Contraintes observationnelles d'un Univers de Milne matière - antimatière

AURÉLIEN BENOIT-LÉVY

JRJC 2007 DINARD 9-15 DÉCEMBRE

UN CONSTAT

95 % DE L'UNIVERS EST INCONNU !

PLAN

RAPPELS DE COSMOLOGIE

UNIVERS DE MILNE SYMÉTRIQUE

TESTS COSMOLOGIQUES

Modèle Standard de la Cosmologie

PRINCIPE COSMOLOGIQUE : À GRANDE ÉCHELLE, L'UNIVERS EST HOMOGÈNE ET ISOTROPE.

MÉTRIQUE FRLW : COMMENT SE DÉPLACENT LES PHOTONS DANS L'ESPACE-TEMPS

MODÈLE STANDARD DE LA COSMOLOGIE

Métrique FRLW + Équation d'Einstein = Équation de Friedmann (évolution de l'expansion)

$$\left(\frac{\dot{a}}{a}\right)^2 = H_0^2 \left[\Omega_M \left(\frac{a_0}{a}\right)^3 + \Omega_R \left(\frac{a_0}{a}\right)^4 + \Omega_k \left(\frac{a_0}{a}\right)^2 + \Omega_\Lambda\right]$$

MODÈLE DE CONCORDANCE (STANDARD)

 $\Omega_M \approx 0.3, \ \Omega_\Lambda \approx 0.7, \ \Omega_R \approx 8.5 \ 10^{-5}, \ \Omega_k = 0$

MODÈLE STANDARD DE LA COSMOLOGIE

CHRONOLOGIE

- "T=O SEC, T= ∞ " BIG-BANG
- T=1 SEC, T=1 MEV
 GEL DES INTERACTIONS FAIBLES

T \approx 200 sec, T=80 keV

FIN DE LA NUCLÉOSYNTHÈSE

T=380 000 ANS, T=3000 K

CMB, L'UNIVERS DEVIENT TRANSPARENT

T=14 MILLIARDS D'ANNÉES, T=2.725 K

AUJOURD'HUI

COSMOLOGIE

PROBLÈMES DU MODÈLE STANDARD

- 95 % DE L'UNIVERS EST INCONNU !
- PROBLÈME DE L'HORIZON (CAUSALITÉ), NÉCESSITÉ D'UN SCÉNARIO D'INFLATION
- PROBLÈME DE LA CONSTANTE COSMOLOGIQUE

UNIVERS DE MILNE SYMÉTRIQUE

- PRÉSENCE D'UNE QUANTITÉ D'ANTIMATIÈRE ÉGALE À LA QUANTITÉ DE MATIÈRE
- MATIÈRE ET ANTIMATIÈRE SÉPARÉES DANS DES DOMAINES
- ANTIMATIÈRE EST DOTÉE D'UNE MASSE NÉGATIVE
- LE TERME DE RAYONNEMENT EST NUL $(\Omega_r = 0)$
- PAS DE COMPOSANTE D'ÉNERGIE NOIRE, NI DE MATIÈRE NOIRE, DONC UN ESPACE-TEMPS VIDE DONC RIGOUREUSEMENT PLAT, CARACTÉRISÉ PAR UN FACTEUR D'EXPANSION LINÉAIRE :

$$\left(\frac{\dot{a}}{a}\right)^2 = H_0^2 \left(\frac{a_0}{a}\right)^2 \Rightarrow a(t) \propto t$$

QU'APPORTE UN FACTEUR D'ÉCHELLE LINÉAIRE ?

ÂGE DE L'UNIVERS

$$t_0 = \frac{1}{H_0} = 13,9 \times 10^9$$
 ans, avec $H_0 = 70 \text{ km/s/Mpc}$

PROBLÈME DE L'HORIZON
COORDONNÉE RADIALE D'UN OBJET DE REDSHIFT Z :

 $\chi(z) \xrightarrow{z \to +\infty} +\infty \longrightarrow$ Plus besoin d'inflation

MODÈLE PLUS SIMPLE, AVEC MOINS DE PARAMÈTRES (MODULO L'INTRODUCTION DE MASSES NÉGATIVES) PHYSIQUE NEWTONNIENNE : MASSES INERTIELLE, GRAVITATIONELLES ACTIVE ET PASSIVE.

PARMI LES 7 CAS POSSIBLES (=2³-1) DEUX SONT À RETENIR :

> LES TROIS MASSES SONT NÉGATIVES

PHYSIQUE NEWTONNIENNE : MASSES INERTIELLE, GRAVITATIONELLES ACTIVE ET PASSIVE.

PARMI LES 7 CAS POSSIBLES (=2³-1) DEUX SONT À RETENIR :

> LES TROIS MASSES SONT NÉGATIVES.

MASSES GRAVITATIONNELLES NÉGATIVES, MASSE INERTIELLE POSITIVE,

VIOLATION DU PRINCIPE D'ÉQUIVALENCE

DYNAMIQUE "ANTI-COULOMBIENNE".

DÉMARCHE

DEUX PROBLÉMATIQUES :

JUSTIFICATIONS THÉORIQUES DU MODÈLE

CONFRONTATIONS AUX OBSERVATIONS

DÉMARCHE

DEUX PROBLÉMATIQUES :

JUSTIFICATIONS THÉORIQUES DU MODÈLE

TESTS OBSERVATIONNELS

SUPERNOVAE DE TYPE IA

NUCLÉOSYNTHÈSE PRIMORDIALE

CMB

SUPERNOVAE DE TYPE IA

UTILISATION COMME CHANDELLE STANDARD

MAGNITUDE ABSOLUE M IDENTIQUE POUR TOUTES LES SNIA

MAGNITUDE RELATIVE (OBSERVÉE)

DISTANCE DE LUMINOSITÉ

$$\mu = m - M = -5 + 5 \log \left(\frac{d_L(z)}{1 \text{pc}}\right)$$

MAGNITUDE ABSOLUE

LA DISTANCE DE LUMINOSITÉ EST UNE FONCTION ANALYTIQUE DES PARAMÈTRES COSMOLOGIQUES.

DONNÉES SNLS (ASTIER ET AL. 05)

RÉSIDUS DU DIAGRAMME DE HUBBLE

POUR COMPARAISON, POUR EDS

$$\chi^2/dof = 13.46$$

CONCLUSION

Les supernovae de type la ne permettent pas d'exclure le modèle de Milne

NUCLÉOSYNTHÈSE PRIMORDIALE

Formation des éléments légers (jusqu'au ⁷Li) pendant les premières minutes de l'Univers.

T \approx 1 MeV, T=1s : Gel des interactions faibles, perte de Neutrons par désintégration.

- T \approx 80 keV, T=200 s : Fin de la photodésintégration du deutérium. Début de la nucléosynthèse.
- T \approx 30 keV, t=25 min : Gel des abondances. Fin de la nucléosynthèse

NUCLÉOSYNTHÈSE PRIMORDIALE

ET DANS L'UNIVERS DE MILNE ?

NUCLÉOSYNTHÈSE DANS L'UNIVERS DE MILNE

La dynamique est beaucoup plus lente : à une même température, l'Univers de Milne est beaucoup plus âgé.

À1 MeV, T \approx 3 ans (Milne), contre 1s dans SBBN À 80 keV, T \approx 30 ans (Milne), contre \approx 200 s dans SBBN **BBN**

TEMPÉRATURE DE DÉCOUPLAGE DES INTERACTIONS FAIBLES : ~ 10^9 K (~ 80 keV), ie après annihilation e⁻e⁺.

TEMPÉRATURES DU CMB ET DU FOND DE NEUTRINOS COSMOLOGIQUES IDENTIQUES !

NUCLÉOSYNTHÈSE DANS L'UNIVERS DE MILNE

Bonne quantité d'hélium si densité baryonique plus grande : $\eta\approx 7\times 10^{-9}~~\Omega_b\approx 0.3$

NÉCESSITÉ DE FABRIQUER DU DEUTÉRIUM PAR UN AUTRE MOYEN : NUCLÉODISRUPTION, SPALLATION.

LOHIYA ET AL. GR-QC/9808031 KAPLINGHAT ET AL, PRD(61)10

BBN

MÉCANISME DE FABRICATION DU DEUTÉRIUM

DIFFUSION DES NUCLÉONS ET ANTINUCLÉONS DANS LES DOMAINES SÉPARÉS DE MATIÈRE ET D'ANTIMATIÈRE

- T \geq 80 keV, transport de nombre baryonique assuré par La diffusion des neutrons (particule neutres)
- **80** KeV \geq T \geq 5 KeV, plus de neutrons disponibles pour l'annihilation
- 5 KEV ≥ T ≥ 1 KEV: REPRISE ET FIN DE L'ANNIHILATION PAR DIFFUSIONS DES PROTONS. FORMATION DU DEUTÉRIUM PAR NUCLÉODISRUPTION.

P_n	P_p	P_{D}	P_{T}	$P_{^{3}\mathrm{He}}$
0.51	0.28	0.13	0.43	0.21

Probabilité de création par la réaction $\bar{p}^4 He$

JEDAMZIK ET AL. PRD(64)2, KURKI SUONIO ET AL. PRD(62)10

POSITION DU PREMIER PIC ACOUSTIQUE

ANGLE SOUS LEQUEL ON VOIT L'HORIZON SONIQUE À LA RECOMBINAISON 2 EFFETS :

HORIZON SONIQUE

DISTANCE PARCOURUE PAR UN ONDE À LA VITESSE DU SON DEPUIS UN INSTANT To

- MODÈLE STANDARD : PROPAGATION DEPUIS L'INFLATION
- MODÈLE MILNE : PROPAGATION DEPUIS LA TRANSITION QGP VERS 170 MEV.

LÀ ENCORE, BEAUCOUP PLUS DE TEMPS DISPONIBLE POUR LA PROPAGATION

CONCLUSION

- MODÈLE ALTERNATIF AU MODÈLE DE CONCORDANCE PLUS SIMPLE
- BON ACCORD AVEC TROIS TESTS COSMOLOGIQUES
- DANS LA SUITE :
 - CONTRAINTES SUR LA TAILLE DES DOMAINES
 - **SNLS** (250 SUPERNOVAE)
 - **CMB** (POSITION PRÉCISE DU 1ER PIC)
 - AUTRES TESTS COSMOLOGIQUES