 - Une analyse de Dalitz (voire plus tard)
 - Pour accéder a la violation CP et aux phases
- Mesurer directement $2\beta_{eff}$ et lever l'ambigüité sur $\sin(2\beta) = \sin(\pi 2\beta)$
- Certaines phases permettent d'accéder à l'angle CKM γ (voire après)

Alejandro Perez,

Le Canal B^o \rightarrow K_s $\pi^+\pi^-$: Motivations

• Les modes dominés par un pingouin sont un bon endroit pour chercher de la nouvelle physique

 Les paramètres S mesurés sont systématiquement plus petits que ceux des modes GOLDEN, alors que les corrections du MS prédisent des valeurs de S plus grandes

 Les erreurs statistiques sont encore grandes

Moyenne « naïve » fr<u>ôl</u>e les
 3σ d'écart par rappor *C S*

Mesure de paramètre S pour

 $C\overline{C}S$ (modes GOLDEN)

Alejandro Perez,

Le Plan de Dalitz (DP):

Stratégie d'Analyse: Fit de Vraisemblance Maximal

Alejandro Perez,

Observables Physiques

Alejandro Perez,

Alejandro Perez,

Les Composantes dans le Plan de Dalitz

- $B^0 \rightarrow \rho^{0}(770) K_{s}^0$
- $B^0 \to f_0(980) K^0_{S}$
- $\bullet B^0 \to K^*(892)\pi$
- $\bullet B^0 \to \chi_{c0} K^0_{S}$
- $B^0 \to K^{*0}(1430)\pi$
- $\bullet B^0 \to f_x(1300)K_S^0$
- $B^0 \rightarrow f_2(1270)K_S^0$
- Non résonnant

Structure compliquée dans le Plan de Dalitz!

Alejandro Perez,

JRJC 2007, 13 Decembre

Résultats de l'Ajustement

Parameter Name	Fit Result					
$\mathbb{N}(B^0 ightarrow \pi^+ \pi^- K_s^0)$	2146 ± 69	Table	18: Nominal fit	t results for the r	esonant amplitud	es.
$N(B^0 \rightarrow D^+ \pi^-)$	3379 ± 60	Resonance Name	A	$\phi[degrees]$	A	$\phi[degrees]$
$N(B^0 \rightarrow J/\psi K_s^0)$	1803 ± 43	$f_0 K_s^0$	4.0	0.0	2.8 ± 0.7	$(-88.6\pm21.3$
$N(B^0 \rightarrow \psi' K_s^0)$	142 ± 13	$ ho K_s^0$	0.10 ± 0.02	-301.4 ± 16.4	0.09 ± 0.02	-338.7 ± 21.2
N(cont-Lepton)	45 ± 9	$f_0(1300)K_s^0$	1.9 ± 0.4	117.6 ± 22.6	1.1 ± 0.3	-15.2 ± 23.8
N(cont-KaonI) YIEIOS	803 ± 31	Non-Res	3.0 ± 0.6	-346.2 ± 14.3	3.7 ± 0.5	-16.2 ± 17.3
N(cont-KaonII)	2133 ± 49	$K^{*+}(892)\pi^{-}$	0.136 ± 0.021	-60.7 ± 18.5	0.113 ± 0.018	102.6 ± 22.9
N(cont-KaonPion)	1781 ± 45	$K_0 *+(1430)\pi^-$	4.9 ± 0.7	-82.4 ± 16.8	7.1 ± 0.9	-280.8 ± 20.5
N(cont-Pion)	2051 ± 48	$f_2(1270)K_s^0$	0.011 ± 0.004	62.9 ± 23.3	-0.010 ± 0.003	-253.9 ± 27.8
N(cont-Other)	1618 ± 42	$\chi_{c0}K_s^0$	0.34 ± 0.15	68.7 ± 31.1	0.40 ± 0.11	154.5 ± 28.6
N(cont-NoTag)	5841 ± 80	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
$f_{core}(\Delta E)$ Signal	0.69 ± 0.11					
$\mu_{core}(\Delta E)$ Signal	$-1.4 \pm 0.6 \text{ MeV}$			dele a 8	resonanc	ces
$\sigma_{core}(\Delta E)$ Signal	$17.6 \pm 1.1 \text{ MeV}$	Parametres				
$\mu_{tail}(\Delta E)$ Signal	-9.5 ± 3.8 MeV	de ∆E Signal	-15 A	molitud	~~	
$\sigma_{tail}(\Delta E)$ Signal	33.6 ± 5.4 MeV			mpillua	es	
$\mathtt{Slope}(\Delta E)$ Continuum	-0.4 ± 0.2					
$\mu(\mathrm{m}_{ES})$ Signal	$5.2789 \pm 0.0001 \text{ GeV}/c^2$		• 15	Dhacae		
$\sigma_L(\mathrm{m}_{ES})$ Signal	$2.23 \pm 0.06 \text{ MeV}/c^2$			nases,		
$\sigma_R(\mathrm{m}_{ES})$ Signal	$2.73 \pm 0.07 \text{ MeV}/c^2$					
Argus Slope (m_{ES}) Continuum	-9.4 ± 5.8		• 11 Y	'ields.		
$a_1(NN)$ Continuum	1.9 ± 0.1	-				
$a_2(NN)$ Continuum	3.2 ± 0.4	Paramètres de	• 20 n	aramàtra	e do "cha	no"
$a_3(NN)$ Continuum	-1.1 ± 0.1	NN continuum	° 20 p	anametre	Sue Sila	pe,
$a_5(NN)$ Continuum	-0.48 ± 0.05					
$\mu_{common}(\Delta t)$ Continuum	$0.018 \pm 0.007 \ ps$		• 14 a	utres par	amètres.	
$\sigma_{core}(\Delta t)$ Continuum	$1.14 \pm 0.02 \ ps$,	
$f_{tail}(\Delta t)$ Continuum	0.16 ± 0.02	Pécolution do A	t Total	de 75 pe	vernètres l	libroo
$\sigma_{tail}(\Delta t)$ Continuum	$2.8 \pm 0.2 \ ps$			ue ro pa	anetres	inig2
$f_{outlier}(\Delta t)$ Continuum	0.030 ± 0.004	de Bruit de Fond	^B dans	l'aiustem	ent!	
$\sigma_{outlier}(\Delta t)$ Continuum	$10.6 \pm 0.8 \ ps$					

Alejandro Perez,

Alejandro Perez,

Résultats de l'Ajustement: Région Signal

Les Paramètres Mesurés: 2_{βeff}

2β_{eff}[f₀(980)K⁰_S]:

2β_{eff}[ρ⁰(770)K⁰_S]:

Alejandro Perez,

L'hiver 2007

L'été 2007

- Meilleure précision sur la mesure de S(ρ⁰(770)K_s)
- Mesure de S(f₀(980)K_s) brise vielle tendance et améliore précision

Alejandro Perez,

JRJC 2007, 13 Decembre

mesure!

Alejandro Perez,

Les Paramètres Mesurés: Résumé

 Résultats préliminaires présentés à Lepton Photon 2007:

hep-ex/0708.2097

Paramètre	Valeur			
$C[f_0(980)K_S^0]$	$0.35 \pm 0.27(\text{stat}) \pm 0.07(\text{syst}) \pm 0.04(\text{mod})$			
$S[f_0(980)K_s^0]$	$-0.94^{+0.07+0.05}_{-0.02-0.03}$ (stat + syst) ± 0.02(mod)			
$2\beta_{eff}[f_0(980)K_S^0]$	88.6^{+22}_{-20} (stat) $\pm 5^{\circ}$ (syst) $\pm 8^{\circ}$ (mod)			
$C[\rho^{0}(770)K_{s}^{0}]$	$0.02 \pm 0.27(\text{stat}) \pm 0.08(\text{syst}) \pm 0.06(\text{mod})$			
$S[\rho^{0}(770)K_{S}^{0}]$	$0.61^{+0.22}_{-0.24}$ (stat) ± 0.09 (syst) ± 0.08 (mod)			
$2\beta_{eff}[\rho^0(770)K^0_{S}]$	$37.4^{\circ+19}_{-17}$ (stat) $\pm 5^{\circ}$ (syst) $\pm 6^{\circ}$ (mod)			
$A_{cp}[K^{*}(892)\pi]$	$-0.18 \pm 0.10(\text{stat}) \pm 0.03(\text{syst}) \pm 0.03(\text{mod})$			
$\Delta \phi[K^*(892)\pi]$	$-164^{\circ+24}_{-23}$ (stat) $\pm 12^{\circ}$ (syst) $\pm 15^{\circ}$ (mod)			
$\Delta \phi[f_0(980), \rho^0(770)]$	$-59^{\circ+16}_{-17}$ (stat) $\pm 5^{\circ}$ (syst) $\pm 6^{\circ}$ (mod)			

Résumé

- Mesures en f₀(980)K⁰_s:
 - $2\beta eff = 0 exclu à 4.3\sigma$,
 - $2\beta eff = 180 exclu à 3.9\sigma$.
 - S à 2.1 σ de sin2 β
 - Brise" la tendance dans modes pingouin
- Première mesure de 2β_{eff}[ρ⁰(770)K⁰_s]
- Première mesure de Δφ[K*(892)π]
 Solution miroir exclue à 3.7σ
 - Ingrédient important pour mesurer γ

Perspectives

Publication:

- Augmenter la statistique (Run 1-5 complet)
- Quelques systématiques à revoir
- Ajouter les mesures de Rapport d'Embranchement (quelques systématiques supplémentaires)
- Analyse Phénoménologique du système $B \rightarrow K\pi\pi$ avec CKMFitter
 - Contraindre le Triangle d'Unitarité avec des boucles

Soutenance en 2008

Le Modèle Standard et La Matrice CKM Particles

 SM: Théorie de jauge des interactions forte et électrofaible. Avec groupe de symétrie,

 $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$

Three Families of Matter

 V_{CKM} Complexe

 $V_{CKM}V_{CKM}^{\dagger}$

► Violation de CP dans le SM

Mélange entre quarks est décrit par 3 paramètres réels et une phase

 $CP^{-1}L_{CC}CP = g(V_{CKM}^{T})^{ij} \overline{d}_{L}^{i} \gamma_{\mu} u_{L}^{j} W^{\mu-} + h.c.$

 $L_{CC} = g V_{CKM}^{ij} \overline{u}_L^i \gamma_\mu d_L^j W^{\mu-} + h.c.$

Matrice CKM: État des Lieux

PEP-II: Une Usine à B à SLAC

As of 2007/09/04 00:00

23

2007

JRJC 2007, 13 Decembre

Alejandro Perez,

Le Détecteur BaBar

La mesure de ∆t: Tagging et <u>Vertexing</u>

- Les Mésons B neutres produits dans un état cohérent B⁰ anti-B⁰
- Etiquetage de saveur du B signal avec le B partenaire
- Mesure de Δt à partir de Δz

Résultats de l'Ajustement

Rapport de Vraisemblance

(seulement ~2% du total)

Alejandro Perez,

Alejandro Perez,

JRJC 2007, 13 Decembre

 $\mathbf{m}_{\pi+\mathrm{Ks}}$

Résultats de l'Ajustement

Résultats de l'Ajustement

Alejandro Perez,

Les Variables Discriminantes

- Les rapports S-B très faible dans le charmless (~1/12)
- Quatre tipe de variables discriminantes:
 - Variables Cinématiques. Ils utilisé de contraints cinématiques pour discriminer entre signal et bruit de fond (q anti-q et bruit de fond B). Des coupures fortes ont été faites pour avoir une haute pureté de signal.
 - Variables Topologiques. Ils utilisé la forme de désintégration dans le CM pour séparer la signal de bruit de fond q anti-q.
 - Le temps. Le traitement du temps standard dans BaBar.
 - Le Plan Dalitz.

Les Variables Cinématiques et Topologiques

- Cinématique:
 - $m_B^2 = (E_{rec}^*)^2 (p_{rec}^*)^2$
 - $\mathbf{E}_{\text{faiceaux}}^*/2 = \mathbf{E}_{\text{rec}}^*$

On peut faire les définitions suivantes:

- $\mathbf{m}_{\rm ES}^2 = (\mathbf{E}_{\rm faiceaux}^*/2)2 (\mathbf{p}_{\rm rec}^*)^2$
 - m_{ES} est connue avec une meilleure résolution que m_B.
 - Distribution étroite autour de la masse de B pour la signal
 - On choisit 5.272 < ∆E < 5.286 GeV
- $\Delta E = E_{\text{faiceaux}}^*/2 E_{\text{rec}}^*$
 - ΔE a une mois bonne résolution que mES.
 - Distribution centrée a zéro pour la segnal
 - On choisit -65 < ∆E < 65 MeV
- Topologique:
- \bullet cos b_m . Angle entre l'axe du candidat et l'axe du détecteur.
- cos b_t. Angle entre l'axe du candidat et l'axe du ROE.

•
$$L_0 = \sum_i p_i^*$$
, L_2 . $L_2 = \sum_i p_i^* |\cos \theta_i^*|^2$, somme sur ROE.

NN, Réseau neurologique, fonction non-linéaire de $\cos b_m$, $\cos b_t$, L_0 et L_2 .

On a choisit NN > -0.4

Alejandro Perez,

Le Plan Dalitz Carré (SDP)

- Masses de ρ et K* petite par rapport à la masse du B
- Les événements de signal distribues aux bords du DP
- Le bruit de Fond q anti-q aussi
- Transformation non linéaire de masse et hélicité π⁺π⁻

Alejandro Perez,

Les lineshapes des composantes

• Pour $\rho^{0}(770)$ K_{S}^{0} , on utilise un lineshape Gounaris-Sakurai. Pour $f_{0}(980)K_{S}^{0}$, $\chi_{c0}K_{S}^{0}$ et $K(892)\pi$ un Relativistic Breit-Wigner

- La présence de f_x(1300) K⁰_s et f₂(1270) K⁰_s non attendue, mais améliore considérablement le fit (voir plus tard)
- La composante Non résonante a une *lineshape* plat sur tout le plan Dalitz.

Les Paramètres Mesurés: S

S[f₀(980)K⁰_S]

Analyses phénoménologiques avec l<u>e système K*</u>π

Le Système K π (thèse Julie)

Inconnues:

- 11 paramètres QCD et 2 CKM.
- Des hypothèses théoriques peuvent réduire les inconnues

• Canaux:

- $B^{+} \rightarrow K^{0}\pi^{+}$.
- $B^{+} \rightarrow K^{+}\pi^{0}$.
- $B^0 \rightarrow K^+\pi^-$.
- $B^0 \rightarrow K^0 \pi^0$.
- 4 BF, 4 DCPA et 1 S,
- 9 observables au total.

Système non contraint...

Le Système K^{*}π

- Inconnues: même nombre que pour $K\pi$
- Canaux:
 - $B^0 \rightarrow K^0 \pi^0 \pi^0$.
 - $B^{+} \rightarrow K^{0}\pi^{0}\pi^{+}$. (Jennifer, Jacques)
 - $B^0 \rightarrow K^0 \pi^+ \pi^-$. (Alejandro, Eli, José)
 - $B^{\scriptscriptstyle +} \rightarrow K^{\scriptscriptstyle +} \pi^0 \pi^0$.
 - $B^0 \rightarrow K^+\pi^-\pi^0$. (Jacques, José)
 - $B^{+} \rightarrow K^{+}\pi^{-}\pi^{+}$.
 - 4 BF, 4 DCPA, 1 S,
 - $\Delta \phi$ [K*(892) π], plus 4 autres phases
 - Plusieurs mesures redondantes.

```
Système Surcontraint!
```

Alejandro Perez,

Succès et faiblesses du SM

Succès:

 Le SM est en très bien accord avec toutes les mesures expérimentales jusqu'à la date.

Faiblesses: beaucoup des questions ouvertes

- Le Boson de Higgs n'a pas été observé
- Les 3 interactions qui le SM décris ne sont pas unifié, et n'y inclus pas l'interaction gravitationnel
- Le nombre des familias, nombre des particules élémentaires et leurs masses ne sont pas expliqué
- Des résultats obtenues provenant des études de cosmos montrent la présence de substances pas inclues dans le SM: la "Matière Noire" et "l'Énergie Noire"
- L'hiérarchie dans la matrice CKM n'est pas prédis
- Le mécanisme de violation de CP dans le SM n'explique pas la asymétrie matière antimatière à grande échelle

Le SM peut être une réduction effective d'une théorie global

- Les expérimentalistes sont en train de observer de la physique au delà de SM avec les donnes pris jusqu'à la date
- Les Théoriciens sont en train de construire des nouveaux modèles ("Modèles de nouvelle Physique")

Le Plan de Dalitz (DP):

 En principe dans une désintégration à 3 corps on a besoin de 12 paramètres

- La conservation de l'impulsion (4 contraintes) les réduit à 8
- Masses de l'état final (3 contraints) les réduit à 5
- 3 angles sans contenu physique, les réduit à 2

Mesures Existantes

Time-dependent

C <i>P</i> parameters	BaBar hep-ex/0408095	Belle hep-ex/0507037
$S(f_0(980)K_S^0)$	$-0.95^{+0.32}_{-0.23}\pm0.10$	$-0.47 \pm 0.36 \pm 0.08$
$C(f_0(980)K_S^{0})$	$-0.24 \pm 0.31 \pm 0.15$	$-0.23 \pm 0.23 \pm 0.13$
$S(ho^0(770)K_S^0)$	$0.20 \pm 0.52 \pm 0.24$	—
$C(ho^0(770)K_S^0)$	$0.64 \pm 0.41 \pm 0.20$	_
	Time-integrated	Time-integrated
$\mathcal{B}(B^0 ightarrow ext{Mode})[10^{-6}]$	Ba Q2B PRD 73, 031101	Bee PRD 75, 012006
$-K_S^0\pi^+\pi^-$	$43.0 \pm 2.3 \pm 2.3$	$47.5 \pm 2.4 \pm 3.7$
$f_0(980)(o \pi^+\pi^-)K^0_S$	$5.5 \pm 0.7 \pm 0.5 \pm 0.3$	$7.6 \pm 1.7 \pm 0.7^{+0.5}_{-0.7}$
$ ho^0(770)K_S^0$	—	$6.1 \pm 1.0 \pm 0.5^{+0.6}_{-0.4}$
$K^{*+}(892)\pi^{-}$	$11.0 \pm 1.5 \pm 0.5 \pm 0.5$	$8.4 \pm 1.1 \pm 0.8^{+0.6}_{-0.4}$
$K_0^{*+}(1430)\pi^-$	—	$49.7 \pm 3.8 \pm 6.7 ^{+1.2}_{-4.8}$
nonresonant $K^0_S \pi^+ \pi^-$	< 2.1 @ 90% CL	$19.9 \pm 2.5 \pm 1.6^{+0.7}_{-1.2}$
$\mathcal{A}_{CP}(K^{*+}\pi^{-})$	$-0.11 \pm 0.14 \pm 0.05$	_

- □ Both agree reasonably well
 - Discrepancy in the nonresonant contribution
 - Belle also observes structure near 1.3 GeV/c² in the $\Pi^+\Pi^-$ spectrum

Alejandro Perez,

Data Set

- Signal MC (SP8):
 - Non resonant (5401K events)
 - $B^0 \to f_0(980) K_{S}^0$ (134K events)
 - $B^0 \to \rho^{0}(770) K_{S}^0$ (143K events)
 - $B^0 \rightarrow K^*(892)\pi$ (134K events)
 - Dalitz plot model, with interference
 - B Background MC. See

(http://www.slacstanford.edu/BFROOT/www/Organization/CollabMtgs/2007/detFeb07/Thur1b/aperez.pdf)

Processed with QnBUser package in analysis-32

Alejandro Perez,

Event Selection

- π candidates from GoodTrackLoose list
- K⁰_s candidates from KsDefault list
- B^o candidates vertexed using TreeFitter
- 5.272 < m_{ES} < 5.286 GeV
- -65 < ∆E < 65 MeV
- |∆t|<20 ps
- σ(Δ t) < 2.5 ps
- M(K⁰_S) M(K⁰_S)_{PDG} | < 15 MeV</p>
- "lifetime significance" > 5
- $\cos(K_{S}^{0}, K_{S}^{0} \text{ daughters}) < 0.999$
- NN > -0.4
- PID requirements to separate from Kaons and reject Leptons

Alejandro Perez,

Total Efficiency \cong **25%**

Multiple candidate: we select the candidate arbitrarily, in order not to bias the ΔE distribution:

Mod(timeStamp,nCands)

Asymétrie CP Dépendent de temps

